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NORIYUKI OTSUBO (V) AND TAKAO YAMAZAKI (?)
ABSTRACT. — We study the Gauss and Jacobi sums from a viewpoint of motives.

We exhibit isomorphisms between Chow motives arising from the Artin—Schreier
curve and the Fermat varieties over a finite field, that can be regarded as (and
yield a new proof of) classically known relations among Gauss and Jacobi sums
such as Davenport—Hasse’s multiplication formula. As a key step, we define motivic
analogues of the Gauss and Jacobi sums as algebraic correspondences, and show
that they represent the Frobenius endomorphisms of such motives. This generalizes
Coleman’s result for curves. These results are applied to investigate the group of
invertible Chow motives with coefficients in a cyclotomic field.

RESUME. — Nous étudions les sommes de Gauss et de Jacobi du point de vue
des motifs. Nous démontrons des isomorphismes entre les motifs de Chow associés
a la courbe d’Artin—Schreier et les variétés de Fermat sur un corps fini, qui peuvent
étre considérés comme (et fournissent une nouvelle preuve de) relations classique-
ment connues entre les sommes de Gauss et de Jacobi telles que la formule de mul-
tiplication de Davenport—Hasse. Comme étape clé, nous définissons des analogues
motiviques des sommes de Gauss et de Jacobi comme des correspondances algé-
briques, et montrons qu’ils représentent les endomorphismes de Frobenius de tels
motifs. Cela généralise le résultat de Coleman pour les courbes. Ces résultats sont
appliqués a I’étude du groupe des motifs de Chow inversibles a coefficients dans un
corps cyclotomique.
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Noriyuki Otsubo and Takao Yamazaki

1. Introduction

Let k be a finite field of cardinality ¢ and of characteristic p, and d a
positive divisor of ¢ — 1. Take a non-trivial additive character ¢: kK — C*,
and multiplicative characters x, x1,...,Xn: da — C*, where g := {m € x*|
m? = 1}. We consider the Gauss sum g(,x) € Q(¢pa) and the Jacobi
sum j(x1,---,xn) € Q(Ca) (see (2.1), (2.4) for the definitions), where ¢, :=
e?™/k ¢ C. In this introduction, we discuss the following relations among

g, x) and j(X1,. .., Xn):

e Assume that none of xq,... ,XmH?:l x; is trivial. Then we have
(cf. (2.5))
TTo(.xi) = a(¥xa - xn)i (xas - xn)- (1.1)
i=1

e Assume n | d and let a: pg — C* be a character such that o™ # 1.
Then we have the Davenport—Hasse multiplication formula (cf. (7.5))

a*(n)j(a,...,e) = [ dlex), (1.2)
" =
n times x"=1,x#1

where x ranges over all non-trivial characters of pg such that x™ = 1.

(See (2.2), (2.3), (2.6), (6.3), (7.1), (7.2), (7.4), (7.5) for other relations con-
sidered in the body of the text.) The aim of the present note is to upgrade
these relations to motives. This is achieved in two steps. The first step is to
construct isomorphisms between suitable motives, and the second is to relate
the Frobenius endomorphisms with the motivic Gauss and Jacobi sums.

To state our results, we introduce more notations. Let Chow(k, A) be the
category of Chow motives over k with coefficients in a field A of characteristic
zero. Let A4 be the (smooth projective) Artin—Schreier curve defined by % —
z = y%. We construct an object h(A4)¥X) of Chow(k,Q(Cpa)) as a direct
factor of the motive h(Ay) of Ay cut out by the action of k X pg. Similarly, for

a direct factor of the motive h(Fg(l") (c)) of the Fermat variety F’ én) (c) C P
defined by uf+ - -+ ul = cud cut out by the action of u7. (See Section 4 for
details.) We drop (c) from the notation when ¢ = 1. Our first main result is
the following.

— 06 —



Motivic Gauss and Jacobi sums

THEOREM 1.1. —

(i) Let be a character of k and x1,. .., Xn characters of pq. If none of
Yy X1y s Xns Ly Xn @8 trivial, then there exists an isomorphism
between invertible objects of Chow (x, Q((pa))

® h(Ad)(w’Xi) ~ h(Ad)(w’H:;l Xi) ® h(Fé”))(Xl,m’Xn).

i=1
(ii) Suppose that n divides d and let « be a character of g such that
a™ # 1. Then there exists an isomorphism between invertible objects
of Chow(x, Q(Ca))
n a,...,00 2 «,
B(ES () e @) h(E) .
X"=1,x#1

In fact, the isomorphism in (ii) holds over arbitrary base field x as long
as Kk contains a primitive dth root of unity (see Section 7.2). When x = C,
it has an implication on the gamma function (see Remark 7.5).

To state the second main result, we introduce an element of the group
ving Z[u7]

g—1 a—1
J () = (—1)nt 3 (m mi )

mi,...,MpER*, g mi;=c

which we call the twisted Jacobi sum element. It follows from the definition
that j;")<c> acts on h(Fén) (c))X1Xn) ag the multiplication by

X1 Xn (€T )Xy s Xn)-
The following theorem generalizes Coleman’s result [5, Theorem A] for n = 2
and ¢ = 1.
THEOREM 1.2. — Let x1,...,Xn be characters of ugq such that none of
X1s- -+ Xns iy Xi 1 trivial. Then the endomorphism of h(FCE") (c)) (XX

induced by jc(ln) (c) agrees with the Frobenius endomorphism.

Coleman also proved that the Gauss sum element
ga=— Y (mm'™) € Zlx x pud (1.3)
mer*

induces the Frobenius endomorphism on h(Ag)¥ %) if ¢ and y are non-
trivial. Since the Frobenius endomorphism commutes with any morphisms
(see (3.4) below), (1.1) and (1.2) can be deduced from Coleman’s result and
Theorems 1.1, 1.2. See Remark 7.4 for details.
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We conclude this introduction by a discussion on the relations among
Weil numbers and motives. Recall that a € C is called a g- Weil number of
weight w € Z if there exists m € Z such that ¢™« is an algebraic integer and
lo(a)| = q*/? for all o: Q(a) — C. Let W, (A) be the subgroup of A* consist-
ing of all ¢-Weil numbers (of arbitrary weight) belonging to a given subfield
A of C. It is conjectured by Beilinson [2, 1.0] that the rational equivalence
and numerical equivalence should agree over a finite field x (with coefficients
in A). If we assume this as well as the Tate conjecture, it follows from [12,
Proposition 2.21] that all simple objects of Chow(x, Q) should be invertible,
and their isomorphism classes would form a group (with respect to the tensor
product) isomorphic to W,(Q). In particular, the group Pic(Chow(x,A))
of all isomorphism classes of invertible objects of Chow(x, A) should be iso-
morphic to a subgroup of W,(A) by Lemma 3.3 below. Therefore, the mul-
tiplicative relations among ¢-Weil numbers (such as (1.1) and (1.2)) should
come from relations among motives, as demonstrated by Theorem 1.1.

Using our motivic relations, we shall deduce the following two results on
Pic(Chow(k,Q((4))) where k is the residue field of Q(¢{4) at a prime v 1 d,
both conditional to the conjectures of Beilinson and Tate (see Corollary 8.4
and the discussion after Proposition 8.5):

o Pic(Chow(k,Q({4)) should be generated by the Fermat motives
h(Ff))(Xl’X?)7 up to powers and Artin motives.

e All the relations among h(Féz))(Xl’X” in Pic(Chow(k,Q(¢4)))
should be implied by Theorem 1.1(ii) and the reflection relation
(4.8), up to powers and Artin motives.

The key input here is a result of Iwasawa—Sinnott [19] on Stickelberger’s
ideal.

The paper is organized as follows. After a brief recollection on the Gauss
and Jacobi sums, we define their motivic variants in Section 2. We pre-
pare a few basic facts on the Chow and Voevodsky motives in Section 3.
We then extensively study the motives of the Artin—Schreier curves and the
Fermat varieties in Section 4, where a crucial ingredient is the inductive
structure of Fermat varieties due to Katsura—Shioda [18]. We complete the
proof of Theorem 1.1 (i), (ii) and Theorem 1.2 in Sections 5, 7 and 6, respec-
tively. The last Section 8 is devoted to a discussion on Weil numbers and
Pic(Chow(k, Q(¢4)))-
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2. Gauss and Jacobi sums

Let k be a finite field of characteristic p with ¢ elements, and let d be
a positive divisor of ¢ — 1. We write G := Hom(G,C*) when G is a finite
group, and ¥ := x ! for x € G. For ¢ € &\ {1} and x € [i4, the Gauss sum
is defined by

g(x) == D wm)x(m'T) € QGa). (2.1)

mer*

Note that g(¢,1) = 1. We have for any x # 1

9, X)9(¥, X) = q. (2:2)

In particular, g(, x) is a g¢-Weil number of weight one if y # 1. We have
also

g, x) = x((—l)%l)g(w,x)- (2.3)

If d' | d and if \' € fig is such that x(m) = x/(m¥%) for all m € pq, then
we have g(¢,x) = (¥, X').

For x1,...,Xn € li4, the Jacobi sum is defined by

j(le"'7X7l)

—Cot Y () () ce. @

n
mien*,g ) 1ﬂu:l
i=

If none of x1,...,Xns 1=y Xi is trivial, we have (cf. [16, Proposition 2.2])
9, x1) - 9(¢, xn)

g, X1+ Xn)
F(X1s - X)X - X)) = ¢ (2.6)

F(X15 s Xn) = , (2.5)

(In particular, the right member of (2.5) is independent of ¥). If d’' | d and
if x} € fig is such that x;(m) = x}(m¥%) for all m € pg and i = 1,...,n,
then we have j(Xh s >Xn) = ](X/la RN X;l)
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Remark 2.1. — The relations (2.2) and (2.5) are finite field analogues of
the functional equations for the gamma and beta functions:
T T(s1)---T(sn)

B(sy,... s,) = —v 2 8n)
sinms’ (51 sn) L(s1+ -+ sn)

L(s)I(1 —s) =

Define the Gauss sum element in the group ring Z[x X p4] by
== ¥ ('),
mekr*

Define for ¢ € k the twisted Jacobi sum element in the group ring Z[u}] by

i) = (~1)n 3 (mlmn> (2.7)

We write jén) = jc(ln)(1>. Note that if ¢ # 0
jé )<c>= (c T, ...,cd ) -]EZ ).

If d' | d, then the map Z[k x pqg] — Z[k % parl; (a,m) — (a,m¥?) sends gq

to gar, and the map Z[uly] — Z{u]; (m;) — (md/d/) sends j((i )( ) to j( )< ).

3

If G is a finite group and x € é, we write

eX =ef = e ClG 2.8
geG
for the corresponding projector. We have g - eX = x(g)eX and eXeX' =

d(x,x)eX in C[G] for any g € G and x, )’ € @ where § is the Kronecker
delta. If G is abelian, we also have Z g€ = 1. The following lemma is an

immediate consequence of the deﬁmtlons and will be used frequently without
further notice.

LEMMA 2.2. —
(i) For any ¢ € K\ {1} and x € [iq, we have
ga - X = g(4h, ) in Clk x pg).

(ii) For any x1,---,Xn € [td, we have

-1

-(n a—-\ . . n
Jc(l )(c> ce(X1sxn) — X1 X (€T )G(x1s Xn)e(qu.,xn) in Clu?).
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3. Preliminaries on motives

In this section x is an arbitrary field, which we assume to be perfect from
Section 3.2 onward. Let SmProj(x) be the category of smooth projective
varieties over k. We also fix a field A of characteristic zero. We write Ap :=
A ®y A when A is an abelian group.

3.1. Chow motives

Let Chow(k, A) be the homological category of Chow motives over x with
coefficients in A (cf. e.g. [11, Chapter 20]; this is opposite of the one in [17]).
This is a A-linear rigid tensor pseudo-abelian category. Recall that an object
of Chow(x, A) can be written as a triple (X, w, r) where X € SmProj(x) is
equi-dimensional, 7 € CHgim x (X X X)a is such that 72 = 7 (with respect
to the composition of algebraic correspondences), and r € Z. For two such
triples (X, m,r) and (Y, p, s), we have

Homchow(r,a) (X, 7,7), (Y, p,8)) = p o CHaim x+r—s(X X Y)p 0.
For r = 0 we abbreviate (X, m,0) = (X, 7).
The tensor product on Chow(k, A) is given by
(X,m,r)® (Y,p,s) = (X xY,m X p,r+5).

We put A(r) := (Spec &, idgpec x, ) and A := A(0). For any M € Chow(x, A),
we set M (r) := M ®A(r) and write MV for the (strong) dual of M. We have
(X,m,7)V(dim X) = (X, 'r, —r), where '7 denotes the transpose of .

Suppose X € SmProj(x) is connected of dimension m. Given a k-
rational point 29 € X (x), we define objects in Chow(k, A) by

ho(X) := (X, [X X x0]) @ A, hom(X) = (X,[zo x X]) =~ A(m). (3.1)
If m = 1, we further put
hi(X) = (X,idx —[X x 20] — [x0 X X]) € Chow(k, A). (3.2)

We do not indicate xg to ease the notation, although these objects depend
on the class of zg in CHy(X)x.

There is a covariant functor
h: SmProj(k) — Chow(k,A), h(X)=(X,idx).
For a morphism f: X — Y in SmProj(x), we have
f. = h(f) = [C): A(X) — h(Y),
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where I'y C X XY denotes the graph of f. If X,Y are equi-dimensional, we
also have

=Ty (Y) — h(X)(dimY — dim X).

LEMMA 3.1. — Let f: X = Y be a generically finite morphism of degree
d, where XY € SmProj(k) are both irreducible and of the same dimension
m. We define a group homomorphism

1 *
fy: End(A(X)) — End(h(Y)),  fg(a) = (froaof?),  (3.3)
where End denotes the endomorphism ring in Chow(k, A).

(i) We have a commutative diagram

T

End(h End(h

CHp (X x X)p —L2PD g (v x V)

(ii) Let ox (resp. oy ) be an automorphism of X (resp. Y ) such that
foox =0y o f. Then, fu((0x)+) = (0y)«.

Proof. — (i) is a consequence of Lieberman’s lemma (cf. e.g. [13, Lem-
ma 2.1.2]). To see (ii), we consider the commutative diagram

Xxx— oy yy

idx XaxT Tid}’ Xoy

X Y.
f

We then compute

(f ¥ ([Tox]) = ((f x f) o (idx xox))«([X])
= ((idy xoy) o f).([X]) = (idy xoy).(d[Y]) = d[lq, ].

We now apply (i) to conclude (ii). O

Example 3.2. — We will use this lemma in the following situations.

(i) If f is an isomorphism, then f* = (f.)~! and fg is a ring isomor-
phism.

(ii) If finite groups G and G’ act on X and Y respectively, and the
actions are compatible under f and a homomorphism ¢g: G — G/,
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then the diagram

AG] —2—— A[@)

|

End(h(X)) —*— End(h(Y))

commutes. Hence the restriction of fi to the image of A[G] is a ring
homomorphism.

(iii) Let k be a finite field with ¢ elements and Frx be the gth power
Frobenius endomorphism of X. Then fx(Fry) = Fry holds, because
we have

f @) FI'X = FI‘Y Of (34)
for any morphism f: X — Y in Chow(k,A) by [9, p. 80] (see
also [20, Proposition 2]).

For later use, we state an elementary lemma.

LEMMA 3.3. — Let A’ be a field extension of A. Then the scalar extension
functor Chow(k, A) = Chow(k, A’) is conservative.

Proof. — Let f: M — N be a morphism in Chow(k, A) and assume that
its scalar extension fpr: Mj, — Ny, is an isomorphism in Chow(x, A’). We
must show that f is an isomorphism in Chow(k, A). By Yoneda’s lemma, it
suffices to show that

f* : HomChow(n,A) (L7 M) — HomChow(n,A) (L7 N)
is bijective for any L € Chow(k, A). This follows from the bijectivity of
fars: Homenow(x,ar) (Lar, Mar) — Homenow(s,a7) (Lar, Nar)
since A’ is faithfully flat over A. O

3.2. Voevodsky motives

From now on we assume that x is perfect. Let DMy, (k, A) be Voevod-
sky’s category of geometric mixed motives over k with coefficients in A (cf.,
e.g. [11]). This is a A-linear rigid tensor pseudo-abelian triangulated cate-
gory equipped with a covariant functor M : Sm(x) - DM, (k, A), where
Sm(k) is the category of smooth separated schemes of finite type over .
There is a fully faithful tensor functor

M : Chow(k, A) — DMy, (k, A) (3.5)
such that M oi = M o h, where i: SmProj(k) — Sm(x) is the inclusion
functor. This fact is first proved by Voevodsky [22, Corollary 4.2.6] (see
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also [11, Proposition 20.1]) under the assumption that x admits resolution
of singularities. See [3, 6.7.3] for a proof over an arbitrary perfect base field.

For each i € Z and an object N of DMy, (k, A), we put A(7) := M (A())[—21]
and N(i) := N ® A(i), where [-] denotes the shift functor.

For later use, we record the blow-up formula:

ProprosSITION 3.4. — Let V' be a smooth variety over k and Z C V a
smooth closed subvariety of pure codimension c. Let f: U — V be the blow-up
along Z. Then we have an isomorphism in DMy (k, A)

MU) ~M(V) @ <€B M(Z)(i)[Qz’]).
i=1

If further V' is projective over k, then f also induces an isomorphism h(U) ~
B(V) ® (D) h(Z)(0)) in Chow(s, A).

Proof. — The first statement is the blow-up formula [11, Corollary 15.13],
and the second follows from (3.5). (The latter is also seen from [17, Theo-
rems 2.5, 2.8].) O

If a finite group G acts (from left) on a motive M (that is, an object
of either Chow(x,A) or DMy, (k,A)), we write MX for the image of the

~

projector eX from (2.8) for y € G.

PROPOSITION 3.5. — Let G be a finite group and x € G. Suppose that
A is large enough to contain the values of x. Let U,V be smooth varieties
with G-action, and let f: U — V be a G-equivariant morphism. If one of the
following conditions is satisfied, then f induces an isomorphism M (U)X ~
M(V)X in DMy, (k, A).

(i) f: U — V is an open immersion such that each irreducible compo-
nent T of V'\ f(U) is smooth and G-stable with M (T)X = 0.

(ii) f: U — V is a finite generically Galois morphism with Gal(U/V') C
G such that X|cawv) = 1.

If further U,V are projective over k, then f also induces an isomorphism
h(U)X ~ h(V)X in Chow(k, A).

Proof. — The first statement for the case (i) and (ii) follows respectively
from the localization sequence [11, Theorem 15.15] and Lemma 3.6 below.
The second follows from (3.5). O

In the following lemma, we denote by Cor(X,Y) the group of finite
correspondences for X,Y € Sm(k) (cf. [11, Definition 1.1]).
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LEMMA 3.6. — If f: U — V is a finite generically Galois morphism in
Sm(k), then we have equalities
feof*=(degf)-idy in Cor(V,V), f*of.,= Z g« in Cor(U,U).
geGal(U/V)

Proof. — For an open dense immersion j: V' — V| we have injections

Cor(V', V') (ﬁ Cor(V',V) <7—OJ3 Cor(V,V).

Putting U’ := f~1(V"), we have
(feof)oj=jo(fluofliy), idvoj=joidys in Cor(V', V),
which reduces the first statement to the case V is the spectrum of a field. A

similar argument reduces the second statement to the same case. Then both
statements are found in [11, Exercise 1.11]. O

3.3. Invertible objects

Let % be a A-linear rigid tensor pseudo-abelian category such that the en-
domorphism ring of the unit object is canonically isomorphic to A. (We shall
apply the following discussion to ¢ = Chow(k,A), DMy (k,A).) Recall
that an object L of € is called invertible if the evaluation map LV ® L — A
is an isomorphism, where LV denotes the (strong) dual of L. It then follows
that End(L) ~ A and hence L is indecomposable (that is, End(L) has no
projectors other than 0, 1). We will use the following result of Krull-Schmidt

type.

PrOPOSITION 3.7. — Let Ly, ..., L, be invertible objects of €, and put
M: =018 ---&®L,. Let N\, Ny be objects of € such that there are isomor-
phisms M ~ N1 ® Ny and Ny ~ L1 & --- & L, for some 1 < r <n. Then
there is an isomorphism No >~ L. 1 & -+ ® Ly,

Proof. — This follows from [1, Chapter 1, Theorem 3.6]. |

Artin motives provide basic examples of invertible motives, as seen in the
following lemma. We shall see more examples in Propositions 4.5 and 4.11
below.

LEMMA 3.8. — Let K/k be a finite Galois extension and put X = Spec K,
G = Gal(X/Speck). For any x1, x2 € G, there is an isomorphism

h(X)X1X2 ~ h(X)Xl ® h(X)Xz
in Chow(k,A), where A is large enough to contain the values of x;’s. In

particular, h(X)X is invertible for any x € G.
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Proof. — Let A: X — X x X be the diagonal and consider the morphisms
Ay h(X) — h(X x X), A*:h(X xX)— h(X).
Put d :=|G|. We shall show that
d-eX1X2 0 A% o (eXt x eX?) : (X)Xt @ h(X)X? — h(X)X1X2,
(Xt x eX2) 0 A, 0 eX1X2 : h(X)X1X2 — h( X)X ® h(X)X? (36)
are isomorphisms mutually inverse to each other. Since

A*o (g1, g2)x 0 Ao ge = (g 95") 0 A) 0 (Aog). = {(()glg)* 81 Z§§§

for any ¢, 91,92 € G, we have
1

Ato(eM xe)oA o= Y Xixa(9)Xi(91)X2(92)(919)+
9,91=92€G
_ 1 vl o — 1 X1X2
=5 > xixalg)gl = gere.
9'eG

Hence eX1X2 0 A* o (Xt x eX2) 0 A, 0 eX1X2 = d~lexixz,

On the other hand, for any g1, g2, g, h1, ha € G, the 0-cycle on X*

L'(g1, 92,9, h1,ha) := (h1,h2)s 0 Ay 0 g 0 A" 0 (g1, 92)«
= ((h1,hz) o Aog)o (97,95 ") 0 A)*

is the image of X — X% 2 — (gflmg;lm, higz, hagz), and we have

(Xt x eX?) 0 A, 0eX1X2 0 A% o (eX X eX?)
= % > xa(hgg)Xa(hagg2)T (g1, 92, 9, b, ha).

91,92:9:h1,h2€G

Note that I'(g1, 92, g, h1, h2) is contained in the graph (h1gg1, hoggs).. When
g1, 92, g, h1, he range over G with fixed values g; = h1gg; and g5 = hagga,
the cycles I'(g1, g2, g, h1, he) sum up to d?(g}, g5)«. Hence we obtain

(€X' x eX2) 0 A, 0 X1X2 0 A* o (X! x X2) = d_l(eX1 X eX2),
This proves that (3.6) are isomorphisms.

The last statement follows by letting x; = x and x2 = X, since h(X)? ~ A
by Proposition 3.5 (ii). O

Let d be a positive integer such that pg C k and assume that Q(¢4) C A.
For ¢ € k* and x € [ig, let

Km(c) = Kmg(c): Gal(k(c/?)/k) — pa; g — g(c/?)/ct/?
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be the Kummer character associated with ¢, and define
A{e)X = h(Spec k(cl/d))xeKmle) (3.7)
an invertible object in Chow(k, A).

LEMMA 3.9. —

(i) For c1,co0 € K* and X € lg, we have A{cica)X ~ Aler)X @ Alea)X.
(ii) For c € k* and x1, X2 € fd, we have A(c)X*X2 ~ A{c)X' @ A(c)X2.
(iii) If x factors through X' € fig for some d’ | d,/z'.e. x(m) = ¥/ (m¥/ )

for any m € pq, then we have A{c)X ~ A{c)X .

Proof. — These follow from Proposition 3.5 (ii) and Lemma 3.8. O

4. Artin—Schreier and Fermat motives
4.1. Artin—Schreier motives

In this subsection let x be a finite field with ¢ elements of characteristic
p, and let d be a positive divisor of g — 1. Let Aj be the affine Artin-Schreier
curve over k defined by
2l —x =y (4.1)
It admits an action of k X ug given by (a,m).(z,y) = (x + a,my). There
is no fixed point of (a,m) € Kk X pq if @ # 0, while pg fixes the points in
A3(k) = {(2,0) | = € k}. The projectivization X9 — XZ9~! = ydzi—d
is non-singular at the unique point at infinity [0 : 1 : 0] if and only if
d=q—1. Let A4 be the projective smooth curve obtained by normalizing
the singularity. It has a unique point at infinity, written as oo, which we take
as the distinguished point. The action of k x ug extends to A4 and fixes oo.

If d' | d, we have a finite surjective morphism
Ad — Ad'7 (.’E, y) — (m) yd/d/) (42)

of degree d/d’, compatible with the group actions via the homomorphism
KX g — KX gy (a,m) — (a,m%). Tt is generically Galois with the Galois
group Ker(ug — pra) = prgjar- The genus of Ag is (¢—1)(d—1)/2, which can
be seen by the Riemann-Hurwitz formula for the covering Aqy — A; ~ P!,

Let A be a field containing Q((,q). We have the decomposition in
Chow(k, A)

h(Ag) = @ R(Ag) YY) h(Ag) %) = (Ag, ).

(¥, x)ERX
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Here, e(¥"X) means the algebraic correspondence induced by the group-ring
element defined in (2.8). Define a projector eprim € Q[k X pg] (with coeffi-
cients in Q) by

€prim = Z €(¢"X) = (1 — e}i)(l — 6}14(1). (43)
(¥, X)ERX lia,h#1,x#1

Note that, for any projectors e, f € Q[G] where G is an abelian group, 1 —e
and ef are also projectors. Put

h(Ad)prim = (Ad, eprim) = @ h(Ad)(w7X)~
Y#Lx#1
PROPOSITION 4.1. — Suppose that d' | d and that x € [iq factors through
X' € g (i-e. x(m) = x'(m¥?)). Then we have h(Ag) W) ~ h(Ag)®X),
Proof. — This follows from Proposition 3.5 (ii) applied to (4.2). O

PROPOSITION 4.2. — Let ¢ € K and x € [ig. We use the notations
from (3.1) and (3.2).

(i) Ify =1 and x = 1, then h(Ag)"D = ho(Ag) ® ho(Ag) = A® A(1).
(ii) If v # 1 or x # 1, then h(Ag) ¥ = hy(Ag)¥0.

(iii) If only one of 1, x is trivial, then h(Ag)¥X) = 0.

Proof. — Proposition 3.5 (ii) applied to Ag — Agq/(k X pg) = P! yields
h(Ag)Y = h(PY) = A @ A(1), showing (i). This also implies h;(A4) =
hi(Ag)Y (i = 0,2), from which we obtain (ii). To see (iii), it suffices to
apply Proposition 3.5(ii) to Ag — Agq/pg = P (resp. Ag — Agq/k = P)
when x =1 (resp. ¢ = 1). O

LEMMA 4.3. — Let
(' s ) CHl(Aq,1 X Aqfl) X CHl(Aq,1 X Aqfl) — 7

be the intersection number pairing. For (a,m) € k x &*, let (g €
CHy(Ag—1 x Ag_1) be the class of its graph and A =T 1y. Then,

3¢—q¢* ((a,m) =(0,1)),

_Ja+1 (a=0,m#1),
(Aar(a,m))* q (a;«éOm_l)
1 (a £ 0,m #1).

Proof. — First, (A, A) equals the Euler—Poincaré characteristic of Ay, i.e.
2—(q—1)(g—2). Secondly if m # 1, then A and I ,,) meet transversally at
the ¢+ 1 points {(P, P) | P € Aq(k)}, where Agq(k) = {(z,0) | x € k}U{oo}.
Thirdly if @ # 0, then A N T, 1) = {(00,00)}. Since vo(z) = 1 — g,
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Voo (y) = —¢q, the completed local ring of Ay at oo is O 100 = K[t] where
t =x/y, and (a,m) maps t to m~1(t + ay~'). We have

Klt, s1/(t = ) @ufe,o Kllts 1/ (mt — s — ay™") = k[t]/((m = 1)t —ay™").

Its length is ¢ if m = 1, and is 1 otherwise since (m — 1)t —ay~* € tx[t] ™.

The proof is complete. O
LEMMA 4.4. — Let S be a connected smooth projective surface over s,
and take

€, e' S CHl (S)A = HomChow(,{’A)(A(l), h(S)) = HomChow(H,A)(h(S)vA(l))~

Suppose that the intersection number n := (e,€’) is not zero, and define

1
o= —(e xe') € CHy(S x S)a = Homcnow(s,a) (7(S), h(S)).

n

(i) We have o* = a in Homchow(s,a) (R(S), h(S5)).
(ii) Set M :=(S,a) € Chow(k,A) and let &: M — h(S) and a: h(S) —
M be the inclusion and projection (so that « = @o ). Then

aoce: A(1) — M and le’oa: M — A(1)
n

are isomorphisms mutually inverse to each other.

Proof. — This is shown by a straightforward computation using the def-
inition of the composition of correspondences. O

The following are motivic analogues of (2.2) and (2.3), respectively (see
also Remark 6.6 below).

PROPOSITION 4.5. — Suppose that ¥ € &, 1 # 1 and x € jg, x # 1.
(i) There is an isomorphism
h(Ag) %) @ h(Ag) %) ~ A(1).

In particular, h(Ag)™X) is invertible.
(ii) There is an isomorphism

h(Ag) @) o B(Ag) %) @ A(—1)X,

where A(—1)X is from (3.7).
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Proof.

(i).f— By Proposition 4.1, we can assume that d = ¢ — 1. Regard e(*¥X)
and e(¥X) as elements of CH;(Ay—1 x Ay—1)a. Then the intersection number
is computed using Lemma 4.3 as

() (X))

1
= 2,12 ’(/J(a/ - a)X(m//m) (F(a,m)a I‘(a’,m/))
¢*(q —1)? We,i;m,em*
1
=2, 1)2 - ! A r a’'—a,m’/m
s D DI Rl G )
1
= o Z P(@x(m)(A, Dam)

acEk,meK™

e GO A1) SRCORT) DO DER TN Y

q(q s a0 a0,m#1

1
= ——(Bg—¢) —(g+1) —q+(-1)*) = -1
5 (Be-)— @+ )~ + (-1?)
Now Lemma 4.4 completes the proof of (i).

(ii). — If p = 2, then the statement is trivial since ¢ = v and
A{—1)X = A. Suppose that p is odd. We may further suppose that d = ¢—1
by Lemma 3.9 (iii) and Proposition 4.1. Put K = k(ugg-1)), Ag-1,k =
Ag—1 Xgpecr Spec K, and fix a primitive 2(¢ — 1)th root of unity ¢ € K. Let
f be a K-automorphism of A,_; x defined by f(z,y) = (—x,Cy). Then, we
have

fol(a,m) xidg) = ((—a,m)xidk)ef, fo((a,m)xo) = ((—a,—m)x0c)of

as k-automorphisms of A,_;1 g, where o is the generator of Gal(K/k). It

follows that
f#< W) ;"> _ (e(wm @ 1+X§—1)0>’

where f is from (3.3). We conclude

1
h(Ag—1) W) ~ (6(%‘) ® —'2— O>h(Aq—17K)
. _ 1 _1 —
L (e(w”‘) ® Trx e Xé )0>h(Aq1,K) ~ h(Ag-1)W @ A(-1)X,
as desired. O
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4.2. Fermat motives

In this subsection we let k be an arbitrary perfect field and assume that
d is a positive integer such that yg := {m € x* | m% = 1} has d elements.

For each positive integer n and ¢ € k*, let chn)<0> C P™ be the (twisted)
projective Fermat hypersurface of degree d and dimension n — 1 defined by

u‘li+--~—|—uf; :cu‘oi.

When ¢ = 1, we just write Fé") instead of Fé")< 1). Let u act on F(”)< ) by
(M, ...,mp)[ug s up t .ot Up) = [ : Mauy t ...t Mply].

If d' | d, we have a finite surjective morphism
n n d/d’ /

F{e) — FSE): Tuo .ot un) — [l L ad ), (4.4)
compa}tible with the group actions via the homomorphism pf} — pl,, (m;) —
(mf/ d ). It is generically Galois (étale over ug---u, # 0) with the Galois
group Ker(uly — pl).

Let A be a field containing Q(¢;). We have the decomposition in
Chow(k, A)

)= @ hED @)X, RET )X = (). ).
XEny
PROPOSITION 4.6. — Suppose that d' | d and x € Ll factors through
X' €% (i.e. x(m) = x'(m¥%)). Then we have h(Flgn) (c))X ~ h(Fé,n) ()X
Proof. — This follows from Proposition 3.5 (ii) applied to (4.4). O
Put
xgn) = {X = (le"'aXn) S ﬁg X155 Xn» HX% 7é 1}7
i=1

and define a projector eprim € Q[uyy] (with coefficients in Q) b

n

eoim =y, = [[(1—el ) (4.5)

xex(m i=0

where ¢;: pig — py is the embedding of the ith factor if i # 0 and ¢ is the
diagonal embedding. Define

h<F¢§n)<c>)prim:<Fd(n) ), €prim) = @ hF(”)
xexg”)
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PROPOSITION 4.7. — For any X = (x1,--.,Xn) € [}j, we have an iso-
morphism

nE ()% = (g e ALl
In particular, h(Fél)<c>)X ~ A{c)X is invertible for any x € [iq.
Proof. — Let « be a dth root of ¢, put K = k(«), and consider the

K-isomorphism
f: FCE") (c) x Spec K —» Fén) x Spec K
defined by f([ug : uy : -+ : up)) = [ug : @ tug : -+ : @ tu,]. Then f sends

the graph of (£,g) € u? x Gal(K/k) to the graph of (:o(Km(c)(g)™1)E, g).
Hence the projector eX x e! is mapped to

dnde (1o (Km()(9))6,9) = == 3~ X(1o(Km(e) (9))€) (€,0)

£.9
1 " Xi:oKm
:%ZX (HXl (Km(c >(f g)—eXXeH xioKm(e)
£.9

Alpg), the Artin motive

of the regular representation of ug4, we have h(F, CE ))X ~ A, and the second
assertion follows. |

Hence the first assertion follows. Since h(F}

The following proposition will be generalized in Proposition 4.11 below.

ProrosiTION 4.8. — If x € xff), there is an isomorphism

B(ES ()X @ h(F (€)X ~ A1),
In particular, h(FéQ) (c))X is invertible.

Proof. — This can be proved similarly as Proposition 4.5(i). By Lem-

ma 3.9 and Proposition 4.7, we can assume that ¢ = 1. For (m,ms) € uz,

(2)

the intersection numbers on Féz) x F;” are computed as:

2 (d—1)(d—2) (m1=ms=1),

(AT myma)) = d (if only one of my, ma, mlmgl is 1),
0 (otherwise).

Then it follows as before that (e(Xl’XZ),e(K*E)) = —1, and the proposition

follows. |

To study h(Fén) (c)) for general n, we use the inductive structure of
Katsura—Shioda [18]. By Proposition 4.7, it suffices to consider the case
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c =1 Let n > 2 and fy: Fén) X Ff) -— Fénﬂ) be the rational map
defined by

([ug =« -+ : up), [vo : v1 = va))
> [wo : - wpp1] = oo T ULV Tt Up—100 ¢ UpU f ULV

Then fo is compatible with the actions of u7 x p2 and u;”’l via the map

.M 2 n+1,
Vg X Hg — fg

((517 s af’n)v (7717 772)) — (51; s agn—lv §n7717 §n772)' (46)

We have the following commutative diagram:

F(gnz) f Fé”’m/H

1

F x g Jo L plntd),
Here,
e The morphism « is the blow-up along Z = {u,, = vo = 0}. We have

Z > FSY x FO-1) (Juiliegs [ilig) — ([uilfogh Jo o)) (4.7)

n,2)

Since Z is smooth, Fé is also smooth.

e The action of u x p2 on F\") x F{?) respects Z and extends to F\™?.
e The morphism S is the blow-up along Z; U Z5, where Z; are disjoint
smooth closed subschemes of FCE"'H) defined by

Zy={wo =" =wy_1 =0} = Fy(~1);  [wi]’H) > [wps1 2w,

Zy = {wp = wpyy = 0} = F"7Y; w1 — [wi] 'S

e The action of /1! on F\"™™) respects Z;’s and extends to F\™? /H.
e The morphism f is finite and generically Galois with the Galois

group
H :=Kerv={((1,...,1,%), (5_1,5_1)) | € € pa} >~ pia.

Also, f is compatible with the group actions via v.
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PROPOSITION 4.9. —

(i) Let x = (X1, Xn+1) € fig . Then

h(Z )X -~ A<71>Xn Z:le == Xn—-1= XnXn+1 = 1,
Ve 0 otherwise.

h(Fogn_l))(Xl,uanfﬂ Zf Xn = Xn+1 = 17
0 otherwise.

h(ZQ)X ~ {

(H) Let XI = ((le tt Xn)? (Xlla X/Q)) € ﬁs X ﬁz Then

N , h F(n’2) X ; A
h(F(g ’2)/H)X ~ {0( d ) if Xn .X1X2a
otherwise.

WP = (D) 0cexn=1) @ A(=1)X0if X, = Xixh = 1,
“ 1o otherwise.

Proof.

(i). — The stabilizer of Z; (vesp. Zo) in plj ™ is uli ™' x {(¢,€) | ¢ € pa}
(resp. {1}"7! x u2) and x is trivial on this group if and only if x; = -+ =
Xn—1 = XnXn+1 = 1 (resp. Xn = Xn+1 = 1), and then we have respectively
h(Z1)X ~ A(—1)X by Proposition 4.7, and h(Z3)X ~ h(Fén_l))(Xl’“'*X"*l).
Otherwise, h(Z;)X = 0.

(i1). — The first formula follows from Proposition 3.5 (ii) since (uf x
p2)/H ~ ,u"‘”'1 and the pull-back of the characters of ,u”+1 are of the form

((X15 -+ s Xn—1, XnXnt1)s (Xns Xn+1))-
On the other hand, the stabilizer of Z in u7 x p?2 is {1}~ x pg x {(n,n) |
7 € pa}, and x’ is trivial on this subgroup if and only if x,, = 1 and xj x5 = 1.
If the condition is satisfied, we have h(Z)X ~ h(Fé"il))(Xl""’X"*l)®A<—1>Xl1
by Proposition 4.7, and h(Z)X/ = 0 otherwise. Hence the second formula
follows. |

~n—+1

PROPOSITION 4.10. — Let x = (X1,-- - Xn+1) € [y and put

X(n) = (Xlu sy Xn—1; Xan+1)a X(Q) = (Xn7 Xn+1) X(n 2 = (X(n) X(Q))

Then we have an isomorphism

h( "*”) (@h (Z1)X >@h(Z2) 1)

~ (n(EX @ R(EP ) @ n(z " (1),
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Proof. — Compute h(F), o 2)) X" in two ways using Propositions 3.4
and 4.9. g

PROPOSITION 4.11. — Let n > 2, x = (X1,---,Xn) € U5 and write
1=(1,...,1).

(i) h(FS ()t ~ @ Ai).
(ii) If xn—1Xn # 1, then

h(Fé”) (e))X ~ h(Fén—l)<C>)(X1,~~’xn72,xn71xn) ® h(F{gQ))(anl’Xn).
(iii) If xn—1xn =1 and x € .’{fin), then
BFG (D)X o B(FY () 0] g A= 1)%1 (1).
(iv) Ifx & X\ U{1}, then h(F{ (c))x = 0.

In particular, if x € %Eln), there is an isomorphism

h(FS ()X @ h(Ey (€))% ~ A(n — 1), (4.8)
and hence h(FCEn) (c))X is invertible.

Proof. — As before, we can assume that ¢ = 1. The case n = 2 is proved
in [15, Proposition 2.9]. Let n > 2 and we prove the statements for x =
(X1, Xn+1) € ﬁg“ by induction on n. Put x(™ =Y = (x1,...,Xn_1). We
also use the results and notations of Propositions 4.9 and 4.10. It should be
possible to trace the isomorphisms arising from these propositions, but we
avoid it by resorting to the Krull-Schmidt principle, i.e. Proposition 3.7.

(1). — If x =1, then by the induction hypothesis, h(Zl)X ~ A h(ZQ)X ~
Dy ) = A2, and hESX o W(FPXY = (@15 AWD) @
(EB;:O A(z)) Hence (i) follows

From now on, we suppose x # 1.

(2).— 1 xu 1xn # 1, then h(Z1)X = h(Z)X = h(Z)X
follows.

(2-1). — If moreover x ¢ X&"H), then we have either x (") ¢ xg")u{l} or
x?) ¢ f{f)u{l}. Hence h(FénH))X = 0 by (ii) and the induction hypothesis.

(n,2)

=0, and (ii)

(3). — Suppose XnXni1 = 1, so that x(™) ¢ Zf((i").

(3-1). — If xp = Xny1 = 1, then x ¢ %glﬂ) and x(") # 1. We have
h(Z1)X = 0, h(Zo)X =~ (F" )XY ~ n(Z2)x™” | and h(F{)X™ =0 by
the induction hypothesis, hence h(Fé"H))X =0.
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(3-2). — If x,, # 1 (so xnt1 # 1), then h(Z2)X =0, and h(F (2)) x?

by the induction hypothesis.

=0

(3-2-1). — If X(”_l) =1 (sox ¢ %&nﬂ)), then h(Z1)X ~ A(=1)X» and
h(Z)x X" ~ @;_, A(—1)*"(i) by the induction hypothesis, which implies
h(Fyx =

(3-2-2). — Tf x(»=1 £ 1, then h(Z;)X = 0. Hence (iii) follows. Moreover
1fx¢f£("+1 (so n > 3), then x(*~1) QI{" Y and

1 (n,2) -1 (n—1)
B(E % 2 R(ZP (1) = (ESTVXET @ M=1)X (1) = 0
by the induction hypothesis. This finishes the proof of (iv). a

Remark 4.12. — The relations (ii), (iii) are motivic analogues of the func-
tional equations

B(Sla vy Sn—1, 371,) = B(Sh 3 8Sn—2,5n—1 + Sn)B(Sn—h Sn)a
B(Sh...,sn,Q) ) s
S14 -+ 8,_0 sinwS,_1’

B(sla R s 1- snfl) =

which follows by Remark 2.1.

COROLLARY 4.13. — We have
uﬁ%»h@"lm@@@

in Chow(k,Q), where (- )prim denotes the direct factor defined by (4.5).
Proof. — This follows from Proposition 4.11 and Lemma 3.3. |

Remark 4.14. — Let L be the class of the hyperplane section defined by

the embedding ¢: Fé")<c> — P", and define the objects of Chow(x, Q) for
i=0,...,2n—2 by

(FS™ (¢), m;) if i £n— 1,
hi(Fén) (¢)) == (Fén) (¢), €prim) if i =n —1 and n is even,
(Fé”) (¢), Mn—1 + €prim) if i =n—1and n is odd,
where 1
m = S[L X L € CH, 1 (F™(¢) x F{"(c))g

is a projector of h(FCE") (c)). We have (h(Fé") (¢)),m) C h(FCE") () since L
is fixed by the pfj-action. It follows from Proposition 4.11 that h(FCg") () =
@?Zaz hi(Fén) (¢)) is a Chow-Kiinneth decomposition of Fén) (¢) ([13, Defi-
nition 6.1.1]). Note also that, if a Weil cohomology theory H* satisfies the
hard Lefschetz, eprim acts on H*(F, én) (c)) as the projection to the primitive
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part Ker(H"fl(Fén) (c)) & H”“(Fé") (¢))(1)), as is seen from a formula
in [8, Proposition 1.4.7 (i)].

Remark 4.15. — With no difficulty, we can generalize the results in this

subsection to the general diagonal hypersurface ciuf + --- + coul = ud

(c; € k™). We restricted ourselves, however, to the situation as above, which
will be needed in Section 7.2.

5. Proof of Theorem 1.1(i)

In this section we assume k is a finite field of characteristic p and of
order ¢, and d is a positive divisor of ¢ — 1. We will complete the proof of
Theorem 1.1 (i).

5.1. Reduction to the case n =2

We proceed by induction on n. The case n = 1 follows immediately from
Proposition 4.7. The case n = 2 will be proved in the next subsection. Let
n > 3. First assume that x,,_1x» # 1, Then we have by the case n = 2 and
the induction hypothesis

n n—2
®h(Ad)X"' ~ <® h(Ad)X’) ® h(Ag)Xn—1Xr @ h(Fd(2))(Xn—17Xn)
i=1 i=1

~ h(Ad)H::l Xi g h(Flgn_l))(leuv’anQanlen) ® h(F{gQ))(Xn—l’Xn).

By Proposition 4.11 (ii), the formula follows. Secondly, assume that x,—1Xxn =
1. Then we have by the induction hypothesis and Proposition 4.5

(A0 = (A= @ n(Er )00 ) @ A1y ).
i=1

By Proposition 4.11 (iii), the theorem follows.

5.2. Proof of the case n =2

By Propositions 4.1 and 4.6, we can suppose d = ¢ — 1, so that pg = x*.
Here we need DM, (k, A) from Section 3.2 to treat open varieties. We just
write A = A4y, F = Fq(z)l. Let A° C A (resp. F° C F) be the affine
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open subscheme defined in (4.1) (resp. by ug # 0). Write A°F = A° x F,
A°F° = A° x F°. Define a closed subscheme I' C (A4°)% x A°F by

T1+ X2 =T, UoYr = ULy, UoY2 = UY.
Here, the coordinates of the ith factor of (A°)? are given by (x;, ;) subject to
the relation zf — z; = y! ~1. Those of the first and second factors of A°F are
(7,y) and [ug : uy : ug], which are subject to the relations 27 —x = y?~! and
w4 ud™t = ud™! respectively. Let pry: T' — (A°)2 and pry: I' — A°F be
the projections. Put

Ty =pr ((A%)\ 2), Ty =pr, (A°F°),
where

Z = |_| {(xiyyi)i S (AO)Z | xr1 + T = Cl} - (AO)Q.

ack

Note that I'; C T is defined by y # 0. Since ug = 0 implies u1, us # 0, hence
y =0, we have I'y C T's.

Put Gy = (k x %)%, Go = (k x k*) x (k*)? and G = (k x k*)? x Kk*. Let
m1: G — G be the first projection and define wy: G — G2 by
ma((as, mi)i, m) = ((a1 + az,m), (mimil)i)-
Then G acts on (A°)? x A°F via 71 x ma: G — G1 x Go and it respects T,
I'; and I's. Besides, Z is stable under the action of Gy on A2

LEMMA 5.1. —

(i) The singular locus of T is given by y1 = y2 =y = up = 0 (geomet-

rically ¢*(q — 1) points). In particular, T'y and Ty are non-singular.

(i) Ty s finite Galois over (A°)?\ Z with the Galois group k* C G
(embedded as the last component).

(iii) T is finite Galois over A°F° with the Galois group k C G (embedded

id,— id
as the image of Kk u> k? C G).
Proof.
(i). — This follows from a straightforward computation of the Jacobian
matrix.

(ii). — We have (A°)?\ Z = Spec R, where
R = r[s,ys, (21 +22)" — (w1 +22)) ] /(2] — i — y{7)
and T'y = Spec R[y]/((x1 + 22)? — (z1 + x2) — y?~ ). Note that on I'y, z =
x1 + x2 and u;/ug = y;/y. Therefore, I'1 — (A°)?\ Z is the base change
by Spec R — Spec ks, s71] (s = (x1 + x2)? — (z1 + x2)) of Speck[s,s™1,y]/
(s—y? 1) — Spec k[s, s7!], which has the desired property, and the assertion
follows.
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(iii). — We have A°F° = SpecR, R = klz,y,t1,t2]/(x? — 2 — y?~ 1,
t70 47 1) (¢ = wi/ug), and Ty = Spec R[z1]/(z? — 21 — (t1y)771).
Note that on I's, we have y; = t;y, 1o = x — x1 and 21 — 29 = (x — 11)9 —
(x —x1) = y9 ' — (t1y)9" = 327" Therefore, Ty — A°F° is the base
change by Spec R — Spec k[s] (s = (t1y)?7!) of Spec ks, z1]/(z] — 21 —5) —

Spec k[s], which has the desired property, and the assertion follows. (|
PROPOSITION 5.2. — Let ¢ € &\ {1}, x1,x2 € <* and put x =

(1, xi)i, 1) € G = (R x £¥)2 X K*.

(i) If one of x1, X2 is non-trivial, then M(I'1)X ~ M (T'y)X.
(i) If none of X1, X2, X1X2 is trivial, then M(T'1)X ~ M(A)¥x1) @
M(A)W¥x2),
(iii) If x1x2 # 1, then M (T2)X ~ M(A)¥xaix2) @ M(F)Xxux2),

Proof.
(i). — The complement I's \ T'; is given by y = y; = y2 = 0, on which

(k*)3 C G acts trivially and we have M (T3 \I'1)X = 0. The result follows by
Proposition 3.5 ().

(ii). — Define A* C A° by y # 0. Then Z* := Z N (A*)? is smooth over
k. First, we have by Proposition 3.5 (ii) and Lemma 5.1 (ii)
M(T1)X ~ M((A°)2\ 2)Wxa)e = M((A*)2\ Z2*) X,

We will prove M (Z*)(¥xi)i = 0. Then it follows by Proposition 3.5(i) that
M((A*)2\ Z*) X ~ M((A*)2) XD = M(A*)x1) @ M(A*)(ox2),
Since A\ A* is fixed by the x*-action and x; # 1, we have M(A*)(¥Xi) ~

M (A)¥Xi) by Proposition 3.5 (i), and the assertion follows.

Now we prove M (Z*)¥Xi)i = 0. Note that (z; +x2)? = 21 + x is equiv-
alent to y? ' + ™! = 0. Let K be a quadratic extension of x and write X
for X x Spec K. It suffices to prove M (Z})¥xi)i = 0 by Proposition 3.5 (ii).
Choose ¢ € K such that (97! = —1. For (a,m) € k x £*, let f,., be the
K-automorphism of A% defined by fo m(7,y) = (a — z,m(y), and Z; ,, C

(A*)2. be its graph, regarded as a s-scheme. Then, Z} = Uamyensi Zam
and
(¥xi)i
M(Z)W i~ | € M(Z;,,) in DMy, (5, A). (5.1)
(a,m)

By the isomorphism
A = Z5 i (,9) — (2,9), (fam(2,9)));
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we have @, ,,,) M (A% ) ~ M(Z). The action of £ x ™ on A} and that of
G1 on Zj, are compatible under the isomorphism as above and the homo-
morphism

§: kX K — G, (d/,m')— ((d',m'),(=a’,m)).
In particular, the action of Im(J) C Gy preserves the components Z

of Z3. Since ((¢,x:)i) ©d = (1,x1x2) holds in K x %*, the right hand
side of (5.1) is isomorphic to a subobject of B, . M (A% )(bxaxz) | Since

X1X2 # 1, we have M (A% )(1xax2) ~ M(Ag)1X1X2) as above, and this is
trivial by Proposition 4.2 (iii) and (3.5). Tt follows that M (Z} )i =
as desired.

(iii). — We have
M (Dy)X ~ M(AOFO)((w7X1X2),(X1,X2)) — M(Aoymm) ® M(FO)(X17X2)

)

by Proposition 3.5(ii) and Lemma 5.1(iii). Since x* (resp. the diagonal
k* C (k*)?) acts trivially on A\ A° (resp. F'\ F°) and xi1x2 # 1, we
have M(AO)(w7X1X2) ~ M(A)(w,chz) (resp. M(FO)(X17X2) ~ M(F)(XLXZ)) by
Proposition 3.5 (i), and the result follows. O

Proof of Theorem 1.1(i). — We are already reduced to the case n = 2
in Section 5.1. By the proposition, we have

2
®M(A)(w,xl-) ~ M(A)xix2) g M (F)xax2)
i=1

for (x1,x2) € xf_)l. The theorem follows from the full faithfulness of (3.5).
O

6. Frobenius endomorphisms

We continue to assume &« is a finite field of characteristic p and of order g,
and d is a positive divisor of ¢ — 1. The following extends slightly Coleman’s
result [5, Theorem A]. He only considers the Artin—Schreier curves of the
form zP — x = y¢ over &, so that only Gauss sums with additive characters
factoring through the trace Tr, r, are involved.

PROPOSITION 6.1. —

(i) If co € Ay denotes the unique point at infinity, then we have in
CHl(Ad X Ad)

[Fra,] = [ga] + q[Aq X o0] + (2¢ — 1)[o0 X Ag).
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(i) If we put Z9 = {up = 0} C Ff), then we have in CHl(Ff) X Ff))

q—1

_1:(2)
Frpe]=1a"1+

(IF? = 281+ 2128 x F{?]).
Proof.

(i). — Define Z = {y = 0} C A4 so that div(y) = Z—¢-o0. In particular,
we have [Z] = ¢[oo] in CHg(Aq). Let ((z,y), (2’,vy')) be the coordinates of
Ay x Ag, and define a function on Ay x Ay as

.
By abuse of notation, we write the graph of a morphism by the same letter.
We claim that
div(f) = Fra, + Y (m,m"T) = q(Aq x 00) = (¢ — 1)(00 x Ag) — (Z x Au),
meR*
(6.1)
from which the statement follows.

Write D for the left hand side minus the right hand side of (6.1). Using
div(z) = d((0,0) — c0) and div(y) = Z — ¢ - oo, it is straightforward to see
that D is effective. To show D = 0, we consider the map

II: Div(Ag x Ag) == Div(P* x P') — CH, (P! x P') = Z x Z,
where the first map is the push-forward along the self-product 7: Ay x Ag —
Ap x Ay =~ Pt x P! of (4.2). Observe that an effective divisor E on Ag x A4
is trivial if II(E) = (0, 0), since we have a strict inequality II(C) > (0,0) for
any integral curve C on Ag x Ag. On the other hand, we compute

H(Fra,) = (d,qd),  T(g) = (d,d) (g € K X "),
II(Ag x 00) = (d,0), II(P x Ayq) = (0,d) (P € ZU{oo}).
It follows that II(D) = (0, 0). This completes the proof of (i).

(ii). — Put Z = {u; = 0} C F? so that [Z}] = [22] = [2Y] in
CHl(FéQ)) since div(u;) = Z — Z9.

First, let d = ¢ — 1 and let ([u;]?_, [u}]?_,) be the coordinates of Fq(z)l X

F q(%)l. Define a function on Fq(i)l X Fq(i)l as

By a similar argument as (i), one verifies the equality of divisors

)
. (2 2 2 2
div(f) = FrFﬁ)l —J,S_)1 - q(—)l x Z(?—l - Z;—l X Fq(—)l - 23—1 X Fq(—)17

(6.2)

from which the statement for d = ¢ — 1 follows.
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For general d, we look at the image of the both sides of (6.2) under
2)1 X Fq(z)l — Ff) X Ff). For the left hand side
this is the divisor of the norm of f in x(F, 52) x F 52)) (hence vanishes in
CH,4 (Féz) X Ff))), while for the right this is

the push-forward along Fq(

N2 (B =557 ) = N* (P x 29+ 2 x B + 25 x F?),
d
where N := (¢ — 1)/d. We are done. O

COROLLARY 6.2. — We have equalities of endomorphisms of h(Ag)
(resp. h(F(EQ)))

+(2)
9gd * €prim = FrAd *€prim (T@Sp. Jq = €prim = FI'F(z) 'eprim)
d

in Chow(k, Q).

Proof. — Let us first prove (i). We have [Ay x oo] - e¥X) = [00 x Ag] -
e(¥X) = 0 if none of ¢y € K,y € k* is trivial. Hence the statement follows
from the proposition by Lemma 3.3. The proof of (ii) is similar. O

To prove Theorem 1.2, we prepare computations in group rings. Let

n—1

v Qluy x pgl — Qluit'l,  pr Qluf x pdl — Qlug " X ]

be the ring homomorphisms induced respectively by (4.6) and
p((fla s 7§’n)7 (nla 772)) = ((517 e 7£n71)a 771/772)‘

LEMMA 6.3. — For x = (X1,--+,Xn+1) € %((Znﬂ), let x™), x be as in
Proposition 4.10, and put X"V = (x1,..., Xn_1)-

(2))

(i) If XnXn+1 ?é 1, then Z/(jt(in)ex(n) X jc(lQ)eX ja(ln+1)€x~

(ii) There exists an element j((in’Q) € Q[un x p2] independent of x, such
that y(jl(i"’Q)) = jt(inﬂ) and

P(jc(lmZ)) (ex(%l) X ex") = Xn ((—1)%1>Q<(j§n_l)ex(n71)> X eX">
unless x"~1 = 1.

Proof.

(i). — Put, for c € &, st = {(m;); € (k%)™ | 21, m; = ¢}, so that

e =t (),

(m;);€S<™
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where ](" )<c> is from (2.7). Then, v induces a bijection an) X Sf) —

Sin—i—l) \ (Sin—l) % S(()Q))- By assumption, we have
g—1 g-1
Z Xn (mnd )Xn+1 (mnle)

(mp,mng1)€SE?
1 —1
= Xn<_1)qT Z XnXn+1 (qu) =0.

mer*
g—1 n
Hence Z(mi)iesi"‘”xs(‘f) x((m;*);) = 0. One verifies easily y(ex( )
ex(z)) = eX. Now it follows
V(j((in)ex(") » jc(zz)ex<2)) ( [(n) o (2))
g—1

ol AR SR COS N bt
(mi)ies ™ x5
(ii). — If we put
[(n2) _ (_qyn a T T
Jg 7 =(-1) Z my? ,my ) (me T my ) ),
(mi)ies{

then zz(j((i"’m) = j((inﬂ). On the other hand,

oG = ST TV s) x h(),

s,ter,s+t=1

oy [l Dl ite=0,
h(t) == Y [(k/1)7F ]:{ PETT
(k,l)esz) Zme-c*[ ] [( ) d ] lft 7é 0
Here we write [(] € Q[uq] for the image of ¢ € ug4. Since x, # 1,
> [ = L S e = L S e =0,
mer™ CELG ZE NG

Since x("~1 # 1, we have
SR S R

SEk (m;)i€(r*)n—1

Therefore, only the term with (s,¢) = (1,0) remains and
Pl o) = G g (<) e

T N (RiE

- 123 —



Noriyuki Otsubo and Takao Yamazaki

Proof of Theorem 1.2. — First, we prove the case ¢ = 1 by induction on
n. The case n = 2 follows from Corollary 6.2. It suffices to prove j&"H) -eX =
FrF;nH) -eX foreach x = (X1, -, Xn+1) € .’{gnﬂ) (n > 2). First, assume that

XnXn+1 # 1. Then by Proposition 4.11 (ii), we have an isomorphism
n (n) 2 (2) ~ n+1
WEGXT @ h(FZ)XT = h(FY)x

Since any morphism in Chow(k, A) commutes with the Frobenius endomor-
phisms, the assertion follows by the induction hypothesis and Lemma 6.3 (i).
Secondly, assume that ypXn+1 = 1 (so x®~Y # 1). Then by Proposi-
tion 4.11 (iii), we have an isomorphism

(ES D) @ A1y (1) 2 B(EST)X,

Here we used the identification Z ~ Fénil) X F;l) (—1) given by (4.7), under
which the actions of x} x u2 and //571 X g are compatible via the homomor-
phism p. Since the Frobenius acts on A(—1)X(1) as the multiplication by
XnoKm(—1)q by definition, the assertion follows by the induction hypothesis
and Lemma 6.3 (ii).

The general case is reduced to the previous case using Proposition 4.7.
Note that the Frobenius acts on A<C>Hi:1 Xi as the multiplication by

ﬁX*meFr» =[La (™) = x (e,

=1
and that jt(in) (c) = (c%, e ,cq;dl)j((in). Hence the proof of Theorem 1.2 is
complete. 0

The following corollary follows immediately by Lemma 3.3.
COROLLARY 6.4. — For any ¢ € k*, we have

ey e = -
Ja <C> €prim FrF(E")(c) €prim

in Bndchow(x.o) (h(Fy" (c)).
COROLLARY 6.5. — Under the isomorphism of Theorem 1.1 (i), we have
for (x1,..-,Xn) € x;n)

®(gd.e(w,xi)) — (Qd.e(w " xi>> ® (J}(in) .e(lewxn))

in End(h(Aq)®") = End(h(Ag) © h(F™)).

Proof. — Since the isomorphism of Theorem 1.1(i) is compatible with
the Frobenius endomorphisms, the statement follows by Theorem 1.2 and
Corollary 6.2. O
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Remark 6.6. — Proposition 6.1(i) shows that the Frobenius acts on
h(Ad)prim as gd, and hence on h(A4)¥X) by the multiplication by g(w, x)
if ¢ € K and x € [ig are non-trivial. From this fact, together with Proposi-
tion 4.5, we can deduce (2.2) and (2.3). Similarly, we can deduce (2.5), (2.6),

and for (x1,...,Xn) € ft(in)

G(X15 - s Xne2)Xn—1((—=1) T )q if Xn—1xn =1
(6.3)

. j(Xh sy Xn—2s Xn—lxn)j(Xn—lv Xn) if Xn—1Xn # 1,
](le 7Xn) =

from Corollary 6.5, (4.8), and Proposition 4.11 (ii), (iii), respectively.

The invertibility (Proposition 4.11) implies that, for any Weil cohomology
theory H whose coefficient field contains pg, the x-eigenspace H (Flgn))x

for x € %El") is one-dimensional and the Frobenius acts on this space as
the multiplication by j(x) by Theorem 1.2. Classically, this fact is proved
by point counting and the Grothendieck—Lefschetz trace formula. We have
given a purely motivic proof that avoids the use of Weil cohomology. A
similar remark applies to H(Ag)®X).

Remark 6.7. — If 1,1’ € K are nontrivial, there exists a unique ¢ € x*
such that ¢’ (z) = ¢(cx) for any x € k. This follows from the non-degeneracy
of the paring k? — Fp; (¢, ) — Tr,/r, (cz). One shows easily

g, x) = X(c%l)g(% X)- (6.4)

This identity is interpreted motivically as follows. Let A4{c) be defined by
2?7 — 2 = cy®. Let & x £* act on this as before and h(A4(c))¥X) be the
associated motive (see Section 4.1). Then the isomorphism A; — Ag{c);
(z,y) — (cx,y) induces an isomorphism

h(Ag) W) ~ h(Ag(c)) @)

of motives. The Gauss sum element g4 acting on h(Ag) corresponds to the

element
- Z (cm,m%l> =— Z (m, (cflm)%v

mex* mekx*

acting on h(A4(c)), hence (6.4) follows by the argument in Remark 6.6.

7. Davenport—Hasse relations
7.1. Base-change formula

Let k be a finite field of characteristic p and of order g and K be a degree
r extension of k. To avoid the confusion, we write the Gauss and Jacobi sums
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over k as gx (¥, x) and j.(x1,-- ., Xn), and similarly over K. For ¢ € &, let

Vi =voTrg, € K

be the lifted character. For ¢ € K, ¢ # 1 and x,Xx1,.--,Xn € Ud,
(X1,---5Xn) # (1,...,1), we have the classical Davenport—Hasse base-change
formulas [6]

9k (Wi, x) = 9x(¥:X)" (7.1)
jK(Xla'”aXn) :jK(X17"'aXn)T' (72)

The latter follows from the former by (2.5). See [23] for an elementary proof
and [7, Sommes trig., 4.12] for an l-adic sheaf-theoretic proof.

We give their motivic proofs. Let A\: Spec K — Speck be the structure
morphism. Then A induces a functor

A*: Chow(k,A) — Chow(K,A)
such that A\*(h(X)) = h(Xk), where X := X Xgpecx Spec K.
Define g4 i/, € End(h(Aqg,x)) by the element
- Z (TrK/n(m)vmq*(;l) € Q[H X Md]a
meK*
and for c € K*, jét%(c) € End(h(FéfZ(c}) by the element (as before)
a" -1 a"=1
(=)t Z <m1 T ,mp ) € Q[ug]-

n
mi,...,my EK*, E iy Mi=C

Let eprim € End(h(Aq k)) (resp. eprim € End(h(F(EZ)((c))) be the projector
onto the primitive part with respect to the x x pg-action (resp. pfj-action).

THEOREM 7.1. — We have equalities of endomorphisms of h(Aq4 k)
(resp. h(Ey"2(c)))
A*(gd)r * €prim = 9d,K/r * €prim (7’63]7- A* (jc({n) <C>)T * €prim = ]EZ?( <C> ' eprim)
in Chow(K,Q).

Proof. — Let A’ be the Artin-Schreier curve over K of degree ¢" with
the affine equation wl —u=v% Let f: A — Ag k be the morphism defined
by x = Z:;& ud', y = v. It is finite of degree ¢"~1. Let

q"—1
g,:_ Z (mvm d )a 6;grim eEndChow(K,Q)(}1(14/))
meK*

be the Gauss sum element and the projector to the primitive part (with
respect to the K x pg4-action), respectively. Since f is compatible with the
group actions via the homomorphism Trg,, Xid: K X pg — £ X pig, we
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have fu(g') = gd7K/H. Since TrK/,,i is a surjective homomorphism, the map
Q[K] — Q[x] maps ek to el and we have f#( brim) = €prim- We have also
f4(Frar) =Fra, .. Since ¢’ - e}, 5, = Frar e, by Corollary 6.2, we obtain
9d,K/r * Cprim = FTA, 1 *€prim- On the other hand, we have

A*(gd)r * €prim = A*(g:l : eprim) = )\*(Frzd 'eprim) = FI’AdYK *€prim

by Corollary 6.2. Note that the action of Q[k X ug], in particular of epyim,
is compatible with A\* and commute with the Frobenius. Hence the first
assertion is proved. The second assertion follows similarly (and more easily)
by Corollary 6.4. O

We can recover the classical formulas (7.1), (7.2) from the theorem by
multiplying the both sides by e(*X) (resp. by e(X1:+Xn)) together with the

fact that h(Ag_1,x)@<X) = X*(A(Ag-1)®X)) (resp. h(F\") ;o )0xn) =
)\*(h(Fén))(Xl"“’X”))) is invertible.

7.2. Multiplication formula

Recall the multiplication formula for the gamma function

L(ns) _ e T D+ 2)
I'(n) g L1+ ) (73)

Its finite analogue is due to Davenport—Hasse [6]. Let x be as in the preceding
subsection and suppose n | d | ¢ — 1. Then we have

g(,a") = H Stakal w,ax (7.4)

for any « € [ig. The statement is evident if o™ = 1, so we assume a™ # 1.
Then it is equivalent by (2.5) to

a™(n)jla,...,a) = H Jlay x). (7.5)
———
n times X"=1,x#1

Its first elementary proof which does not use Stickelberger’s theorem on
the prime decomposition of Gauss sums (see (8.5) below) or cohomology was
given recently in [16, Appendix A]. It applies a point counting argument
based on the geometric construction of Terasoma [21] in his cohomological
proof.

We prove the following motivic analogue, which includes Theorem 1.1 (ii).
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THEOREM 7.2. — Let k be a field and assume that d is a positive integer
such that pig := {m € k* | m% = 1} has d elements and Q((s) C A. For any
n | d and o € fig such that o™ # 1, there is an isomorphism in Chow(k, A)

RES ()@~ Q) h(FD) @, (7.6)
xeﬁd,x"=1,x#1

Proof. — We may assume £ is a finite field or £ = Q(¢y). (In particular,
k is perfect.) We use the following notations after [16, Appendix Al:

e S C A" is a hyperplane defined by s1 +---+ s, =mn, s1--- s, # 0.

e T — S is a covering defined by t? = s, ---s,. It is Galois with the
natural identification Gal(T'/S) = 4.

e X C A" is a hypersurface defined by t¢ + .-+t =n_ t;---t, #0.
There is a morphism

X —T;, si=td t=t;--t,.
Then X is Galois over S with the natural identification Gal(X/S) =
p, under which Gal(X/S) — Gal(T/S) sends (&1,...,&,) to

H?:l gz
e C is an affine curve defined by 2? +y™ = 1, z # 0. There is a

morphism
n—1
Ot =Ty si= [ Cyy), t=wne e,
Jj=1

where (x;,y;) is the coordinate of the jth component of Cn1, and
¢ € K is a fixed primitive nth root of unity. Then C™~! is generically
Galois over S with the natural identification Gal(C™~!/S) = /"' x
Sn—1, under which Gal(C"~!/8) — Gal(T/S) sends

(&1 &n),0) to [T &
First, X is an open subscheme of Fé") (n) and we have isomorphisms
M(T)a ~ M(X)(a,...,a) ~ M(chn) <n>)(a,...,a)
by Proposition 3.5. For the latter, note that the diagonal in p) acts trivially

on Fén) (ny\ X but (,...,a) is non-trivial on the diagonal since a™ # 1. In
particular, M (T)® is invertible by Proposition 4.11 (iv).

On the other hand, if g € qu X Sp,—1 denotes the pull-back of a, then
M(T)* ~ M(C"™1)?
by Proposition 3.5 (ii). The restriction of 8 to the first (resp. the second)

component is (a,...,«) (resp. 1), and the corresponding projectors elen-a)
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and el satisfy
B = el ol — plo(ana) A[NZ” X Sy 1].

Hence e! restricts to an idempotent endomorphism of M := M (C™~ 1)),
Since C' admits an action of pg X pi,, we can further decompose M with re-
spect to the u”~l-action. Let v1,...,v,_1 € [i, \ {1} be distinct characters
(such a choice is unique up to permutations), and e be the corresponding
projector. One easily verifies that oe” = e’ ¢ for any o € S,,_1, where S,,_1

acts on 11" ~! as permutations. Hence

v v 1 v ov 1 v o
€ 616 sze € U:me m EHd(M)

Note that e”e’ = 0 unless ¢ = 1 by the assumption on v. If we put
L = MY and N = M! ~ M(T)%, then the composite L —+ N — L of the
natural morphisms (via M) is the multiplication by 1/(n — 1)!, hence is an
isomorphism. Since N is invertible, it follows that L ~ N once we show
that L is also invertible. We have by definition L = ®?;11 M(C)(@vi) If
Cc Féz) denotes the open curve defined by ugu; # 0, C' is the quotient of
C by 1 X pig/m C ufl, and we have isomorphisms by Propositions 3.5

M(C)(@¥) ~e M(C)(@Xi) ~ M(Fd@))(aaXi)’
where x; is the pull-back of v; to pg. For the latter isomorphism, note that the
diagonal in p2 (resp. pq x 1) acts trivially on {ug = 0} (resp. {u; = 0}) and
ay; (resp. @) is non-trivial on the subgroup. Since M(Ff))(a’xl') is invertible
by Proposition 4.11, L is also invertible and we have ®?:_11 M(Ff))(a’xl') o~

motives. O

COROLLARY 7.3. — Suppose further that k is a finite field. Under the

isomorphism (7.6), the endomorphism j((i") (n) on the left hand side corre-

sponds to ®x":1 A1 j((f) on the right hand side.

Proof. — This follows by comparing the Frobenius endomorphisms using
Theorem 1.2. O

Remark 7.4. — One can deduce (1.1) and (1.2) from Coleman’s theo-
rem (1.3) and Theorems 1.1, 1.2 as follows. Since both sides of Theorem 1.1
(i) are invertible, their endomorphism rings are canonically isomorphic to
A. The Frobenius endomorphisms on both sides, regarded as elements of A,
yield the same element because the Frobenius endomorphism commutes with
any morphism (see (3.4)). We conclude (1.1) by observing that the Frobenius
endomorphisms agree with the left and right hand sides of (1.1) by (1.3) and
Theorem 1.2, respectively.
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Similarly, one recovers (1.2) (which is (7.5)) from Corollary 7.3 and the
invertibility of the motives, noting

j(gn) (n) celene) — a(n)j(a,. .., «) ~e(a""’a), jL(iQ) cele) — Jla,x)- elex)

Remark 7.5. — If kK = C, the complex period of an invertible motive in
Chow(C,Q({g)) is an element of C*/Q((q)*, defined by the de Rham-Betti
comparison isomorphism. Since the periods of Fermat motives are special
values of the beta function, the isomorphism (7.6) implies (7.3) for any s €

d=YZ, up to Q(¢y)*.

8. Weil numbers

In this section, we start with the cyclotomic field F' = Q({y) for an integer
d > 3. We have an isomorphism

(Z)dZ)* ~ G := Gal(F/Q); h+—> oy,

where o, is defined by 0},((s) = (. Note that o_; agrees with the complex
conjugation (for any embedding F' < C). Let u(F') denote the group of all
the roots of unity in F'. Note that |u(F')| = d or 2d according to the parity
of d. Let v be a prime of F over a rational prime p t d, £ be the residue
field at v and put ¢ = p/ = |k|. Let D = (0,) C G be the decomposition
subgroup of v. Then G/D is bijective to the set of primes of F over p by
o — ov. We have |D| = f and |G/D| = ¢(d)/f, where ¢ denotes Euler’s
totient function.

Let xq: k* — F* be the dth power residue character modulo v, i.e.
qg—1
Xd(x mod v) = z"@ (mod v) for any x € F* such that v(xz) = 0. For any
a=(ay,...,ay) € (Z/dZ)™ (n = 2), put

ja@) = j(xg', - xg") € F*.

Define
A((in) ={a=(a1,...,an) € (Z/dZ)" | ag,ay,...,an # 0}
where ag == — 32" a;. If a € A, then jy(a) is a g-Weil number of weight

n —1 by (2.6). Let
W =W, (F) C F*
be the subgroup of g-Weil numbers and J C W be the subgroup generated
by {ja(a) |a € A&n),n > 2}. Since opja(a) = ja(ha), J is G-stable as well
as W. In fact, J is generated by {js(a) |a € A&z)} U {(71)%} by (6.3).
Define the group homomorphism
o: W — Z[G/D]
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by ®(a)v = () (the principal divisor of a). (Note that we have v'(a) = 0
for any finite place v’ { p and « € W.) Then for a of weight w, we have

Ba)+ 0 1®B(a) = B(a- 0 1(a) = B(q") = wfT,  (81)
where T':= 3 ./ p 7 is the trace element. Kronecker’s theorem [10] shows
Ker ® = u(F). (8.2)

In particular, W is a finitely generated abelian group whose torsion part is
precisely p(F) (see (8.7) below for its rank). Since W and J are G-stable
and @ is G-equivariant, ®(W) and ®(J) are ideals of Z[G/D].

The case when f is even is easy.

PROPOSITION 8.1. — If f is even, then ®(W) = ®(J) =Z- LT, and W
is generated by p(F) and \/q = pl/2.

Proof. — Since o_; = (0,)//% € D, we have ®(a) = %fT forany a € W
of weight w by (8.1). Since we assumed d > 3, there exists a Jacobi sum of
weight 1 (e.g. jq(1,1)), and the proposition follows. a

For any a € Z/dZ, define the Stickelberger element by
ha
bulc) =h€(ZZMZ)*{—d}ah1 e Qldl,
where {2} denotes the fractional part, i.e. x = {a} + |2]|. Note that
ahﬁd(a) = Gd(ha)
Define the trace element as T = > wecc 0 € Z[G]. Then

04(a) +04(—a) =T if a #0. (8.3)

If w: Z|G] — Z|G/D] denotes the natural surjection, then #(7') = fT'. For
a=(ay,...,an) € Afin), put

O4(a) = 0q(ar) + -+ 04(an) — Oalar + -+ ap)
= 0q(ao) + 0alar) + - - + a(an) — T.
Then 64(a) € Z[G], and we have by (8.3)
fa(a) +04(—a) = (n — 1)T. (8.4)

Stickelberger’s theorem states that (see, e.g. [4, Theorem 11.2.3])

(ja(a)) = ba(a)v (ac ALY). (8.5)
In other words, ®(jq(a)) = m(64(a)). Therefore, ®(J) is generated as a Z-
module by {64(a) |a € AEIQ)}.
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Let S C Z[G] be the Z-module generated by {64(a) | a € A{(f)}. Since
onbq(a) = 04(ha), S is an ideal of Z[G] and is called the Stickelberger ideal.
By (8.5), we have 7(S) = ®(J). For any G-module M, write M* = {m € M |
o_1m = £m}. By Iwasawa and Sinnott [19], S~ is of finite index in Z[G]~.
More precisely, let r be the number of prime factors of d, put s =
max{0,7—2}, and let ;] be the minus part of the class number of F' = Q((4).
Then

mq = (Z|G]” : S7) =2"h;. (8.6)
As a corollary, we obtain the following.

PROPOSITION 8.2. — For any o € W, there exists ( € pu(F) such that
Ca®ma € J. Moreover, J is of finite index in W and we have

L+ g0(d) if f is odd,

1 if f is even. (8.7)

rank J = rank W = {

Proof. — It is a consequence of Proposition 8.1 if f is even. Suppose that
f is odd. Then we have 0_1 ¢ D and hence the right vertical map in the
commutative diagram

S—C—— Z[G]~

L]

®(J)"——Z|G/D]~

is surjective. By (8.6), we have (Z[|G/D]~ : ®(J)~) | mg. On the other hand,
we have ®(J)T = ®(W)+t = Z - fT. For any o € W of weight w, we have
by (8.1)
20(a) = (B(a) +0_1B(a)) + (B(a) — 0_18(a))
=wfT + (P(a) — o_1P(a)).

Since fT = ®(q) € ®(J)* and mg(®(a) — o_1P(x)) € ®(J) ™, the assertion
follows by (8.2) and rank Z[G/D]~ = ¢(d)/(2f). O

We have an obvious inequality (W : J) < |u(F)| - 278 W ., Tt might
be an interesting problem to find a better upper bound for (W : J). To
understand its motivic meaning, we consider the group homomorphism

§t: Pic(Chow(k, F)) — W

which associates to an invertible motive M its Frobenius eigenvalue in A ~
End(M). As a result of Theorem 1.2 and Proposition 8.2, we obtain the
following.
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COROLLARY 8.3. — For any a € W, there exist Fermat motives M; =
h(FéQ))Xi (i=1,....8, x; € .’{((12)), an Artin motive h(Spec K)X for a char-
acter x: Gal(K/k) — u(F) of a finite extension K/k, and an integer r,
such that

a?md = Fr <® M; ® h(Spec K)X(r)> .

=1

If we assume the conjectures of Beilinson and Tate as in the introduc-
tion, then Ft should be injective. It follows that any multiplicative relation
among Weil numbers in the image of §t should lift to a relation of invertible
motives. In this paper, we have exhibited such lifts for basic relations in J
unconditionally.

COROLLARY 8.4. — Assume that Ft isinjective. Then Pic(Chow(k, F'))q
is isomorphic to WQ and is generated as a Q-vector space by the classes of

Fermat motives h( ) (x € %(2))

Consider the normalization (a € Z/dZ, a # 0)

bula) = ba(a) — 5T € QUG
First, we have by (8.3)
0a(~a) = ~0a(a), (88)
i.e. 4(a) € Q[G]~. Since ®(J)g = Q[G]™ by (8.6), Q[G]™ is generated by
{04(a) | a € Z/dZ, a # 0}. Secondly, for any positive divisor n of d and
a € Z/dZ such that na # 0, we have

f4(na) Zed (a + z) (8.9)

(This is easy to prove and is also a consequence of (7.5) and (8.5).)

PROPOSITION 8.5. — The set

{éd(a)
is a Q-basis of Q[G]~

Proof. — We already proved that Q[G]~ is generated by 64(a) if a ranges
over Z/dZ \ {0}. One shows by induction using (8.8) and (8.9) that the set
in the proposition already generates Q[G] ™. It is a basis since dim Q[G]~ =

o(d)/2. |
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The last proposition shows that the reflection formula (8.8) and the multi-
plication formula (8.9) generate all the Q-linear relations among 64(a) (a €

Al(jn), n > 2). Hence the corresponding relations (2.6) and (7.5) together
with (6.3) generate all the relations among j4(a) up to torsion. Assuming the
conjectures of Beilinson and Tate, it follows that (4.8) and Theorem 1.1 (ii)
(under Proposition 4.11 (ii), (iii)) should generate all the relations among the
Fermat motives up to torsion (i.e. up to powers and Artin motives).

On the other hand, finding all the integral relations appears to be subtler.
Indeed, it was first observed by Yamamoto [24] that the relations among
the Gauss sums are not exhausted by the reflection formula (2.2) and the
multiplication formula (7.4), disproving Hasse’s conjecture. Its counterpart
for Jacobi sums can be found in [14]. We leave it as a future problem to
study the corresponding relations among motives.
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