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Motivic Gauss and Jacobi sums (∗)

Noriyuki Otsubo (1) and Takao Yamazaki (2)

ABSTRACT. — We study the Gauss and Jacobi sums from a viewpoint of motives.
We exhibit isomorphisms between Chow motives arising from the Artin–Schreier
curve and the Fermat varieties over a finite field, that can be regarded as (and
yield a new proof of) classically known relations among Gauss and Jacobi sums
such as Davenport–Hasse’s multiplication formula. As a key step, we define motivic
analogues of the Gauss and Jacobi sums as algebraic correspondences, and show
that they represent the Frobenius endomorphisms of such motives. This generalizes
Coleman’s result for curves. These results are applied to investigate the group of
invertible Chow motives with coefficients in a cyclotomic field.

RÉSUMÉ. — Nous étudions les sommes de Gauss et de Jacobi du point de vue
des motifs. Nous démontrons des isomorphismes entre les motifs de Chow associés
à la courbe d’Artin–Schreier et les variétés de Fermat sur un corps fini, qui peuvent
être considérés comme (et fournissent une nouvelle preuve de) relations classique-
ment connues entre les sommes de Gauss et de Jacobi telles que la formule de mul-
tiplication de Davenport–Hasse. Comme étape clé, nous définissons des analogues
motiviques des sommes de Gauss et de Jacobi comme des correspondances algé-
briques, et montrons qu’ils représentent les endomorphismes de Frobenius de tels
motifs. Cela généralise le résultat de Coleman pour les courbes. Ces résultats sont
appliqués à l’étude du groupe des motifs de Chow inversibles à coefficients dans un
corps cyclotomique.
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1. Introduction

Let κ be a finite field of cardinality q and of characteristic p, and d a
positive divisor of q − 1. Take a non-trivial additive character ψ : κ → C∗,
and multiplicative characters χ, χ1, . . . , χn : µd → C∗, where µd := {m ∈ κ∗ |
md = 1}. We consider the Gauss sum g(ψ, χ) ∈ Q(ζpd) and the Jacobi
sum j(χ1, . . . , χn) ∈ Q(ζd) (see (2.1), (2.4) for the definitions), where ζk :=
e2πi/k ∈ C. In this introduction, we discuss the following relations among
g(ψ, χ) and j(χ1, . . . , χn):

• Assume that none of χ1, . . . , χn,
∏n
i=1 χi is trivial. Then we have

(cf. (2.5))

n∏
i=1

g(ψ, χi) = g(ψ, χ1 · · ·χn)j(χ1, . . . , χn). (1.1)

• Assume n | d and let α : µd → C∗ be a character such that αn ̸= 1.
Then we have the Davenport–Hasse multiplication formula (cf. (7.5))

αn(n)j(α, . . . , α︸ ︷︷ ︸
n times

) =
∏

χn=1,χ̸=1
j(α, χ), (1.2)

where χ ranges over all non-trivial characters of µd such that χn = 1.

(See (2.2), (2.3), (2.6), (6.3), (7.1), (7.2), (7.4), (7.5) for other relations con-
sidered in the body of the text.) The aim of the present note is to upgrade
these relations to motives. This is achieved in two steps. The first step is to
construct isomorphisms between suitable motives, and the second is to relate
the Frobenius endomorphisms with the motivic Gauss and Jacobi sums.

To state our results, we introduce more notations. Let Chow(κ,Λ) be the
category of Chow motives over κ with coefficients in a field Λ of characteristic
zero. Let Ad be the (smooth projective) Artin–Schreier curve defined by xq−
x = yd. We construct an object h(Ad)(ψ,χ) of Chow(κ,Q(ζpd)) as a direct
factor of the motive h(Ad) of Ad cut out by the action of κ×µd. Similarly, for
each c ∈ κ∗ we construct an object h(F (n)

d ⟨c⟩)(χ1,...,χn) of Chow(κ,Q(ζd)) as
a direct factor of the motive h(F (n)

d ⟨c⟩) of the Fermat variety F (n)
d ⟨c⟩ ⊂ Pn

defined by ud1 + · · ·+udn = cud0 cut out by the action of µnd . (See Section 4 for
details.) We drop ⟨c⟩ from the notation when c = 1. Our first main result is
the following.
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Theorem 1.1. —

(i) Let ψ be a character of κ and χ1, . . . , χn characters of µd. If none of
ψ, χ1, . . . , χn,

∏n
i=1 χn is trivial, then there exists an isomorphism

between invertible objects of Chow(κ,Q(ζpd))
n⊗
i=1

h(Ad)(ψ,χi) ≃ h(Ad)
(
ψ,
∏n

i=1
χi

)
⊗ h(F (n)

d )(χ1,...,χn).

(ii) Suppose that n divides d and let α be a character of µd such that
αn ̸= 1. Then there exists an isomorphism between invertible objects
of Chow(κ,Q(ζd))

h(F (n)
d ⟨n⟩)(α,...,α) ≃

⊗
χn=1,χ̸=1

h(F (2)
d )(α,χ).

In fact, the isomorphism in (ii) holds over arbitrary base field κ as long
as κ contains a primitive dth root of unity (see Section 7.2). When κ = C,
it has an implication on the gamma function (see Remark 7.5).

To state the second main result, we introduce an element of the group
ring Z[µnd ]

j
(n)
d ⟨c⟩ = (−1)n−1

∑
m1,...,mn∈κ∗,

∑
mi=c

(
m

q−1
d

1 , . . . ,m
q−1

d
n

)
,

which we call the twisted Jacobi sum element. It follows from the definition
that j(n)

d ⟨c⟩ acts on h(F (n)
d ⟨c⟩)(χ1,...,χn) as the multiplication by

χ1 · · ·χn(c
q−1

d )j(χ1, . . . , χn).

The following theorem generalizes Coleman’s result [5, Theorem A] for n = 2
and c = 1.

Theorem 1.2. — Let χ1, . . . , χn be characters of µd such that none of
χ1, . . . , χn,

∏n
i=1 χi is trivial. Then the endomorphism of h(F (n)

d ⟨c⟩)(χ1,...,χn)

induced by j(n)
d ⟨c⟩ agrees with the Frobenius endomorphism.

Coleman also proved that the Gauss sum element

gd = −
∑
m∈κ∗

(
m,m

q−1
d

)
∈ Z[κ× µd] (1.3)

induces the Frobenius endomorphism on h(Ad)(ψ,χ) if ψ and χ are non-
trivial. Since the Frobenius endomorphism commutes with any morphisms
(see (3.4) below), (1.1) and (1.2) can be deduced from Coleman’s result and
Theorems 1.1, 1.2. See Remark 7.4 for details.
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We conclude this introduction by a discussion on the relations among
Weil numbers and motives. Recall that α ∈ C is called a q-Weil number of
weight w ∈ Z if there exists m ∈ Z such that qmα is an algebraic integer and
|σ(α)| = qw/2 for all σ : Q(α) → C. Let Wq(Λ) be the subgroup of Λ∗ consist-
ing of all q-Weil numbers (of arbitrary weight) belonging to a given subfield
Λ of C. It is conjectured by Beilinson [2, 1.0] that the rational equivalence
and numerical equivalence should agree over a finite field κ (with coefficients
in Λ). If we assume this as well as the Tate conjecture, it follows from [12,
Proposition 2.21] that all simple objects of Chow(κ,Q) should be invertible,
and their isomorphism classes would form a group (with respect to the tensor
product) isomorphic to Wq(Q). In particular, the group Pic(Chow(κ,Λ))
of all isomorphism classes of invertible objects of Chow(κ,Λ) should be iso-
morphic to a subgroup of Wq(Λ) by Lemma 3.3 below. Therefore, the mul-
tiplicative relations among q-Weil numbers (such as (1.1) and (1.2)) should
come from relations among motives, as demonstrated by Theorem 1.1.

Using our motivic relations, we shall deduce the following two results on
Pic(Chow(κ,Q(ζd))) where κ is the residue field of Q(ζd) at a prime v ∤ d,
both conditional to the conjectures of Beilinson and Tate (see Corollary 8.4
and the discussion after Proposition 8.5):

• Pic(Chow(κ,Q(ζd)) should be generated by the Fermat motives
h(F (2)

d )(χ1,χ2), up to powers and Artin motives.
• All the relations among h(F (2)

d )(χ1,χ2) in Pic(Chow(κ,Q(ζd)))
should be implied by Theorem 1.1(ii) and the reflection relation
(4.8), up to powers and Artin motives.

The key input here is a result of Iwasawa–Sinnott [19] on Stickelberger’s
ideal.

The paper is organized as follows. After a brief recollection on the Gauss
and Jacobi sums, we define their motivic variants in Section 2. We pre-
pare a few basic facts on the Chow and Voevodsky motives in Section 3.
We then extensively study the motives of the Artin–Schreier curves and the
Fermat varieties in Section 4, where a crucial ingredient is the inductive
structure of Fermat varieties due to Katsura–Shioda [18]. We complete the
proof of Theorem 1.1(i), (ii) and Theorem 1.2 in Sections 5, 7 and 6, respec-
tively. The last Section 8 is devoted to a discussion on Weil numbers and
Pic(Chow(κ,Q(ζd))).
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2. Gauss and Jacobi sums

Let κ be a finite field of characteristic p with q elements, and let d be
a positive divisor of q − 1. We write Ĝ := Hom(G,C×) when G is a finite
group, and χ := χ−1 for χ ∈ Ĝ. For ψ ∈ κ̂ \ {1} and χ ∈ µ̂d, the Gauss sum
is defined by

g(ψ, χ) = −
∑
m∈κ∗

ψ(m)χ
(
m

q−1
d

)
∈ Q(ζpd). (2.1)

Note that g(ψ, 1) = 1. We have for any χ ̸= 1

g(ψ, χ)g(ψ, χ) = q. (2.2)

In particular, g(ψ, χ) is a q-Weil number of weight one if χ ̸= 1. We have
also

g(ψ, χ) = χ
(

(−1)
q−1

d

)
g(ψ, χ). (2.3)

If d′ | d and if χ′ ∈ µ̂d′ is such that χ(m) = χ′(md/d′) for all m ∈ µd, then
we have g(ψ, χ) = g(ψ, χ′).

For χ1, . . . , χn ∈ µ̂d, the Jacobi sum is defined by

j(χ1, . . . , χn)

= (−1)n−1
∑

mi∈κ∗,
∑n

i=1
mi=1

χ1

(
m

q−1
d

1

)
· · ·χn

(
m

q−1
d

n

)
∈ Q(ζd). (2.4)

If none of χ1, . . . , χn,
∏n
i=1 χi is trivial, we have (cf. [16, Proposition 2.2])

j(χ1, . . . , χn) = g(ψ, χ1) · · · g(ψ, χn)
g(ψ, χ1 · · ·χn) , (2.5)

j(χ1, . . . , χn)j(χ1, . . . , χn) = qn−1. (2.6)

(In particular, the right member of (2.5) is independent of ψ). If d′ | d and
if χ′

i ∈ µ̂d′ is such that χi(m) = χ′
i(md/d′) for all m ∈ µd and i = 1, . . . , n,

then we have j(χ1, . . . , χn) = j(χ′
1, . . . , χ

′
n).
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Remark 2.1. — The relations (2.2) and (2.5) are finite field analogues of
the functional equations for the gamma and beta functions:

Γ(s)Γ(1 − s) = π

sin πs , B(s1, . . . , sn) = Γ(s1) · · · Γ(sn)
Γ(s1 + · · · + sn) .

Define the Gauss sum element in the group ring Z[κ× µd] by

gd = −
∑
m∈κ∗

(
m,m

q−1
d

)
.

Define for c ∈ κ the twisted Jacobi sum element in the group ring Z[µnd ] by

j
(n)
d ⟨c⟩ = (−1)n−1

∑
m1,...,mn∈κ∗,

∑n

i=1
mi=c

(
m

q−1
d

1 , . . . ,m
q−1

d
n

)
. (2.7)

We write j(n)
d = j

(n)
d ⟨1⟩. Note that if c ̸= 0

j
(n)
d ⟨c⟩ =

(
c

q−1
d , . . . , c

q−1
d

)
· j(n)
d .

If d′ | d, then the map Z[κ× µd] → Z[κ× µd′ ]; (a,m) 7→ (a,md/d′) sends gd
to gd′ , and the map Z[µnd ] → Z[µnd′ ]; (mi) 7→ (md/d′

i ) sends j(n)
d ⟨c⟩ to j(n)

d′ ⟨c⟩.

If G is a finite group and χ ∈ Ĝ, we write

eχ = eχG = 1
|G|

∑
g∈G

χ(g)g ∈ C[G] (2.8)

for the corresponding projector. We have g · eχ = χ(g)eχ and eχeχ
′ =

δ(χ, χ′)eχ in C[G] for any g ∈ G and χ, χ′ ∈ Ĝ, where δ is the Kronecker
delta. If G is abelian, we also have

∑
χ∈Ĝ e

χ = 1. The following lemma is an
immediate consequence of the definitions and will be used frequently without
further notice.

Lemma 2.2. —

(i) For any ψ ∈ κ̂ \ {1} and χ ∈ µ̂d, we have

gd · e(ψ,χ) = g(ψ, χ)e(ψ,χ) in C[κ× µd].

(ii) For any χ1, . . . , χn ∈ µ̂d, we have

j
(n)
d ⟨c⟩ · e(χ1,...,χn) = χ1 · · ·χn(c

q−1
d )j(χ1, . . . , χn)e(χ1,...,χn) in C[µnd ].
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3. Preliminaries on motives

In this section κ is an arbitrary field, which we assume to be perfect from
Section 3.2 onward. Let SmProj(κ) be the category of smooth projective
varieties over κ. We also fix a field Λ of characteristic zero. We write AΛ :=
A⊗Z Λ when A is an abelian group.

3.1. Chow motives

Let Chow(κ,Λ) be the homological category of Chow motives over κ with
coefficients in Λ (cf. e.g. [11, Chapter 20]; this is opposite of the one in [17]).
This is a Λ-linear rigid tensor pseudo-abelian category. Recall that an object
of Chow(κ,Λ) can be written as a triple (X,π, r) where X ∈ SmProj(κ) is
equi-dimensional, π ∈ CHdimX(X × X)Λ is such that π2 = π (with respect
to the composition of algebraic correspondences), and r ∈ Z. For two such
triples (X,π, r) and (Y, ρ, s), we have

HomChow(κ,Λ)((X,π, r), (Y, ρ, s)) = ρ ◦ CHdimX+r−s(X × Y )Λ ◦ π.

For r = 0 we abbreviate (X,π, 0) = (X,π).

The tensor product on Chow(κ,Λ) is given by
(X,π, r) ⊗ (Y, ρ, s) = (X × Y, π × ρ, r + s).

We put Λ(r) := (Specκ, idSpecκ, r) and Λ := Λ(0). For anyM ∈ Chow(κ,Λ),
we set M(r) := M⊗Λ(r) and write M∨ for the (strong) dual of M . We have
(X,π, r)∨(dimX) = (X, tπ,−r), where tπ denotes the transpose of π.

Suppose X ∈ SmProj(κ) is connected of dimension m. Given a κ-
rational point x0 ∈ X(κ), we define objects in Chow(κ,Λ) by
h0(X) := (X, [X × x0]) ≃ Λ, h2m(X) := (X, [x0 ×X]) ≃ Λ(m). (3.1)

If m = 1, we further put
h1(X) := (X, idX −[X × x0] − [x0 ×X]) ∈ Chow(κ,Λ). (3.2)

We do not indicate x0 to ease the notation, although these objects depend
on the class of x0 in CH0(X)Λ.

There is a covariant functor
h : SmProj(κ) −→ Chow(κ,Λ), h(X) = (X, idX).

For a morphism f : X → Y in SmProj(κ), we have
f∗ := h(f) = [Γf ] : h(X) −→ h(Y ),
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where Γf ⊂ X × Y denotes the graph of f . If X,Y are equi-dimensional, we
also have

f∗ := [tΓf ] : h(Y ) −→ h(X)(dimY − dimX).

Lemma 3.1. — Let f : X → Y be a generically finite morphism of degree
d, where X,Y ∈ SmProj(κ) are both irreducible and of the same dimension
m. We define a group homomorphism

f# : End(h(X)) −→ End(h(Y )), f#(α) = 1
d

(f∗ ◦ α ◦ f∗), (3.3)

where End denotes the endomorphism ring in Chow(κ,Λ).

(i) We have a commutative diagram

End(h(X))
f#

// End(h(Y ))

CHm(X ×X)Λ
(1/d)(f×f)∗

// CHm(Y × Y )Λ.

(ii) Let σX (resp. σY ) be an automorphism of X (resp. Y ) such that
f ◦ σX = σY ◦ f . Then, f#((σX)∗) = (σY )∗.

Proof. — (i) is a consequence of Lieberman’s lemma (cf. e.g. [13, Lem-
ma 2.1.2]). To see (ii), we consider the commutative diagram

X ×X
f×f

// Y × Y

X

idX ×σX

OO

f
// Y.

idY ×σY

OO

We then compute

(f × f)∗([ΓσX
]) = ((f × f) ◦ (idX ×σX))∗([X])

= ((idY ×σY ) ◦ f)∗([X]) = (idY ×σY )∗(d[Y ]) = d[ΓσY
].

We now apply (i) to conclude (ii). □

Example 3.2. — We will use this lemma in the following situations.

(i) If f is an isomorphism, then f∗ = (f∗)−1 and f# is a ring isomor-
phism.

(ii) If finite groups G and G′ act on X and Y respectively, and the
actions are compatible under f and a homomorphism g : G → G′,
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then the diagram

Λ[G] g
//

��

Λ[G′]

��

End(h(X))
f#
// End(h(Y ))

commutes. Hence the restriction of f# to the image of Λ[G] is a ring
homomorphism.

(iii) Let κ be a finite field with q elements and FrX be the qth power
Frobenius endomorphism of X. Then f#(FrX) = FrY holds, because
we have

f ◦ FrX = FrY ◦f (3.4)
for any morphism f : X → Y in Chow(κ,Λ) by [9, p. 80] (see
also [20, Proposition 2]).

For later use, we state an elementary lemma.

Lemma 3.3. — Let Λ′ be a field extension of Λ. Then the scalar extension
functor Chow(κ,Λ) → Chow(κ,Λ′) is conservative.

Proof. — Let f : M → N be a morphism in Chow(κ,Λ) and assume that
its scalar extension fΛ′ : MΛ′ → NΛ′ is an isomorphism in Chow(κ,Λ′). We
must show that f is an isomorphism in Chow(κ,Λ). By Yoneda’s lemma, it
suffices to show that

f∗ : HomChow(κ,Λ)(L,M) −→ HomChow(κ,Λ)(L,N)
is bijective for any L ∈ Chow(κ,Λ). This follows from the bijectivity of

fΛ′∗ : HomChow(κ,Λ′)(LΛ′ ,MΛ′) −→ HomChow(κ,Λ′)(LΛ′ , NΛ′)
since Λ′ is faithfully flat over Λ. □

3.2. Voevodsky motives

From now on we assume that κ is perfect. Let DMgm(κ,Λ) be Voevod-
sky’s category of geometric mixed motives over κ with coefficients in Λ (cf.,
e.g. [11]). This is a Λ-linear rigid tensor pseudo-abelian triangulated cate-
gory equipped with a covariant functor M : Sm(κ) → DMgm(κ,Λ), where
Sm(κ) is the category of smooth separated schemes of finite type over κ.
There is a fully faithful tensor functor

M : Chow(κ,Λ) −→ DMgm(κ,Λ) (3.5)
such that M ◦ i = M ◦ h, where i : SmProj(κ) → Sm(κ) is the inclusion
functor. This fact is first proved by Voevodsky [22, Corollary 4.2.6] (see
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also [11, Proposition 20.1]) under the assumption that κ admits resolution
of singularities. See [3, 6.7.3] for a proof over an arbitrary perfect base field.
For each i ∈ Z and an object N of DMgm(κ,Λ), we put Λ(i) := M(Λ(i))[−2i]
and N(i) := N ⊗ Λ(i), where [ · ] denotes the shift functor.

For later use, we record the blow-up formula:

Proposition 3.4. — Let V be a smooth variety over κ and Z ⊂ V a
smooth closed subvariety of pure codimension c. Let f : U → V be the blow-up
along Z. Then we have an isomorphism in DMgm(κ,Λ)

M(U) ≃ M(V ) ⊕

(
c−1⊕
i=1

M(Z)(i)[2i]
)
.

If further V is projective over κ, then f also induces an isomorphism h(U) ≃
h(V ) ⊕

(⊕c−1
i=1 h(Z)(i)

)
in Chow(κ,Λ).

Proof. — The first statement is the blow-up formula [11, Corollary 15.13],
and the second follows from (3.5). (The latter is also seen from [17, Theo-
rems 2.5, 2.8].) □

If a finite group G acts (from left) on a motive M (that is, an object
of either Chow(κ,Λ) or DMgm(κ,Λ)), we write Mχ for the image of the
projector eχ from (2.8) for χ ∈ Ĝ.

Proposition 3.5. — Let G be a finite group and χ ∈ Ĝ. Suppose that
Λ is large enough to contain the values of χ. Let U, V be smooth varieties
with G-action, and let f : U → V be a G-equivariant morphism. If one of the
following conditions is satisfied, then f induces an isomorphism M(U)χ ≃
M(V )χ in DMgm(k,Λ).

(i) f : U → V is an open immersion such that each irreducible compo-
nent T of V \ f(U) is smooth and G-stable with M(T )χ = 0.

(ii) f : U → V is a finite generically Galois morphism with Gal(U/V ) ⊂
G such that χ|Gal(U/V ) = 1.

If further U, V are projective over κ, then f also induces an isomorphism
h(U)χ ≃ h(V )χ in Chow(κ,Λ).

Proof. — The first statement for the case (i) and (ii) follows respectively
from the localization sequence [11, Theorem 15.15] and Lemma 3.6 below.
The second follows from (3.5). □

In the following lemma, we denote by Cor(X,Y ) the group of finite
correspondences for X,Y ∈ Sm(κ) (cf. [11, Definition 1.1]).
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Lemma 3.6. — If f : U → V is a finite generically Galois morphism in
Sm(κ), then we have equalities

f∗ ◦f∗ = (deg f) · idV in Cor(V, V ), f∗ ◦f∗ =
∑

g∈Gal(U/V )

g∗ in Cor(U,U).

Proof. — For an open dense immersion j : V ′ → V , we have injections

Cor(V ′, V ′) �
�

j◦−
// Cor(V ′, V ) Cor(V, V ).? _

−◦j
oo

Putting U ′ := f−1(V ′), we have
(f∗ ◦ f∗) ◦ j = j ◦ (f |U ′∗ ◦ f |∗U ′), idV ◦j = j ◦ idV ′ in Cor(V ′, V ),

which reduces the first statement to the case V is the spectrum of a field. A
similar argument reduces the second statement to the same case. Then both
statements are found in [11, Exercise 1.11]. □

3.3. Invertible objects

Let C be a Λ-linear rigid tensor pseudo-abelian category such that the en-
domorphism ring of the unit object is canonically isomorphic to Λ. (We shall
apply the following discussion to C = Chow(κ,Λ),DMgm(κ,Λ).) Recall
that an object L of C is called invertible if the evaluation map L∨ ⊗L → Λ
is an isomorphism, where L∨ denotes the (strong) dual of L. It then follows
that End(L) ≃ Λ and hence L is indecomposable (that is, End(L) has no
projectors other than 0, 1). We will use the following result of Krull–Schmidt
type.

Proposition 3.7. — Let L1, . . . , Ln be invertible objects of C , and put
M := L1 ⊕ · · · ⊕ Ln. Let N1, N2 be objects of C such that there are isomor-
phisms M ≃ N1 ⊕ N2 and N1 ≃ L1 ⊕ · · · ⊕ Lr for some 1 ⩽ r ⩽ n. Then
there is an isomorphism N2 ≃ Lr+1 ⊕ · · · ⊕ Ln.

Proof. — This follows from [1, Chapter 1, Theorem 3.6]. □

Artin motives provide basic examples of invertible motives, as seen in the
following lemma. We shall see more examples in Propositions 4.5 and 4.11
below.

Lemma 3.8. — Let K/κ be a finite Galois extension and put X= SpecK,
G = Gal(X/ Specκ). For any χ1, χ2 ∈ Ĝ, there is an isomorphism

h(X)χ1χ2 ≃ h(X)χ1 ⊗ h(X)χ2

in Chow(κ,Λ), where Λ is large enough to contain the values of χi’s. In
particular, h(X)χ is invertible for any χ ∈ Ĝ.
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Proof. — Let ∆: X → X×X be the diagonal and consider the morphisms

∆∗ : h(X) −→ h(X ×X), ∆∗ : h(X ×X) −→ h(X).

Put d := |G|. We shall show that
d · eχ1χ2 ◦ ∆∗ ◦ (eχ1 × eχ2) : h(X)χ1 ⊗ h(X)χ2 −→ h(X)χ1χ2 ,

(eχ1 × eχ2) ◦ ∆∗ ◦ eχ1χ2 : h(X)χ1χ2 −→ h(X)χ1 ⊗ h(X)χ2
(3.6)

are isomorphisms mutually inverse to each other. Since

∆∗ ◦ (g1, g2)∗ ◦ ∆∗ ◦ g∗ = ((g−1
1 , g−1

2 ) ◦ ∆)∗ ◦ (∆ ◦ g)∗ =
{

(g1g)∗ (g1 = g2),
0 (g1 ̸= g2),

for any g, g1, g2 ∈ G, we have

∆∗ ◦ (eχ1 × eχ2) ◦ ∆∗ ◦ eχ1χ2 = 1
d3

∑
g,g1=g2∈G

χ1χ2(g)χ1(g1)χ2(g2)(g1g)∗

= 1
d2

∑
g′∈G

χ1χ2(g′)g′
∗ = 1

d
eχ1χ2 .

Hence eχ1χ2 ◦ ∆∗ ◦ (eχ1 × eχ2) ◦ ∆∗ ◦ eχ1χ2 = d−1eχ1χ2 .

On the other hand, for any g1, g2, g, h1, h2 ∈ G, the 0-cycle on X4

Γ(g1, g2, g, h1, h2) := (h1, h2)∗ ◦ ∆∗ ◦ g∗ ◦ ∆∗ ◦ (g1, g2)∗

= ((h1, h2) ◦ ∆ ◦ g)∗ ◦ ((g−1
1 , g−1

2 ) ◦ ∆)∗

is the image of X → X4; x 7→ (g−1
1 x, g−1

2 x, h1gx, h2gx), and we have

(eχ1 × eχ2) ◦ ∆∗ ◦ eχ1χ2 ◦ ∆∗ ◦ (eχ1 × eχ2)

= 1
d5

∑
g1,g2,g,h1,h2∈G

χ1(h1gg1)χ2(h2gg2)Γ(g1, g2, g, h1, h2).

Note that Γ(g1, g2, g, h1, h2) is contained in the graph (h1gg1, h2gg2)∗. When
g1, g2, g, h1, h2 range over G with fixed values g′

1 = h1gg1 and g′
2 = h2gg2,

the cycles Γ(g1, g2, g, h1, h2) sum up to d2(g′
1, g

′
2)∗. Hence we obtain

(eχ1 × eχ2) ◦ ∆∗ ◦ eχ1χ2 ◦ ∆∗ ◦ (eχ1 × eχ2) = d−1(eχ1 × eχ2).

This proves that (3.6) are isomorphisms.

The last statement follows by letting χ1 = χ and χ2 = χ, since h(X)1 ≃ Λ
by Proposition 3.5(ii). □

Let d be a positive integer such that µd ⊂ κ and assume that Q(ζd) ⊂ Λ.
For c ∈ κ∗ and χ ∈ µ̂d, let

Km(c) = Kmd(c) : Gal(κ(c1/d)/κ) −→ µd; g 7−→ g(c1/d)/c1/d
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be the Kummer character associated with c, and define
Λ⟨c⟩χ = h(Specκ(c1/d))χ◦Km(c), (3.7)

an invertible object in Chow(κ,Λ).

Lemma 3.9. —

(i) For c1, c2 ∈ κ∗ and χ ∈ µ̂d, we have Λ⟨c1c2⟩χ ≃ Λ⟨c1⟩χ ⊗ Λ⟨c2⟩χ.
(ii) For c ∈ κ∗ and χ1, χ2 ∈ µ̂d, we have Λ⟨c⟩χ1χ2 ≃ Λ⟨c⟩χ1 ⊗ Λ⟨c⟩χ2 .
(iii) If χ factors through χ′ ∈ µ̂d′ for some d′ | d, i.e. χ(m) = χ′(md/d′)

for any m ∈ µd, then we have Λ⟨c⟩χ ≃ Λ⟨c⟩χ′ .

Proof. — These follow from Proposition 3.5(ii) and Lemma 3.8. □

4. Artin–Schreier and Fermat motives

4.1. Artin–Schreier motives

In this subsection let κ be a finite field with q elements of characteristic
p, and let d be a positive divisor of q−1. Let A◦

d be the affine Artin–Schreier
curve over κ defined by

xq − x = yd. (4.1)
It admits an action of κ × µd given by (a,m).(x, y) = (x + a,my). There
is no fixed point of (a,m) ∈ κ × µd if a ̸= 0, while µd fixes the points in
A◦
d(κ) = {(x, 0) | x ∈ κ}. The projectivization Xq − XZq−1 = Y dZq−d

is non-singular at the unique point at infinity [0 : 1 : 0] if and only if
d = q − 1. Let Ad be the projective smooth curve obtained by normalizing
the singularity. It has a unique point at infinity, written as ∞, which we take
as the distinguished point. The action of κ× µd extends to Ad and fixes ∞.

If d′ | d, we have a finite surjective morphism

Ad −→ Ad′ , (x, y) 7−→ (x, yd/d
′
) (4.2)

of degree d/d′, compatible with the group actions via the homomorphism
κ×µd → κ×µd′ , (a,m) 7→ (a,md/d′). It is generically Galois with the Galois
group Ker(µd ↠ µd′) = µd/d′ . The genus of Ad is (q−1)(d−1)/2, which can
be seen by the Riemann–Hurwitz formula for the covering Ad → A1 ≃ P1.

Let Λ be a field containing Q(ζpd). We have the decomposition in
Chow(κ,Λ)

h(Ad) =
⊕

(ψ,χ)∈κ̂×µ̂d

h(Ad)(ψ,χ), h(Ad)(ψ,χ) := (Ad, e(ψ,χ)).
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Here, e(ψ,χ) means the algebraic correspondence induced by the group-ring
element defined in (2.8). Define a projector eprim ∈ Q[κ × µd] (with coeffi-
cients in Q) by

eprim =
∑

(ψ,χ)∈κ̂×µ̂d,ψ ̸=1,χ̸=1

e(ψ,χ) = (1 − e1
κ)(1 − e1

µd
). (4.3)

Note that, for any projectors e, f ∈ Q[G] where G is an abelian group, 1 − e
and ef are also projectors. Put

h(Ad)prim = (Ad, eprim) =
⊕

ψ ̸=1,χ̸=1
h(Ad)(ψ,χ).

Proposition 4.1. — Suppose that d′ | d and that χ ∈ µ̂d factors through
χ′ ∈ µ̂d′ (i.e. χ(m) = χ′(md/d′)). Then we have h(Ad)(ψ,χ) ≃ h(Ad′)(ψ,χ′).

Proof. — This follows from Proposition 3.5(ii) applied to (4.2). □

Proposition 4.2. — Let ψ ∈ κ̂ and χ ∈ µ̂d. We use the notations
from (3.1) and (3.2).

(i) If ψ = 1 and χ = 1, then h(Ad)(1,1) = h0(Ad) ⊕ h2(Ad) = Λ ⊕ Λ(1).
(ii) If ψ ̸= 1 or χ ̸= 1, then h(Ad)(ψ,χ) = h1(Ad)(ψ,χ).
(iii) If only one of ψ, χ is trivial, then h(Ad)(ψ,χ) = 0.

Proof. — Proposition 3.5(ii) applied to Ad → Ad/(κ × µd) = P1 yields
h(Ad)(1,1) = h(P1) = Λ ⊕ Λ(1), showing (i). This also implies hi(Ad) =
hi(Ad)(1,1) (i = 0, 2), from which we obtain (ii). To see (iii), it suffices to
apply Proposition 3.5(ii) to Ad → Ad/µd = P1 (resp. Ad → Ad/κ = P1)
when χ = 1 (resp. ψ = 1). □

Lemma 4.3. — Let

( · , · ) : CH1(Aq−1 ×Aq−1) × CH1(Aq−1 ×Aq−1) −→ Z

be the intersection number pairing. For (a,m) ∈ κ × κ∗, let Γ(a,m) ∈
CH1(Aq−1 ×Aq−1) be the class of its graph and ∆ = Γ(0,1). Then,

(∆,Γ(a,m)) =


3q − q2 ((a,m) = (0, 1)),
q + 1 (a = 0,m ̸= 1),
q (a ̸= 0,m = 1),
1 (a ̸= 0,m ̸= 1).

Proof. — First, (∆,∆) equals the Euler–Poincaré characteristic of Ad, i.e.
2−(q−1)(q−2). Secondly if m ̸= 1, then ∆ and Γ(0,m) meet transversally at
the q+1 points {(P, P ) | P ∈ Ad(κ)}, where Ad(κ) = {(x, 0) | x ∈ κ}∪{∞}.
Thirdly if a ̸= 0, then ∆ ∩ Γ(a,1) = {(∞,∞)}. Since v∞(x) = 1 − q,
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v∞(y) = −q, the completed local ring of Ad at ∞ is ÔAd,∞ = κ[[t]] where
t = x/y, and (a,m) maps t to m−1(t+ ay−1). We have

κ[[t, s]]/(t− s) ⊗κ[[t,s]] κ[[t, s]]/(mt− s− ay−1) = κ[[t]]/((m− 1)t− ay−1).

Its length is q if m = 1, and is 1 otherwise since (m − 1)t − ay−1 ∈ tκ[[t]]×.
The proof is complete. □

Lemma 4.4. — Let S be a connected smooth projective surface over κ,
and take

e, e′ ∈ CH1(S)Λ = HomChow(κ,Λ)(Λ(1), h(S)) = HomChow(κ,Λ)(h(S),Λ(1)).

Suppose that the intersection number n := (e, e′) is not zero, and define

α := 1
n

(e× e′) ∈ CH2(S × S)Λ = HomChow(κ,Λ)(h(S), h(S)).

(i) We have α2 = α in HomChow(κ,Λ)(h(S), h(S)).
(ii) Set M := (S, α) ∈ Chow(κ,Λ) and let α : M →h(S) and α : h(S) →

M be the inclusion and projection (so that α = α ◦ α). Then

α ◦ e : Λ(1) −→ M and 1
n
e′ ◦ α : M −→ Λ(1)

are isomorphisms mutually inverse to each other.

Proof. — This is shown by a straightforward computation using the def-
inition of the composition of correspondences. □

The following are motivic analogues of (2.2) and (2.3), respectively (see
also Remark 6.6 below).

Proposition 4.5. — Suppose that ψ ∈ κ̂, ψ ̸= 1 and χ ∈ µ̂d, χ ̸= 1.

(i) There is an isomorphism

h(Ad)(ψ,χ) ⊗ h(Ad)(ψ,χ) ≃ Λ(1).

In particular, h(Ad)(ψ,χ) is invertible.
(ii) There is an isomorphism

h(Ad)(ψ,χ) ≃ h(Ad)(ψ,χ) ⊗ Λ⟨−1⟩χ,

where Λ⟨−1⟩χ is from (3.7).

– 109 –



Noriyuki Otsubo and Takao Yamazaki

Proof.

(i). — By Proposition 4.1, we can assume that d = q− 1. Regard e(ψ,χ)

and e(ψ,χ) as elements of CH1(Aq−1 ×Aq−1)Λ. Then the intersection number
is computed using Lemma 4.3 as

(e(ψ,χ), e(ψ,χ))

= 1
q2(q − 1)2

∑
a,a′∈κ,m,m′∈κ∗

ψ(a′ − a)χ(m′/m)(Γ(a,m),Γ(a′,m′))

= 1
q2(q − 1)2

∑
a,a′∈κ,m,m′∈κ∗

ψ(a′ − a)χ(m′/m)(∆,Γ(a′−a,m′/m))

= 1
q(q − 1)

∑
a∈κ,m∈κ∗

ψ(a)χ(m)(∆,Γ(a,m))

= 1
q(q − 1)

(3q− q2) + (q+ 1)
∑
m ̸=1

χ(m) + q
∑
a̸=0

ψ(a)+
∑

a̸=0,m̸=1
ψ(a)χ(m)


= 1
q(q − 1)

(
(3q − q2) − (q + 1) − q + (−1)2) = −1.

Now Lemma 4.4 completes the proof of (i).

(ii). — If p = 2, then the statement is trivial since ψ = ψ and
Λ⟨−1⟩χ = Λ. Suppose that p is odd. We may further suppose that d = q− 1
by Lemma 3.9(iii) and Proposition 4.1. Put K = κ(µ2(q−1)), Aq−1,K =
Aq−1 ×Specκ SpecK, and fix a primitive 2(q− 1)th root of unity ζ ∈ K. Let
f be a K-automorphism of Aq−1,K defined by f(x, y) = (−x, ζy). Then, we
have

f ◦((a,m)×idK) = ((−a,m)×idK)◦f, f ◦((a,m)×σ) = ((−a,−m)×σ)◦f

as κ-automorphisms of Aq−1,K , where σ is the generator of Gal(K/κ). It
follows that

f#

(
e(ψ,χ) ⊗ 1 + σ

2

)
=
(
e(ψ,χ) ⊗ 1 + χ(−1)σ

2

)
,

where f# is from (3.3). We conclude

h(Aq−1)(ψ,χ) ≃
(
e(ψ,χ) ⊗ 1 + σ

2

)
h(Aq−1,K)

f
≃
(
e(ψ,χ) ⊗ 1 + χ(−1)σ

2

)
h(Aq−1,K) ≃ h(Aq−1)(ψ,χ) ⊗ Λ⟨−1⟩χ,

as desired. □
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4.2. Fermat motives

In this subsection we let κ be an arbitrary perfect field and assume that
d is a positive integer such that µd := {m ∈ κ∗ | md = 1} has d elements.
For each positive integer n and c ∈ κ∗, let F (n)

d ⟨c⟩ ⊂ Pn be the (twisted)
projective Fermat hypersurface of degree d and dimension n− 1 defined by

ud1 + · · · + udn = cud0.

When c = 1, we just write F (n)
d instead of F (n)

d ⟨1⟩. Let µnd act on F (n)
d ⟨c⟩ by

(m1, . . . ,mn)[u0 : u1 : . . . : un] = [u0 : m1u1 : . . . : mnun].

If d′ | d, we have a finite surjective morphism

F
(n)
d ⟨c⟩ −→ F

(n)
d′ ⟨c⟩; [u0 : . . . : un] 7−→ [ud/d

′

0 : . . . : ud/d
′

n ], (4.4)

compatible with the group actions via the homomorphism µnd → µnd′ , (mi) 7→
(md/d′

i ). It is generically Galois (étale over u0 · · ·un ̸= 0) with the Galois
group Ker(µnd → µnd′).

Let Λ be a field containing Q(ζd). We have the decomposition in
Chow(κ,Λ)

h(F (n)
d ⟨c⟩) =

⊕
χ∈µ̂n

d

h(F (n)
d ⟨c⟩)χ, h(F (n)

d ⟨c⟩)χ := (F (n)
d ⟨c⟩, eχ).

Proposition 4.6. — Suppose that d′ | d and χ ∈ µ̂nd factors through
χ′ ∈ µ̂nd′ (i.e. χ(m) = χ′(md/d′)). Then we have h(F (n)

d ⟨c⟩)χ ≃ h(F (n)
d′ ⟨c⟩)χ′ .

Proof. — This follows from Proposition 3.5(ii) applied to (4.4). □

Put

X
(n)
d =

{
χ = (χ1, . . . , χn) ∈ µ̂nd

∣∣∣∣∣χ1, . . . , χn,

n∏
i=1

χi ̸= 1
}
,

and define a projector eprim ∈ Q[µnd ] (with coefficients in Q) by

eprim =
∑

χ∈X
(n)
d

eχ =
n∏
i=0

(1 − e1
ιi(µd)), (4.5)

where ιi : µd → µnd is the embedding of the ith factor if i ̸= 0 and ι0 is the
diagonal embedding. Define

h(F (n)
d ⟨c⟩)prim = (F (n)

d ⟨c⟩, eprim) =
⊕

χ∈X
(n)
d

h(F (n)
d ⟨c⟩)χ.
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Proposition 4.7. — For any χ = (χ1, . . . , χn) ∈ µ̂nd , we have an iso-
morphism

h(F (n)
d ⟨c⟩)χ ≃ h(F (n)

d )χ ⊗ Λ⟨c⟩
∏n

i=1
χi .

In particular, h(F (1)
d ⟨c⟩)χ ≃ Λ⟨c⟩χ is invertible for any χ ∈ µ̂d.

Proof. — Let α be a dth root of c, put K = κ(α), and consider the
K-isomorphism

f : F (n)
d ⟨c⟩ × SpecK −→ F

(n)
d × SpecK

defined by f([u0 : u1 : · · · : un]) = [u0 : α−1u1 : · · · : α−1un]. Then f sends
the graph of (ξ, g) ∈ µnd × Gal(K/κ) to the graph of (ι0(Km(c)(g)−1)ξ, g).
Hence the projector eχ × e1 is mapped to

1
dnd

∑
ξ,g

χ(ξ)(ι0(Km(c)(g)−1)ξ, g) = 1
dnd

∑
ξ,g

χ
(
ι0(Km(c)(g))ξ

)
(ξ, g)

= 1
dnd

∑
ξ,g

χ(ξ)
(

n∏
i=1

χi(Km(c)(g))
)

(ξ, g) = eχ × e
∏n

i=1
χi◦Km(c).

Hence the first assertion follows. Since h(F (1)
d ) ≃ Λ[µd], the Artin motive

of the regular representation of µd, we have h(F (1)
d )χ ≃ Λ, and the second

assertion follows. □

The following proposition will be generalized in Proposition 4.11 below.

Proposition 4.8. — If χ ∈ X
(2)
d , there is an isomorphism

h(F (2)
d ⟨c⟩)χ ⊗ h(F (2)

d ⟨c⟩)χ ≃ Λ(1).

In particular, h(F (2)
d ⟨c⟩)χ is invertible.

Proof. — This can be proved similarly as Proposition 4.5(i). By Lem-
ma 3.9 and Proposition 4.7, we can assume that c = 1. For (m1,m2) ∈ µ2

d,
the intersection numbers on F

(2)
d × F

(2)
d are computed as:

(∆,Γ(m1,m2)) =


2 − (d− 1)(d− 2) (m1 = m2 = 1),
d (if only one of m1, m2, m1m

−1
2 is 1),

0 (otherwise).

Then it follows as before that (e(χ1,χ2), e(χ1,χ2)) = −1, and the proposition
follows. □

To study h(F (n)
d ⟨c⟩) for general n, we use the inductive structure of

Katsura–Shioda [18]. By Proposition 4.7, it suffices to consider the case
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c = 1. Let n ⩾ 2 and f0 : F (n)
d × F

(2)
d 99K F

(n+1)
d be the rational map

defined by

([u0 : · · · : un], [v0 : v1 : v2])
7−→ [w0 : · · · : wn+1] = [u0v0 : u1v0 : · · · : un−1v0 : unv1 : unv2].

Then f0 is compatible with the actions of µnd × µ2
d and µn+1

d via the map

ν : µnd × µ2
d −→ µn+1

d ;
((ξ1, . . . , ξn), (η1, η2)) 7−→ (ξ1, . . . , ξn−1, ξnη1, ξnη2). (4.6)

We have the following commutative diagram:

F
(n,2)
d

f
//

α

��

F
(n,2)
d /H

β

��

F
(n)
d × F

(2)
d

f0 // F
(n+1)
d .

Here,

• The morphism α is the blow-up along Z = {un = v0 = 0}. We have

Z ≃ F
(n−1)
d × F

(1)
d ⟨−1⟩; ([ui]ni=0, [vi]2i=0) 7−→ ([ui]n−1

i=0 , [v2 : v1]). (4.7)

Since Z is smooth, F (n,2)
d is also smooth.

• The action of µnd×µ2
d on F (n)

d ×F (2)
d respects Z and extends to F (n,2)

d .
• The morphism β is the blow-up along Z1 ⊔Z2, where Zi are disjoint

smooth closed subschemes of F (n+1)
d defined by

Z1 = {w0 = · · · = wn−1 = 0} ≃ F
(1)
d ⟨−1⟩; [wi]n+1

i=0 7−→ [wn+1 : wn],

Z2 = {wn = wn+1 = 0} ≃ F
(n−1)
d ; [wi]n+1

i=0 7−→ [wi]n−1
i=0 .

• The action of µn+1
d on F (n+1)

d respects Zi’s and extends to F (n,2)
d /H.

• The morphism f is finite and generically Galois with the Galois
group

H := Ker ν = {((1, . . . , 1, ξ), (ξ−1, ξ−1)) | ξ ∈ µd} ≃ µd.

Also, f is compatible with the group actions via ν.
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Proposition 4.9. —

(i) Let χ = (χ1, . . . , χn+1) ∈ µ̂n+1
d . Then

h(Z1)χ ≃

{
Λ⟨−1⟩χn if χ1 = · · · = χn−1 = χnχn+1 = 1,
0 otherwise.

h(Z2)χ ≃

{
h(F (n−1)

d )(χ1,...,χn−1) if χn = χn+1 = 1,
0 otherwise.

(ii) Let χ′ = ((χ1, . . . , χn), (χ′
1, χ

′
2)) ∈ µ̂nd × µ̂2

d. Then

h(F (n,2)
d /H)χ′

≃

{
h(F (n,2)

d )χ′ if χn = χ′
1χ

′
2,

0 otherwise.

h(Z)χ′
≃

{
h(F (n−1)

d )(χ1,...,χn−1) ⊗ Λ⟨−1⟩χ′
1 if χn = χ′

1χ
′
2 = 1,

0 otherwise.

Proof.

(i). — The stabilizer of Z1 (resp. Z2) in µn+1
d is µn−1

d × {(ζ, ζ) | ζ ∈ µd}
(resp. {1}n−1 × µ2

d) and χ is trivial on this group if and only if χ1 = · · · =
χn−1 = χnχn+1 = 1 (resp. χn = χn+1 = 1), and then we have respectively
h(Z1)χ ≃ Λ⟨−1⟩χn by Proposition 4.7, and h(Z2)χ ≃ h(F (n−1)

d )(χ1,...,χn−1).
Otherwise, h(Zi)χ = 0.

(ii). — The first formula follows from Proposition 3.5(ii) since (µnd ×
µ2
d)/H ≃ µn+1

d and the pull-back of the characters of µn+1
d are of the form

((χ1, . . . , χn−1, χnχn+1), (χn, χn+1)).

On the other hand, the stabilizer of Z in µnd × µ2
d is {1}n−1 × µd × {(η, η) |

η ∈ µd}, and χ′ is trivial on this subgroup if and only if χn = 1 and χ′
1χ

′
2 = 1.

If the condition is satisfied, we have h(Z)χ′ ≃ h(F (n−1)
d )(χ1,...,χn−1)⊗Λ⟨−1⟩χ′

1

by Proposition 4.7, and h(Z)χ′ = 0 otherwise. Hence the second formula
follows. □

Proposition 4.10. — Let χ = (χ1, . . . , χn+1) ∈ µ̂n+1
d and put

χ(n) = (χ1, . . . , χn−1, χnχn+1), χ(2) = (χn, χn+1), χ(n,2) = (χ(n),χ(2)).

Then we have an isomorphism

h
(
F

(n+1)
d

)χ

⊕

(
n−1⊕
i=1

h(Z1)χ(i)
)

⊕ h(Z2)χ(1)

≃
(
h(F (n)

d )χ(n)
⊗ h(F (2)

d )χ(2)
)

⊕ h(Z)χ(n,2)
(1).
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Proof. — Compute h(F (n,2)
d )χ(n,2) in two ways using Propositions 3.4

and 4.9. □

Proposition 4.11. — Let n ⩾ 2, χ = (χ1, . . . , χn) ∈ µ̂nd and write
1 = (1, . . . , 1).

(i) h(F (n)
d ⟨c⟩)1 ≃

⊕n−1
i=0 Λ(i).

(ii) If χn−1χn ̸= 1, then

h(F (n)
d ⟨c⟩)χ ≃ h(F (n−1)

d ⟨c⟩)(χ1,...,χn−2,χn−1χn) ⊗ h(F (2)
d )(χn−1,χn).

(iii) If χn−1χn = 1 and χ ∈ X
(n)
d , then

h(F (n)
d ⟨c⟩)χ ≃ h(F (n−2)

d ⟨c⟩)(χ1,...,χn−2) ⊗ Λ⟨−1⟩χn−1(1).

(iv) If χ ̸∈ X
(n)
d ∪ {1}, then h(F (n)

d ⟨c⟩)χ = 0.

In particular, if χ ∈ X
(n)
d , there is an isomorphism

h(F (n)
d ⟨c⟩)χ ⊗ h(F (n)

d ⟨c⟩)χ ≃ Λ(n− 1), (4.8)

and hence h(F (n)
d ⟨c⟩)χ is invertible.

Proof. — As before, we can assume that c = 1. The case n = 2 is proved
in [15, Proposition 2.9]. Let n ⩾ 2 and we prove the statements for χ =
(χ1, . . . , χn+1) ∈ µ̂n+1

d by induction on n. Put χ(n−1) = (χ1, . . . , χn−1). We
also use the results and notations of Propositions 4.9 and 4.10. It should be
possible to trace the isomorphisms arising from these propositions, but we
avoid it by resorting to the Krull–Schmidt principle, i.e. Proposition 3.7.

(1). — If χ = 1, then by the induction hypothesis, h(Z1)χ ≃ Λ, h(Z2)χ ≃⊕n−2
i=0 Λ(i) ≃ h(Z)χ(n,2) , and h(F (n)

d )χ(n) ⊗ h(F (2)
d )χ(2) ≃

(⊕n−1
i=0 Λ(i)

)
⊗(⊕1

i=0 Λ(i)
)
. Hence (i) follows.

From now on, we suppose χ ̸= 1.

(2). — If χn−1χn ̸= 1, then h(Z1)χ = h(Z2)χ = h(Z)χ(n,2) = 0, and (ii)
follows.

(2-1). — If moreover χ ̸∈ X
(n+1)
d , then we have either χ(n) ̸∈ X

(n)
d ∪{1} or

χ(2) ̸∈ X
(2)
d ∪{1}. Hence h(F (n+1)

d )χ = 0 by (ii) and the induction hypothesis.

(3). — Suppose χnχn+1 = 1, so that χ(n) ̸∈ X
(n)
d .

(3-1). — If χn = χn+1 = 1, then χ ̸∈ X
(n+1)
d and χ(n) ̸= 1. We have

h(Z1)χ = 0, h(Z2)χ ≃ (F (n−1)
d )χ(n−1) ≃ h(Z)χ(n,2) , and h(F (n)

d )χ(n) = 0 by
the induction hypothesis, hence h(F (n+1)

d )χ = 0.
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(3-2). — If χn ̸= 1 (so χn+1 ̸= 1), then h(Z2)χ = 0, and h(F (2)
d )χ(2) = 0

by the induction hypothesis.

(3-2-1). — If χ(n−1) = 1 (so χ ̸∈ X
(n+1)
d ), then h(Z1)χ ≃ Λ⟨−1⟩χn and

h(Z)χ(n,2) ≃
⊕n−2

i=0 Λ⟨−1⟩χn(i) by the induction hypothesis, which implies
h(F (n+1)

d )χ = 0.

(3-2-2). — If χ(n−1) ̸= 1, then h(Z1)χ = 0. Hence (iii) follows. Moreover
if χ ̸∈ X

(n+1)
d (so n ⩾ 3), then χ(n−1) ̸∈ X

(n−1)
d and

h(F (n+1)
d )χ ≃ h(Z)χ(n,2)

(1) ≃ h(F (n−1)
d )χ(n−1)

⊗ Λ⟨−1⟩χn(1) = 0
by the induction hypothesis. This finishes the proof of (iv). □

Remark 4.12. — The relations (ii), (iii) are motivic analogues of the func-
tional equations

B(s1, . . . , sn−1, sn) = B(s1, . . . , sn−2, sn−1 + sn)B(sn−1, sn),

B(s1, . . . , sn−1, 1 − sn−1) = B(s1, . . . , sn−2)
s1 + · · · + sn−2

· π

sin πsn−1
,

which follows by Remark 2.1.

Corollary 4.13. — We have

h(F (n)
d ⟨c⟩) ≃ h(F (n)

d ⟨c⟩)prim ⊕
n−1⊕
i=0

Q(i)

in Chow(κ,Q), where ( · )prim denotes the direct factor defined by (4.5).

Proof. — This follows from Proposition 4.11 and Lemma 3.3. □

Remark 4.14. — Let L be the class of the hyperplane section defined by
the embedding ι : F (n)

d ⟨c⟩ ↪→ Pn, and define the objects of Chow(κ,Q) for
i = 0, . . . , 2n− 2 by

hi(F (n)
d ⟨c⟩) :=


(F (n)
d ⟨c⟩, πi) if i ̸= n− 1,

(F (n)
d ⟨c⟩, eprim) if i = n− 1 and n is even,

(F (n)
d ⟨c⟩, πn−1 + eprim) if i = n− 1 and n is odd,

where
πi := 1

d
[Li × Ln−i−1] ∈ CHn−1(F (n)

d ⟨c⟩ × F
(n)
d ⟨c⟩)Q

is a projector of h(F (n)
d ⟨c⟩). We have (h(F (n)

d ⟨c⟩), πi) ⊂ h(F (n)
d ⟨c⟩)1 since L

is fixed by the µnd -action. It follows from Proposition 4.11 that h(F (n)
d ⟨c⟩) =⊕2n−2

i=0 hi(F (n)
d ⟨c⟩) is a Chow–Künneth decomposition of F (n)

d ⟨c⟩ ([13, Defi-
nition 6.1.1]). Note also that, if a Weil cohomology theory H∗ satisfies the
hard Lefschetz, eprim acts on H∗(F (n)

d ⟨c⟩) as the projection to the primitive
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part Ker(Hn−1(F (n)
d ⟨c⟩) −∪L−→ Hn+1(F (n)

d ⟨c⟩)(1)), as is seen from a formula
in [8, Proposition 1.4.7(i)].

Remark 4.15. — With no difficulty, we can generalize the results in this
subsection to the general diagonal hypersurface c1u

d
1 + · · · + cnu

d
n = ud0

(ci ∈ κ∗). We restricted ourselves, however, to the situation as above, which
will be needed in Section 7.2.

5. Proof of Theorem 1.1(i)

In this section we assume κ is a finite field of characteristic p and of
order q, and d is a positive divisor of q − 1. We will complete the proof of
Theorem 1.1(i).

5.1. Reduction to the case n = 2

We proceed by induction on n. The case n = 1 follows immediately from
Proposition 4.7. The case n = 2 will be proved in the next subsection. Let
n ⩾ 3. First assume that χn−1χn ̸= 1, Then we have by the case n = 2 and
the induction hypothesis

n⊗
i=1

h(Ad)χi ≃

(
n−2⊗
i=1

h(Ad)χi

)
⊗ h(Ad)χn−1χn ⊗ h(F (2)

d )(χn−1,χn)

≃ h(Ad)
∏n

i=1
χi ⊗ h(F (n−1)

d )(χ1,...,χn−2,χn−1χn) ⊗ h(F (2)
d )(χn−1,χn).

By Proposition 4.11(ii), the formula follows. Secondly, assume that χn−1χn =
1. Then we have by the induction hypothesis and Proposition 4.5

n⊗
i=1

h(Ad)χi ≃
(
h(Ad)

∏n−2
i=1

χi ⊗ h(F (n−2)
d )(χ1,...,χn−2)

)
⊗ Λ⟨−1⟩χn−1(1).

By Proposition 4.11(iii), the theorem follows.

5.2. Proof of the case n = 2

By Propositions 4.1 and 4.6, we can suppose d = q − 1, so that µd = κ∗.
Here we need DMgm(κ,Λ) from Section 3.2 to treat open varieties. We just
write A = Aq−1, F = F

(2)
q−1. Let A◦ ⊂ A (resp. F ◦ ⊂ F ) be the affine
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open subscheme defined in (4.1) (resp. by u0 ̸= 0). Write A◦F = A◦ × F ,
A◦F ◦ = A◦ × F ◦. Define a closed subscheme Γ ⊂ (A◦)2 ×A◦F by

x1 + x2 = x, u0y1 = u1y, u0y2 = u2y.

Here, the coordinates of the ith factor of (A◦)2 are given by (xi, yi) subject to
the relation xqi −xi = yq−1

i . Those of the first and second factors of A◦F are
(x, y) and [u0 : u1 : u2], which are subject to the relations xq −x = yq−1 and
uq−1

1 +uq−1
2 = uq−1

0 , respectively. Let pr1 : Γ → (A◦)2 and pr2 : Γ → A◦F be
the projections. Put

Γ1 = pr−1
1 ((A◦)2 \ Z), Γ2 = pr−1

2 (A◦F ◦),
where

Z :=
⊔
a∈κ

{
(xi, yi)i ∈ (A◦)2 ∣∣ x1 + x2 = a

}
⊂ (A◦)2.

Note that Γ1 ⊂ Γ is defined by y ̸= 0. Since u0 = 0 implies u1, u2 ̸= 0, hence
y = 0, we have Γ1 ⊂ Γ2.

Put G1 = (κ× κ∗)2, G2 = (κ× κ∗) × (κ∗)2 and G = (κ× κ∗)2 × κ∗. Let
π1 : G → G1 be the first projection and define π2 : G → G2 by

π2((ai,mi)i,m) =
(
(a1 + a2,m), (mim

−1)i
)
.

Then G acts on (A◦)2 × A◦F via π1 × π2 : G → G1 ×G2 and it respects Γ,
Γ1 and Γ2. Besides, Z is stable under the action of G1 on A2.

Lemma 5.1. —

(i) The singular locus of Γ is given by y1 = y2 = y = u0 = 0 (geomet-
rically q2(q − 1) points). In particular, Γ1 and Γ2 are non-singular.

(ii) Γ1 is finite Galois over (A◦)2 \ Z with the Galois group κ∗ ⊂ G
(embedded as the last component).

(iii) Γ2 is finite Galois over A◦F ◦ with the Galois group κ ⊂ G (embedded
as the image of κ (id,− id)−−−−−→ κ2 ⊂ G).

Proof.

(i). — This follows from a straightforward computation of the Jacobian
matrix.

(ii). — We have (A◦)2 \ Z = SpecR, where

R = κ
[
xi, yi, ((x1 + x2)q − (x1 + x2))−1]/(xqi − xi − yq−1

i

)
and Γ1 = SpecR[y]/((x1 + x2)q − (x1 + x2) − yq−1). Note that on Γ1, x =
x1 + x2 and ui/u0 = yi/y. Therefore, Γ1 → (A◦)2 \ Z is the base change
by SpecR → Specκ[s, s−1] (s = (x1 + x2)q − (x1 + x2)) of Specκ[s, s−1, y]/
(s−yq−1) → Specκ[s, s−1], which has the desired property, and the assertion
follows.
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(iii). — We have A◦F ◦ = SpecR, R = κ[x, y, t1, t2]/(xq − x − yq−1,

tq−1
1 + tq−1

2 − 1) (ti = ui/u0), and Γ2 = SpecR[x1]/(xq1 − x1 − (t1y)q−1).
Note that on Γ2, we have yi = tiy, x2 = x − x1 and xq2 − x2 = (x − x1)q −
(x − x1) = yq−1 − (t1y)q−1 = yq−1

2 . Therefore, Γ2 → A◦F ◦ is the base
change by SpecR → Specκ[s] (s = (t1y)q−1) of Specκ[s, x1]/(xq1 −x1 −s) →
Specκ[s], which has the desired property, and the assertion follows. □

Proposition 5.2. — Let ψ ∈ κ̂ \ {1}, χ1, χ2 ∈ κ̂∗ and put χ =
((ψ, χi)i, 1) ∈ Ĝ = (κ̂× κ̂∗)2 × κ̂∗.

(i) If one of χ1, χ2 is non-trivial, then M(Γ1)χ ≃ M(Γ2)χ.
(ii) If none of χ1, χ2, χ1χ2 is trivial, then M(Γ1)χ ≃ M(A)(ψ,χ1) ⊗

M(A)(ψ,χ2).
(iii) If χ1χ2 ̸= 1, then M(Γ2)χ ≃ M(A)(ψ,χ1χ2) ⊗M(F )(χ1,χ2).

Proof.

(i). — The complement Γ2 \ Γ1 is given by y = y1 = y2 = 0, on which
(κ∗)3 ⊂ G acts trivially and we have M(Γ2 \ Γ1)χ = 0. The result follows by
Proposition 3.5(i).

(ii). — Define A∗ ⊂ A◦ by y ̸= 0. Then Z∗ := Z ∩ (A∗)2 is smooth over
κ. First, we have by Proposition 3.5(ii) and Lemma 5.1(ii)

M(Γ1)χ ≃ M((A◦)2 \ Z)(ψ,χi)i = M((A∗)2 \ Z∗)(ψ,χi)i .

We will prove M(Z∗)(ψ,χi)i = 0. Then it follows by Proposition 3.5(i) that

M((A∗)2 \ Z∗)(ψ,χi)i ≃ M((A∗)2)(ψ,χi)i = M(A∗)(ψ,χ1) ⊗M(A∗)(ψ,χ2).

Since A \ A∗ is fixed by the κ∗-action and χi ̸= 1, we have M(A∗)(ψ,χi) ≃
M(A)(ψ,χi) by Proposition 3.5(i), and the assertion follows.

Now we prove M(Z∗)(ψ,χi)i = 0. Note that (x1 +x2)q = x1 +x2 is equiv-
alent to yq−1

1 + yq−1
2 = 0. Let K be a quadratic extension of κ and write XK

for X×SpecK. It suffices to prove M(Z∗
K)(ψ,χi)i = 0 by Proposition 3.5(ii).

Choose ζ ∈ K such that ζq−1 = −1. For (a,m) ∈ κ × κ∗, let fa,m be the
K-automorphism of A∗

K defined by fa,m(x, y) = (a − x,mζy), and Z∗
a,m ⊂

(A∗)2
K be its graph, regarded as a κ-scheme. Then, Z∗

K =
⊔

(a,m)∈κ×κ∗ Z∗
a,m

and

M(Z∗
K)(ψ,χi)i ≃

⊕
(a,m)

M(Z∗
a,m)

(ψ,χi)i

in DMgm(κ,Λ). (5.1)

By the isomorphism

A∗
K ≃ Z∗

a,m; (x, y) 7−→ ((x, y), (fa,m(x, y))),
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we have
⊕

(a,m) M(A∗
K) ≃ M(Z∗

K). The action of κ× κ∗ on A∗
K and that of

G1 on Z∗
K are compatible under the isomorphism as above and the homo-

morphism

δ : κ× κ∗ −→ G1; (a′,m′) 7−→ ((a′,m′), (−a′,m′)).

In particular, the action of Im(δ) ⊂ G1 preserves the components Z∗
a,m

of Z∗
K . Since ((ψ, χi)i) ◦ δ = (1, χ1χ2) holds in κ̂ × κ̂∗, the right hand

side of (5.1) is isomorphic to a subobject of
⊕

(a,m) M(A∗
K)(1,χ1χ2). Since

χ1χ2 ̸= 1, we have M(A∗
K)(1,χ1χ2) ≃ M(AK)(1,χ1χ2) as above, and this is

trivial by Proposition 4.2(iii) and (3.5). It follows that M(Z∗
K)(ψ,χi)i = 0,

as desired.

(iii). — We have

M(Γ2)χ ≃ M(A◦F ◦)((ψ,χ1χ2),(χ1,χ2)) = M(A◦)(ψ,χ1χ2) ⊗M(F ◦)(χ1,χ2)

by Proposition 3.5(ii) and Lemma 5.1(iii). Since κ∗ (resp. the diagonal
κ∗ ⊂ (κ∗)2) acts trivially on A \ A◦ (resp. F \ F ◦) and χ1χ2 ̸= 1, we
have M(A◦)(ψ,χ1χ2) ≃ M(A)(ψ,χ1χ2) (resp. M(F ◦)(χ1,χ2) ≃ M(F )(χ1,χ2)) by
Proposition 3.5(i), and the result follows. □

Proof of Theorem 1.1(i). — We are already reduced to the case n = 2
in Section 5.1. By the proposition, we have

2⊗
i=1

M(A)(ψ,χi) ≃ M(A)(ψ,χ1χ2) ⊗M(F )(χ1,χ2)

for (χ1, χ2) ∈ X
(2)
q−1. The theorem follows from the full faithfulness of (3.5).

□

6. Frobenius endomorphisms

We continue to assume κ is a finite field of characteristic p and of order q,
and d is a positive divisor of q− 1. The following extends slightly Coleman’s
result [5, Theorem A]. He only considers the Artin–Schreier curves of the
form xp − x = yd over κ, so that only Gauss sums with additive characters
factoring through the trace Trκ/Fp

are involved.

Proposition 6.1. —

(i) If ∞ ∈ Ad denotes the unique point at infinity, then we have in
CH1(Ad ×Ad)

[FrAd
] = [gd] + q[Ad × ∞] + (2q − 1)[∞ ×Ad].
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(ii) If we put Z0
d = {u0 = 0} ⊂ F

(2)
d , then we have in CH1(F (2)

d × F
(2)
d )

[Fr
F

(2)
d

] = [j(2)
d ] + q − 1

d

(
[F (2)
d × Z0

d ] + 2[Z0
d × F

(2)
d ]
)
.

Proof.

(i). — Define Z = {y = 0} ⊂ Ad so that div(y) = Z−q·∞. In particular,
we have [Z] = q[∞] in CH0(Ad). Let ((x, y), (x′, y′)) be the coordinates of
Ad ×Ad, and define a function on Ad ×Ad as

f = (x′ − x)
q−1

d − y′

y
.

By abuse of notation, we write the graph of a morphism by the same letter.
We claim that
div(f) = FrAd

+
∑
m∈κ∗

(m,m
q−1

d ) − q(Ad × ∞) − (q− 1)(∞ ×Ad) − (Z ×Ad),

(6.1)
from which the statement follows.

Write D for the left hand side minus the right hand side of (6.1). Using
div(x) = d((0, 0) − ∞) and div(y) = Z − q · ∞, it is straightforward to see
that D is effective. To show D = 0, we consider the map

Π: Div(Ad ×Ad)
π∗−→ Div(P1 × P1) −→−→ CH1(P1 × P1) = Z × Z,

where the first map is the push-forward along the self-product π : Ad×Ad →
A1 ×A1 ≃ P1 × P1 of (4.2). Observe that an effective divisor E on Ad ×Ad
is trivial if Π(E) = (0, 0), since we have a strict inequality Π(C) > (0, 0) for
any integral curve C on Ad ×Ad. On the other hand, we compute

Π(FrAd
) = (d, qd), Π(g) = (d, d) (g ∈ κ× κ∗),

Π(Ad × ∞) = (d, 0), Π(P ×Ad) = (0, d) (P ∈ Z ∪ {∞}).
It follows that Π(D) = (0, 0). This completes the proof of (i).

(ii). — Put Zid = {ui = 0} ⊂ F
(2)
d so that [Z1

d ] = [Z2
d ] = [Z0

d ] in
CH1(F (2)

d ) since div(ui) = Zid − Z0
d .

First, let d = q − 1 and let ([ui]2i=0, [u′
i]2i=0) be the coordinates of F (2)

q−1 ×
F

(2)
q−1. Define a function on F

(2)
q−1 × F

(2)
q−1 as

f = 1 − u0u
′
1

u′
0u1

− u0u
′
2

u′
0u2

.

By a similar argument as (i), one verifies the equality of divisors

div(f) = Fr
F

(2)
q−1

−j(2)
q−1 − F

(2)
q−1 × Z0

q−1 − Z1
q−1 × F

(2)
q−1 − Z2

q−1 × F
(2)
q−1, (6.2)

from which the statement for d = q − 1 follows.
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For general d, we look at the image of the both sides of (6.2) under
the push-forward along F (2)

q−1 × F
(2)
q−1 → F

(2)
d × F

(2)
d . For the left hand side

this is the divisor of the norm of f in κ(F (2)
d × F

(2)
d ) (hence vanishes in

CH1(F (2)
d × F

(2)
d )), while for the right this is

N2
(

Fr
F

(2)
d

−j(2)
d

)
−N3

(
F

(2)
d × Z0

d + Z1
d × F

(2)
d + Z2

d × F
(2)
d

)
,

where N := (q − 1)/d. We are done. □

Corollary 6.2. — We have equalities of endomorphisms of h(Ad)
(resp. h(F (2)

d ))

gd · eprim = FrAd
·eprim (resp. j

(2)
d · eprim = Fr

F
(2)
d

·eprim)

in Chow(κ,Q).

Proof. — Let us first prove (i). We have [Ad × ∞] · e(ψ,χ) = [∞ × Ad] ·
e(ψ,χ) = 0 if none of ψ ∈ κ̂, χ ∈ κ̂∗ is trivial. Hence the statement follows
from the proposition by Lemma 3.3. The proof of (ii) is similar. □

To prove Theorem 1.2, we prepare computations in group rings. Let

ν : Q[µnd × µ2
d] −→ Q[µn+1

d ], ρ : Q[µnd × µ2
d] −→ Q[µn−1

d × µd]

be the ring homomorphisms induced respectively by (4.6) and

ρ((ξ1, . . . , ξn), (η1, η2)) = ((ξ1, . . . , ξn−1), η1/η2).

Lemma 6.3. — For χ = (χ1, . . . , χn+1) ∈ X
(n+1)
d , let χ(n), χ(2) be as in

Proposition 4.10, and put χ(n−1) = (χ1, . . . , χn−1).

(i) If χnχn+1 ̸= 1, then ν(j(n)
d eχ(n) × j

(2)
d eχ(2)) = j

(n+1)
d eχ.

(ii) There exists an element j(n,2)
d ∈ Q[µnd × µ2

d] independent of χ, such
that ν(j(n,2)

d ) = j
(n+1)
d and

ρ
(
j

(n,2)
d

)(
eχ(n−1)

× eχn

)
= χn

(
(−1)

q−1
d

)
q
((
j

(n−1)
d eχ(n−1)

)
× eχn

)
unless χ(n−1) = 1.

Proof.

(i). — Put, for c ∈ κ, S(n)
c = {(mi)i ∈ (κ∗)n |

∑n
i=1 mi = c}, so that

j
(n)
d ⟨c⟩ = (−1)n−1

∑
(mi)i∈S(n)

c

(
m

q−1
d

i

)
i
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where j
(n−1)
d ⟨c⟩ is from (2.7). Then, ν induces a bijection S

(n)
1 × S

(2)
1 →

S
(n+1)
1 \ (S(n−1)

1 × S
(2)
0 ). By assumption, we have∑

(mn,mn+1)∈S(2)
0

χn

(
m

q−1
d

n

)
χn+1

(
m

q−1
d

n+1

)
= χn(−1)

q−1
d

∑
m∈κ∗

χnχn+1

(
m

q−1
d

)
= 0.

Hence
∑

(mi)i∈S(n−1)
1 ×S(2)

0
χ((m

q−1
d

i )i) = 0. One verifies easily ν(eχ(n) ×

eχ(2)) = eχ. Now it follows

ν
(
j

(n)
d eχ(n)

× j
(2)
d eχ(2)

)
= ν

(
j

(n)
d × j

(2)
d

)
eχ

=

j(n+1)
d −

∑
(mi)i∈S(n−1)

1 ×S(2)
0

(
m

q−1
d

i

)
i

eχ = j
(n+1)
d eχ.

(ii). — If we put

j
(n,2)
d = (−1)n

∑
(mi)i∈S(n+1)

1

((
m

q−1
d

1 , . . . ,m
q−1

d
n−1, 1

)
,
(
m

q−1
d

n ,m
q−1

d
n+1

))
,

then ν(j(n,2)
d ) = j

(n+1)
d . On the other hand,

ρ(j(n,2)
d ) =

∑
s,t∈κ,s+t=1

j
(n−1)
d ⟨s⟩ × h(t),

h(t) :=
∑

(k,l)∈S(2)
t

[(k/l)
q−1

d ] =
{

(q − 1)[(−1)
q−1

d ] if t = 0,∑
m∈κ∗ [m

q−1
d ] − [(−1)

q−1
d ] if t ̸= 0.

Here we write [ζ] ∈ Q[µd] for the image of ζ ∈ µd. Since χn ̸= 1,∑
m∈κ∗

[
m

q−1
d

]
eχn = q − 1

d

∑
ζ∈µd

[ζ]eχn = q − 1
d

∑
z∈µd

χn(ζ)eχn = 0.

Since χ(n−1) ̸= 1, we have∑
s∈κ

j
(n−1)
d ⟨s⟩eχ(n−1)

= (−1)n
∑

(mi)i∈(κ∗)n−1

(
m

q−1
d

i

)
i
· eχ(n−1)

= 0.

Therefore, only the term with (s, t) = (1, 0) remains and

ρ(j(n,2)
d )(eχ(n−1)

× eχn) = j
(n−1)
d eχ(n−1)

× q
[
(−1)

q−1
d

]
eχn

= j
(n−1)
d eχ(n−1)

× qχn

(
(−1)

q−1
d

)
eχn . □
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Proof of Theorem 1.2. — First, we prove the case c = 1 by induction on
n. The case n = 2 follows from Corollary 6.2. It suffices to prove j(n+1)

d ·eχ =
Fr
F

(n+1)
d

·eχ for each χ = (χ1, . . . , χn+1) ∈ X
(n+1)
d (n ⩾ 2). First, assume that

χnχn+1 ̸= 1. Then by Proposition 4.11(ii), we have an isomorphism

h(F (n)
d )χ(n)

⊗ h(F (2)
d )χ(2) ≃−→ h(F (n+1)

d )χ.

Since any morphism in Chow(κ,Λ) commutes with the Frobenius endomor-
phisms, the assertion follows by the induction hypothesis and Lemma 6.3(i).
Secondly, assume that χnχn+1 = 1 (so χ(n−1) ̸= 1). Then by Proposi-
tion 4.11(iii), we have an isomorphism

h
(
F

(n−1)
d

)χ(n−1)

⊗ Λ⟨−1⟩χn(1) ≃−→ h
(
F

(n+1)
d

)χ
.

Here we used the identification Z ≃ F
(n−1)
d ×F

(1)
d ⟨−1⟩ given by (4.7), under

which the actions of µnd ×µ2
d and µn−1

d ×µd are compatible via the homomor-
phism ρ. Since the Frobenius acts on Λ⟨−1⟩χn(1) as the multiplication by
χn◦Km(−1)q by definition, the assertion follows by the induction hypothesis
and Lemma 6.3(ii).

The general case is reduced to the previous case using Proposition 4.7.
Note that the Frobenius acts on Λ⟨c⟩

∏n

i=1
χi as the multiplication by

n∏
i=1

χi(Km(c)(Fr)) =
n∏
i=1

χi

(
c

q−1
d

)
= χ

(
c

q−1
d , . . . , c

q−1
d

)
,

and that j(n)
d ⟨c⟩ =

(
c

q−1
d , . . . , c

q−1
d

)
j

(n)
d . Hence the proof of Theorem 1.2 is

complete. □

The following corollary follows immediately by Lemma 3.3.

Corollary 6.4. — For any c ∈ κ∗, we have

j
(n)
d ⟨c⟩ · eprim = Fr

F
(n)
d

⟨c⟩ ·eprim

in EndChow(κ,Q)(h(F (n)
d ⟨c⟩).

Corollary 6.5. — Under the isomorphism of Theorem 1.1(i), we have
for (χ1, . . . , χn) ∈ X

(n)
d

n⊗
i=1

(
gd · e(ψ,χi)

)
=
(
gd · e(ψ,

∏n

i=1
χi)
)

⊗
(
j

(n)
d · e(χ1,...,χn)

)
in End(h(Ad)⊗n) = End(h(Ad) ⊗ h(F (n)

d )).

Proof. — Since the isomorphism of Theorem 1.1(i) is compatible with
the Frobenius endomorphisms, the statement follows by Theorem 1.2 and
Corollary 6.2. □
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Remark 6.6. — Proposition 6.1(i) shows that the Frobenius acts on
h(Ad)prim as gd, and hence on h(Ad)(ψ,χ) by the multiplication by g(ψ, χ)
if ψ ∈ κ̂ and χ ∈ µ̂d are non-trivial. From this fact, together with Proposi-
tion 4.5, we can deduce (2.2) and (2.3). Similarly, we can deduce (2.5), (2.6),
and for (χ1, . . . , χn) ∈ X

(n)
d

j(χ1, . . . , χn) =
{
j(χ1, . . . , χn−2, χn−1χn)j(χn−1, χn) if χn−1χn ̸= 1,
j(χ1, . . . , χn−2)χn−1((−1)

q−1
d )q if χn−1χn = 1

(6.3)
from Corollary 6.5, (4.8), and Proposition 4.11(ii), (iii), respectively.

The invertibility (Proposition 4.11) implies that, for any Weil cohomology
theory H whose coefficient field contains µd, the χ-eigenspace H(F (n)

d )χ

for χ ∈ X
(n)
d is one-dimensional and the Frobenius acts on this space as

the multiplication by j(χ) by Theorem 1.2. Classically, this fact is proved
by point counting and the Grothendieck–Lefschetz trace formula. We have
given a purely motivic proof that avoids the use of Weil cohomology. A
similar remark applies to H(Ad)(ψ,χ).

Remark 6.7. — If ψ,ψ′ ∈ κ̂ are nontrivial, there exists a unique c ∈ κ∗

such that ψ′(x) = ψ(cx) for any x ∈ κ. This follows from the non-degeneracy
of the paring κ2 → Fp; (c, x) 7→ Trκ/Fp

(cx). One shows easily

g(ψ′, χ) = χ
(
c

q−1
d

)
g(ψ, χ). (6.4)

This identity is interpreted motivically as follows. Let Ad⟨c⟩ be defined by
xq − x = cyd. Let κ × κ∗ act on this as before and h(Ad⟨c⟩)(ψ,χ) be the
associated motive (see Section 4.1). Then the isomorphism Ad → Ad⟨c⟩;
(x, y) 7→ (cx, y) induces an isomorphism

h(Ad)(ψ′,χ) ≃ h(Ad⟨c⟩)(ψ,χ)

of motives. The Gauss sum element gd acting on h(Ad) corresponds to the
element

−
∑
m∈κ∗

(
cm,m

q−1
d

)
= −

∑
m∈κ∗

(
m, (c−1m)

q−1
d

)
acting on h(Ad⟨c⟩), hence (6.4) follows by the argument in Remark 6.6.

7. Davenport–Hasse relations

7.1. Base-change formula

Let κ be a finite field of characteristic p and of order q and K be a degree
r extension of κ. To avoid the confusion, we write the Gauss and Jacobi sums
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over κ as gκ(ψ, χ) and jκ(χ1, . . . , χn), and similarly over K. For ψ ∈ κ̂, let

ψK = ψ ◦ TrK/κ ∈ K̂

be the lifted character. For ψ ∈ κ̂, ψ ̸= 1 and χ, χ1, . . . , χn ∈ µ̂d,
(χ1, . . . , χn) ̸= (1, . . . , 1), we have the classical Davenport–Hasse base-change
formulas [6]

gK(ψK , χ) = gκ(ψ, χ)r, (7.1)
jK(χ1, . . . , χn) = jκ(χ1, . . . , χn)r. (7.2)

The latter follows from the former by (2.5). See [23] for an elementary proof
and [7, Sommes trig., 4.12] for an l-adic sheaf-theoretic proof.

We give their motivic proofs. Let λ : SpecK → Specκ be the structure
morphism. Then λ induces a functor

λ∗ : Chow(κ,Λ) −→ Chow(K,Λ)
such that λ∗(h(X)) = h(XK), where XK := X ×Specκ SpecK.

Define gd,K/κ ∈ End(h(Ad,K)) by the element

−
∑
m∈K∗

(
TrK/κ(m),m

qr−1
d

)
∈ Q[κ× µd],

and for c ∈ K∗, j(n)
d,K⟨c⟩ ∈ End(h(F (n)

d,K⟨c⟩) by the element (as before)

(−1)n−1
∑

m1,...,mn∈K∗,
∑n

i=1
mi=c

(
m

qr−1
d

1 , . . . ,m
qr−1

d
n

)
∈ Q[µnd ].

Let eprim ∈ End(h(Ad,K)) (resp. eprim ∈ End(h(F (n)
d,K⟨c⟩)) be the projector

onto the primitive part with respect to the κ× µd-action (resp. µnd -action).

Theorem 7.1. — We have equalities of endomorphisms of h(Ad,K)
(resp. h(F (n)

d,K⟨c⟩))

λ∗(gd)r · eprim = gd,K/κ · eprim
(
resp. λ∗(j(n)

d ⟨c⟩
)r · eprim = j

(n)
d,K⟨c⟩ · eprim

)
in Chow(K,Q).

Proof. — Let A′ be the Artin–Schreier curve over K of degree qr with
the affine equation uqr −u = vd. Let f : A′ → Ad,K be the morphism defined
by x =

∑r−1
i=0 u

qi , y = v. It is finite of degree qr−1. Let

g′ = −
∑
m∈K∗

(
m,m

qr−1
d

)
, e′

prim ∈ EndChow(K,Q)(h(A′))

be the Gauss sum element and the projector to the primitive part (with
respect to the K × µd-action), respectively. Since f is compatible with the
group actions via the homomorphism TrK/κ × id : K × µd → κ × µd, we
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have f#(g′) = gd,K/κ. Since TrK/κ is a surjective homomorphism, the map
Q[K] → Q[κ] maps e1

K to e1
κ, and we have f#(e′

prim) = eprim. We have also
f#(FrA′) = FrAd,K

. Since g′ · e′
prim = FrA′ ·e′

prim by Corollary 6.2, we obtain
gd,K/κ · eprim = FrAd,K

·eprim. On the other hand, we have

λ∗(gd)r · eprim = λ∗(grd · eprim) = λ∗(FrrAd
·eprim) = FrAd,K

·eprim

by Corollary 6.2. Note that the action of Q[κ × µd], in particular of eprim,
is compatible with λ∗ and commute with the Frobenius. Hence the first
assertion is proved. The second assertion follows similarly (and more easily)
by Corollary 6.4. □

We can recover the classical formulas (7.1), (7.2) from the theorem by
multiplying the both sides by e(ψ,χ) (resp. by e(χ1,...,χn)), together with the
fact that h(Aq−1,K)(ψK ,χ) = λ∗(h(Aq−1)(ψ,χ)) (resp. h(F (n)

q−1,K)(χ1,...,χn) =
λ∗(h(F (n)

d )(χ1,...,χn))) is invertible.

7.2. Multiplication formula

Recall the multiplication formula for the gamma function

Γ(ns)
Γ(n) = nn(s−1)

n−1∏
i=0

Γ(s+ i
n )

Γ(1 + i
n )
. (7.3)

Its finite analogue is due to Davenport–Hasse [6]. Let κ be as in the preceding
subsection and suppose n | d | q − 1. Then we have

g(ψ, αn) = αn(n)
∏
χn=1

g(ψ, αχ)
g(ψ, χ) (7.4)

for any α ∈ µ̂d. The statement is evident if αn = 1, so we assume αn ̸= 1.
Then it is equivalent by (2.5) to

αn(n)j(α, . . . , α︸ ︷︷ ︸
n times

) =
∏

χn=1,χ̸=1
j(α, χ). (7.5)

Its first elementary proof which does not use Stickelberger’s theorem on
the prime decomposition of Gauss sums (see (8.5) below) or cohomology was
given recently in [16, Appendix A]. It applies a point counting argument
based on the geometric construction of Terasoma [21] in his cohomological
proof.

We prove the following motivic analogue, which includes Theorem 1.1(ii).
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Theorem 7.2. — Let κ be a field and assume that d is a positive integer
such that µd := {m ∈ κ∗ | md = 1} has d elements and Q(ζd) ⊂ Λ. For any
n | d and α ∈ µ̂d such that αn ̸= 1, there is an isomorphism in Chow(κ,Λ)

h(F (n)
d ⟨n⟩)(α,...,α) ≃

⊗
χ∈µ̂d,χn=1,χ̸=1

h(F (2)
d )(α,χ). (7.6)

Proof. — We may assume κ is a finite field or κ = Q(ζd). (In particular,
κ is perfect.) We use the following notations after [16, Appendix A]:

• S ⊂ An is a hyperplane defined by s1 + · · · + sn = n, s1 · · · sn ̸= 0.
• T → S is a covering defined by td = s1 · · · sn. It is Galois with the

natural identification Gal(T/S) = µd.
• X ⊂ An is a hypersurface defined by td1 + · · · + tdn = n, t1 · · · tn ̸= 0.

There is a morphism

X −→ T ; si = tdi , t = t1 · · · tn.

Then X is Galois over S with the natural identification Gal(X/S) =
µnd , under which Gal(X/S) → Gal(T/S) sends (ξ1, . . . , ξn) to∏n
i=1 ξi.

• C is an affine curve defined by xd + yn = 1, x ̸= 0. There is a
morphism

Cn−1 −→ T ; si =
n−1∏
j=1

(1 − ζiyj), t = x1 · · ·xn−1,

where (xj , yj) is the coordinate of the jth component of Cn−1, and
ζ ∈ κ is a fixed primitive nth root of unity. Then Cn−1 is generically
Galois over S with the natural identification Gal(Cn−1/S) = µn−1

d ⋊
Sn−1, under which Gal(Cn−1/S) → Gal(T/S) sends
((ξ1, . . . , ξn−1), σ) to

∏n−1
i=1 ξi.

First, X is an open subscheme of F (n)
d ⟨n⟩ and we have isomorphisms

M(T )α ≃ M(X)(α,...,α) ≃ M(F (n)
d ⟨n⟩)(α,...,α)

by Proposition 3.5. For the latter, note that the diagonal in µnd acts trivially
on F (n)

d ⟨n⟩ \X but (α, . . . , α) is non-trivial on the diagonal since αn ̸= 1. In
particular, M(T )α is invertible by Proposition 4.11(iv).

On the other hand, if β ∈ µn−1
d ⋊ Sn−1̂ denotes the pull-back of α, then

M(T )α ≃ M(Cn−1)β

by Proposition 3.5(ii). The restriction of β to the first (resp. the second)
component is (α, . . . , α) (resp. 1), and the corresponding projectors e(α,...α)
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and e1 satisfy

eβ = e(α,...,α)e1 = e1e(α,...,α) in Λ[µn−1
d ⋊ Sn−1].

Hence e1 restricts to an idempotent endomorphism ofM := M(Cn−1)(α,...,α).
Since C admits an action of µd × µn, we can further decompose M with re-
spect to the µn−1

n -action. Let ν1, . . . , νn−1 ∈ µ̂n \ {1} be distinct characters
(such a choice is unique up to permutations), and eν be the corresponding
projector. One easily verifies that σeν = eσνσ for any σ ∈ Sn−1, where Sn−1
acts on µ̂n−1

n as permutations. Hence

eνe1eν = 1
(n− 1)!

∑
σ

eνeσνσ = 1
(n− 1)!e

ν in End(M).

Note that eνeσν = 0 unless σ = 1 by the assumption on ν. If we put
L = Mν and N = M1 ≃ M(T )α, then the composite L → N → L of the
natural morphisms (via M) is the multiplication by 1/(n − 1)!, hence is an
isomorphism. Since N is invertible, it follows that L ≃ N once we show
that L is also invertible. We have by definition L =

⊗n−1
i=1 M(C)(α,νi). If

C̃ ⊂ F
(2)
d denotes the open curve defined by u0u1 ̸= 0, C is the quotient of

C̃ by 1 × µd/n ⊂ µ2
d, and we have isomorphisms by Propositions 3.5

M(C)(α,νi) ≃ M(C̃)(α,χi) ≃ M(F (2)
d )(α,χi),

where χi is the pull-back of νi to µd. For the latter isomorphism, note that the
diagonal in µ2

d (resp. µd × 1) acts trivially on {u0 = 0} (resp. {u1 = 0}) and
αχi (resp. α) is non-trivial on the subgroup. Since M(F (2)

d )(α,χi) is invertible
by Proposition 4.11, L is also invertible and we have

⊗n−1
i=1 M(F (2)

d )(α,χi) ≃
N ≃ M(F (n)

d ⟨n⟩)(α,...,α), which implies the desired isomorphism of Chow
motives. □

Corollary 7.3. — Suppose further that κ is a finite field. Under the
isomorphism (7.6), the endomorphism j

(n)
d ⟨n⟩ on the left hand side corre-

sponds to
⊗

χn=1,χ̸=1 j
(2)
d on the right hand side.

Proof. — This follows by comparing the Frobenius endomorphisms using
Theorem 1.2. □

Remark 7.4. — One can deduce (1.1) and (1.2) from Coleman’s theo-
rem (1.3) and Theorems 1.1, 1.2 as follows. Since both sides of Theorem 1.1
(i) are invertible, their endomorphism rings are canonically isomorphic to
Λ. The Frobenius endomorphisms on both sides, regarded as elements of Λ,
yield the same element because the Frobenius endomorphism commutes with
any morphism (see (3.4)). We conclude (1.1) by observing that the Frobenius
endomorphisms agree with the left and right hand sides of (1.1) by (1.3) and
Theorem 1.2, respectively.
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Similarly, one recovers (1.2) (which is (7.5)) from Corollary 7.3 and the
invertibility of the motives, noting

j
(n)
d ⟨n⟩ · e(α,...,α) = αn(n)j(α, . . . , α) · e(α,...,α), j

(2)
d · e(α,χ) = j(α, χ) · e(α,χ).

Remark 7.5. — If κ = C, the complex period of an invertible motive in
Chow(C,Q(ζd)) is an element of C∗/Q(ζd)∗, defined by the de Rham–Betti
comparison isomorphism. Since the periods of Fermat motives are special
values of the beta function, the isomorphism (7.6) implies (7.3) for any s ∈
d−1Z, up to Q(ζd)∗.

8. Weil numbers

In this section, we start with the cyclotomic field F = Q(ζd) for an integer
d ⩾ 3. We have an isomorphism

(Z/dZ)∗ ≃ G := Gal(F/Q); h 7−→ σh,

where σh is defined by σh(ζd) = ζhd . Note that σ−1 agrees with the complex
conjugation (for any embedding F ↪→ C). Let µ(F ) denote the group of all
the roots of unity in F . Note that |µ(F )| = d or 2d according to the parity
of d. Let v be a prime of F over a rational prime p ∤ d, κ be the residue
field at v and put q = pf = |κ|. Let D = ⟨σp⟩ ⊂ G be the decomposition
subgroup of v. Then G/D is bijective to the set of primes of F over p by
σ 7→ σv. We have |D| = f and |G/D| = φ(d)/f , where φ denotes Euler’s
totient function.

Let χd : κ∗ → F ∗ be the dth power residue character modulo v, i.e.
χd(x mod v) ≡ x

q−1
d (mod v) for any x ∈ F ∗ such that v(x) = 0. For any

a = (a1, . . . , an) ∈ (Z/dZ)n (n ⩾ 2), put
jd(a) = j(χa1

d , . . . , χ
an

d ) ∈ F ∗.

Define
A

(n)
d =

{
a = (a1, . . . , an) ∈ (Z/dZ)n

∣∣ a0, a1, . . . , an ̸= 0
}

where a0 := −
∑n
i=1 ai. If a ∈ A

(n)
d , then jd(a) is a q-Weil number of weight

n− 1 by (2.6). Let
W = Wq(F ) ⊂ F ∗

be the subgroup of q-Weil numbers and J ⊂ W be the subgroup generated
by
{
jd(a)

∣∣ a ∈ A
(n)
d , n ⩾ 2

}
. Since σhjd(a) = jd(ha), J is G-stable as well

as W . In fact, J is generated by
{
jd(a)

∣∣ a ∈ A
(2)
d

}
∪
{

(−1)
q−1

d

}
by (6.3).

Define the group homomorphism
Φ: W −→ Z[G/D]
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by Φ(α)v = (α) (the principal divisor of α). (Note that we have v′(α) = 0
for any finite place v′ ∤ p and α ∈ W .) Then for α of weight w, we have

Φ(α) + σ−1Φ(α) = Φ(α · σ−1(α)) = Φ(qw) = wfT, (8.1)
where T :=

∑
τ∈G/D τ is the trace element. Kronecker’s theorem [10] shows

Ker Φ = µ(F ). (8.2)
In particular, W is a finitely generated abelian group whose torsion part is
precisely µ(F ) (see (8.7) below for its rank). Since W and J are G-stable
and Φ is G-equivariant, Φ(W ) and Φ(J) are ideals of Z[G/D].

The case when f is even is easy.

Proposition 8.1. — If f is even, then Φ(W ) = Φ(J) = Z · f2T , and W
is generated by µ(F ) and √

q = pf/2.

Proof. — Since σ−1 = (σp)f/2 ∈ D, we have Φ(α) = wf
2 T for any α ∈ W

of weight w by (8.1). Since we assumed d ⩾ 3, there exists a Jacobi sum of
weight 1 (e.g. jd(1, 1)), and the proposition follows. □

For any a ∈ Z/dZ, define the Stickelberger element by

θd(a) =
∑

h∈(Z/dZ)∗

{
−ha

d

}
σ−1
h ∈ Q[G],

where {x} denotes the fractional part, i.e. x = {x} + ⌊x⌋. Note that
σhθd(a) = θd(ha).

Define the trace element as T̃ =
∑
σ∈G σ ∈ Z[G]. Then

θd(a) + θd(−a) = T̃ if a ̸= 0. (8.3)

If π : Z[G] → Z[G/D] denotes the natural surjection, then π(T̃ ) = fT . For
a = (a1, . . . , an) ∈ A

(n)
d , put

θd(a) = θd(a1) + · · · + θd(an) − θd(a1 + · · · + an)

= θd(a0) + θd(a1) + · · · + θd(an) − T̃ .

Then θd(a) ∈ Z[G], and we have by (8.3)

θd(a) + θd(−a) = (n− 1)T̃ . (8.4)

Stickelberger’s theorem states that (see, e.g. [4, Theorem 11.2.3])

(jd(a)) = θd(a)v (a ∈ A
(n)
d ). (8.5)

In other words, Φ(jd(a)) = π(θd(a)). Therefore, Φ(J) is generated as a Z-
module by {θd(a) | a ∈ A

(2)
d }.
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Let S ⊂ Z[G] be the Z-module generated by {θd(a) | a ∈ A
(2)
d }. Since

σhθd(a) = θd(ha), S is an ideal of Z[G] and is called the Stickelberger ideal.
By (8.5), we have π(S) = Φ(J). For any G-module M , write M± = {m ∈ M |
σ−1m = ±m}. By Iwasawa and Sinnott [19], S− is of finite index in Z[G]−.
More precisely, let r be the number of prime factors of d, put s =
max{0, r−2}, and let h−

d be the minus part of the class number of F = Q(ζd).
Then

md := (Z[G]− : S−) = 2rh−
d . (8.6)

As a corollary, we obtain the following.

Proposition 8.2. — For any α ∈ W , there exists ζ ∈ µ(F ) such that
ζα2md ∈ J . Moreover, J is of finite index in W and we have

rank J = rankW =
{

1 + 1
2f φ(d) if f is odd,

1 if f is even.
(8.7)

Proof. — It is a consequence of Proposition 8.1 if f is even. Suppose that
f is odd. Then we have σ−1 ̸∈ D and hence the right vertical map in the
commutative diagram

S− � � //

��

Z[G]−

����

Φ(J)− � � // Z[G/D]−

is surjective. By (8.6), we have (Z[G/D]− : Φ(J)−) | md. On the other hand,
we have Φ(J)+ = Φ(W )+ = Z · fT . For any α ∈ W of weight w, we have
by (8.1)

2Φ(α) = (Φ(α) + σ−1Φ(α)) + (Φ(α) − σ−1Φ(α))
= wfT + (Φ(α) − σ−1Φ(α)).

Since fT = Φ(q) ∈ Φ(J)+ and md(Φ(α) − σ−1Φ(α)) ∈ Φ(J)−, the assertion
follows by (8.2) and rankZ[G/D]− = φ(d)/(2f). □

We have an obvious inequality (W : J) ⩽ |µ(F )| · 2rankW · md. It might
be an interesting problem to find a better upper bound for (W : J). To
understand its motivic meaning, we consider the group homomorphism

Fr : Pic(Chow(κ, F )) −→ W

which associates to an invertible motive M its Frobenius eigenvalue in Λ ≃
End(M). As a result of Theorem 1.2 and Proposition 8.2, we obtain the
following.
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Corollary 8.3. — For any α ∈ W , there exist Fermat motives Mi =
h(F (2)

d )χi (i = 1, . . . , s, χi ∈ X
(2)
d ), an Artin motive h(SpecK)χ for a char-

acter χ : Gal(K/κ) → µ(F ) of a finite extension K/κ, and an integer r,
such that

α2md = Fr

(
s⊗
i=1

Mi ⊗ h(SpecK)χ(r)
)
.

If we assume the conjectures of Beilinson and Tate as in the introduc-
tion, then Fr should be injective. It follows that any multiplicative relation
among Weil numbers in the image of Fr should lift to a relation of invertible
motives. In this paper, we have exhibited such lifts for basic relations in J
unconditionally.

Corollary 8.4. — Assume that Fr is injective. Then Pic(Chow(κ, F ))Q
is isomorphic to WQ and is generated as a Q-vector space by the classes of
Fermat motives h(F (2)

d )χ (χ ∈ X
(2)
d ).

Consider the normalization (a ∈ Z/dZ, a ̸= 0)

θ̃d(a) = θd(a) − 1
2 T̃ ∈ Q[G].

First, we have by (8.3)
θ̃d(−a) = −θ̃d(a), (8.8)

i.e. θ̃d(a) ∈ Q[G]−. Since Φ(J)−
Q = Q[G]− by (8.6), Q[G]− is generated by

{θ̃d(a) | a ∈ Z/dZ, a ̸= 0}. Secondly, for any positive divisor n of d and
a ∈ Z/dZ such that na ̸= 0, we have

θ̃d(na) =
n−1∑
i=0

θ̃d

(
a+ d

n
i

)
. (8.9)

(This is easy to prove and is also a consequence of (7.5) and (8.5).)

Proposition 8.5. — The set{
θ̃d(a)

∣∣∣∣ a ∈ (Z/dZ)∗,
{a
d

}
<

1
2

}
is a Q-basis of Q[G]−.

Proof. — We already proved that Q[G]− is generated by θ̃d(a) if a ranges
over Z/dZ \ {0}. One shows by induction using (8.8) and (8.9) that the set
in the proposition already generates Q[G]−. It is a basis since dimQ[G]− =
φ(d)/2. □
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The last proposition shows that the reflection formula (8.8) and the multi-
plication formula (8.9) generate all the Q-linear relations among θd(a) (a ∈
A

(n)
d , n ⩾ 2). Hence the corresponding relations (2.6) and (7.5) together

with (6.3) generate all the relations among jd(a) up to torsion. Assuming the
conjectures of Beilinson and Tate, it follows that (4.8) and Theorem 1.1(ii)
(under Proposition 4.11(ii), (iii)) should generate all the relations among the
Fermat motives up to torsion (i.e. up to powers and Artin motives).

On the other hand, finding all the integral relations appears to be subtler.
Indeed, it was first observed by Yamamoto [24] that the relations among
the Gauss sums are not exhausted by the reflection formula (2.2) and the
multiplication formula (7.4), disproving Hasse’s conjecture. Its counterpart
for Jacobi sums can be found in [14]. We leave it as a future problem to
study the corresponding relations among motives.
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