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Classification of torus fibrations over S?
up to fibre sum stabilisation *)
YiBo Zuang ()
ABSTRACT. — We study torus fibrations over the 2-sphere and Hurwitz equiva-

lence of their monodromies. We show that, if two torus fibrations over S2 have the
same type of singularities, then their global monodromies are Hurwitz equivalent
after performing direct sums with a certain torus Lefschetz fibration. The additional
torus Lefschetz fibration is universal when the type of singularities is “simple”.

RESUME. — Nous étudions les fibrations du tore sur la 2-spheére et I’équivalence de
Hurwitz de leurs monodromies. Nous démontrons que, si deux fibrations du tore sur
S? ont le méme type de singularités, alors leurs monodromies globales sont équiva-
lentes au sens de Hurwitz aprés avoir effectué des sommes directes avec une certaine
fibration de Lefschetz du tore. Cette fibration de Lefschetz du tore supplémentaire
est universelle lorsque le type de singularités est « simple ».

1. Introduction

A generalised torus fibration over the 2-sphere is a continuous map f :
M* — S? from a closed oriented 4-manifold M* to the 2-sphere S?2, for
which there exists some finite set B C 82, called the branch set, so that
the restriction of f to M*\ f~1(B) is a locally trivial fibration over S?\ B
with fibre a torus. In this paper, we will study torus fibrations over S? and
provide an algebraic classification of their monodromies.
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Given a torus fibration f : M* — S?, we suppose that the branch set
for fis B = {p1,...,pn} and choose a base point p € S?\ B. As in [27,
p. 176], [18] and [12], the locally trivial fibration f: M*\ f~1(B) — S?\ B
determines a monodromy homomorphism

B, m(S?\ B,p) — Mod(T?),

by identifying f~'(p) with T2, where Mod(T?) = mo Homeo™ (T?) is the
mapping class group of torus and hence isomorphic to SL(2,Z).

Choose homotopy classes of loops 71, ...,v, C S? based at p such that
each loop 7y; goes around some branch point p; exactly once clockwise and the
fundamental group 71 (S? \ B, p) is generated by 71, ..., v, with the relation
Y1 ...7n = 1. Therefore, the group m(S? \ B, p) is isomorphic to F,_1. The
monodromy ¢; = @5 ,(v;) € SL(2,Z) is called the fibre monodromy around
the singular fibre f~!(p;). Note that ¢ ... ¢, = 1.

The n-tuple (¢1,...,¢,) is called a global monodromy of f and the ho-
momorphism @y, is uniquely determined by p, v1,...,v, and (¢1,...,dn).

However, a different choice of the base point p amounts to changing
(¢1,...,¢n) by a diagonal (or simultaneous) conjugacy. Also a different
choice of homotopy classes of 71,...,7, may change (¢1,...,¢,) by a se-
quence of elementary transformations (or Hurwitz moves; see Section 2.1 for
more details):

— R; —
(s bitig10; iy ) — (o i bigts ) = (oo Big1, G Diig, - )
forl1<i<n—1.
We will denote a multi-set by [x1, 2, z2, 23,3, 23,...] and denote the

conjugacy class of an element ¢ in a group G by Clg(g) (or Cl(g) if we do
not specify G).

DEFINITION. — Let f : M* — S? be a torus fibration over S? with n
branch points and (¢1,-..,¢n) be a global monodromy of f. The type (of
singularities) of f is defined to be the multi-set

O(f) = [ClsL2,2)(¢1), - - -, Clsr(2,2) (én)]

which does not depend on the choice of its global monodromy.

There is a left action of Aut(F,,) on Hom(F,,, SL(2,Z)) by precomposition
with the inverse. Suppose that {ay, a9, ..., a,} is a generating set of F,,.
Artin’s representation embeds the braid group B,, on n strands as a subgroup
of Aut(F,). The subset Hom(F,, /(o . .. ayn), SL(2,2Z)) of Hom(F,,, SL(2,Z))
is B,,-invariant and identified with Hom(71(S2\ B), SL(2,Z)), which inherits
the action of B,,. We then consider the orbit space

M, = B\ Hom(F,_,,SL(2,Z))/ SL(2, Z)
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where the action of SL(2,7Z) on the right is by conjugation. Note that the
B,, action induces an action of the sphere braid group B,,(5%) on

Hom(F,,_1,SL(2,Z))/ SL(2, Z),

coming from the natural mapping class group action on this set. A torus
fibration with n branch points determines an element in M, and therefore
the study of torus fibrations by means of their monodromy addresses two
independent questions.

QUESTION 1.1. — How does an orbit in M, limit the corresponding
torus fibration?

QUESTION 1.2. — How to characterise or classify the elements in M, ?

A torus Lefschetz fibration f : M* — S? is the simplest torus fibration,
which is a smooth torus fibration and contains only one singularity in each
singular fibre, each singularity admitting complex local coordinates (z1, 22)
compatible with the orientation of M* such that the fibration is locally given
by f(z1,22) = 22 + 22. The type of singularities then depends only on the
number of branch points, every ¢; being a positive Dehn twist around some
simple loop.

For torus Lefschetz fibrations, answers to both questions are given by
Moishezon and Livné. On the one hand, an orbit in M, if it does cor-
respond to a torus Lefschetz fibration, determines the unique one up to
fibre-preserving diffeomorphism (see [27, Part II, Lemma 7a]). On the other
hand, for torus Lefschetz fibrations with the same number of branch points,
the action of B,, on the set of their monodromy homomorphisms is transi-
tive (see [27, Part II, Lemma 8]). This result was generalized by Orevkov
(see [29]).

If one relaxes the requirement of the orientation for Lefschetz fibrations,
the fibrations are achiral Lefschetz fibrations. We say that the orientation
is still preserved for a type I} singular fibre but not for a type I; singular
fibre. The global monodromy was first investigated by Matsumoto in [25]
(see also [15, Section 8.4]). An inspirational result in his study introduces
a representative of the global monodromy using elementary transformations
which is, however, not unique. In particular, one cannot readily classify those
achiral Lefschetz fibrations (or their corresponding elements in M,,) whose
singular fibres of type I;" and I occur in pairs.

In general, it is extremely difficult to classify the orbits in M,,. An alge-
braic understanding of M,, is related the study of Wiegold (see [24]) who
conjectured that

|Out(F,,—1)\ Epi(F,,—1, G)/ Aut(G)| = 1
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for any finite simple group G and n > 4, where Epi(F,_;, G) denotes the set
of epimorphisms F,,_; — G. For the study of its extension to surface groups,
we refer to [13, Theorem 1.4].

As in [1, 6, 31], we discuss the stable equivalence of algebraic objects
by relating them to the direct sum construction. When the 2-sphere is re-
placed by an arbitrary surface, another notion of stabilisation corresponds
to pinching a hole (see [7, 14]). For more interesting problems on the orbit
space M, and its variations, not related to the concept of stabilisation, we
refer to [2, 3.

Global monodromies with stabilisation

Suppose that fi : M; — S? and fy : My — S? are two torus fibrations.
Choosing a pair of 2-disks D;, D> C S? that do not contain any branch points
of fi, fa respectively, gluing M; \ f;*(D1) and My \ f; ' (D5) along some ori-
entation reversing fibrewise homeomorphism 3 : df; H(D1) — dfy *(Dz), we
obtain a fibre-connected sum M; &3 Ms between M; and Msy. The fibration
f of My &g My piecing together fi and fs is again a torus fibration over S2,
called a direct sum between f; and fo and written as f = f; @& f> if we do not
specify 8. In [1] Auroux introduced the direct sum between a fibration and
a fixed standard fibration, called stabilisation. He then proceeded to give a

classification of genus g > 2 Lefschetz fibrations, up to stabilisation.
DEFINITION. — A conjugacy class of SL(2,Z) which either corresponds
to elements of trace 0,+1,+3 or else contains [ 1], [1 ’1], [_01 _11] or

0 1
[Bl :H is called simple.

The following result is a rather general extension of Auroux’s stable clas-
sification in genus 1 but for arbitrary singularities:

THEOREM A. — Let O be a multi-set of conjugacy classes of SL(2,7Z).
There exists a torus Lefschetz fibration f& over S* depending only on the

non-simple conjugacy classes occurring in O that has the following property:
fori=1,2,

e let f; be a torus fibration over S* with O(f;) = O;
e let f; be a direct sum between f; and f5;

o let (ggi), .. ,gf(f)) be a global monodromy of ;.
Then (ggl), .. ,g,(})) and (gf), . ,97(12)) are Hurwitz equivalent i.e. one can
transform (ggl), - ,gg)) into (g?), - 7g,(f)) using a finite sequence of ele-

mentary transformations.
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Classification of torus fibrations over S2 up to fibre sum stabilisation

In Theorem A, the choices of direct sums fl, f;, base points and loops for
the global monodromies are far from unique. As such, we adopt the following
convention: we will use the double plural to highlight the unlimited objects,
say all global monodromies of all direct sums.

Theorem A shows that, in particular, given a torus fibration f over 52,
all global monodromies of all direct sums f & f(%( f) are pairwise Hurwitz

equivalent. The additional fibration f§ in Theorem A can be replaced by a
torus fibration with fewer branch points but which is not a Lefschetz fibration
(see Theorem 2.12 for a more detailed reformulation). In both cases, the
number of branch points in the additional fibration depends on the number
of non-simple elements in O. In particular, we have the following results:

THEOREM B. — There exists a torus Lefschetz fibration ff over S? with
12 branch points such that, for any multi-set O of simple conjugacy classes
of SL(2,7Z) corresponding to elements of trace 0,41 or £2, all global mon-
odromies of all direct sums f @ fiy with f a torus fibration over S? satisfying
O(f) = O are pairwise Hurwitz equivalent.

THEOREM C. — There exists a torus Lefschetz fibration f& over S* with
60 branch points such that, for any multi-set O of simple conjugacy classes
of SL(2,7Z), all global monodromies of all direct sums f & f& with f a torus
fibration over S? satisfying O(f) = O are pairwise Hurwitz equivalent.

In Theorem B each of —2, —1,0,1 and 2 might occur as the trace of some
element in O. We emphasise that the “or” is always inclusive in this paper.
The fibration ff in Theorem B can be replaced by a non-Lefschetz fibration
with only 6 branch points and the fibration f& in Theorem C can be replaced
by a fibration with only 19 branch points.

The stated Hurwitz equivalence in Theorem A, Theorem B and Theo-
rem C is obtained with a specific normal form (see Theorem 2.12) which
satisfies a remarkable property, called swappability (see Section 3.1). The
normal form is computable: one can compute the finite sequence of elemen-
tary transformations with algorithms (see Appendix A).

The Hurwitz equivalence fails without stabilisation or with an unrea-
sonable stabilisation, see Section 5.1. The following theorem compares the
(unstable) Hurwitz equivalence and the stable equivalence between global
monodromies of torus achiral Lefschetz fibrations.

THEOREM D. — For torus achiral Lefshetz fibrations with p singular fi-
bres of type If' and q singular fibres of type I, we have the following state-
ments:

(i) After performing direct sums with fk, all global monodromies are
Hurwitz equivalent.
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(ii) If p # q, then all global monodromies are Hurwitz equivalent.

(iii) If p = q > 1, then the global monodromies have infinitely many
Hurwitz equivalent classes and there exists an explicit combinatorial
classification.

As a consequence of Theorem B, we partially extend Kas’ classification
of elliptic surfaces up to diffeomorphism [17] to a stable classification of their
global monodromies. Elliptic surfaces over CP' are proper holomorphic maps
f: S — CP' between a complex surface S and CP' such that the generic
fibre is an elliptic curve. An elliptic surface is certainly a torus fibration whose
singular fibres were classified by Kodaira in [21, 22]; the fibre monodromies
are described in [26].

COROLLARY A. — Let f1 : S1 — CP! and fo : Sy — CP' be elliptic
surfaces without multiple singular fibres, without singular fibres of type I,
or I¥, v 2 2 in Kodaira’s classification. Suppose that O(f1) = O(f2). Then,

all global monodromies of all direct sums fi1 ® fi and fo ® f& are pairwise
Hurwitz equivalent.

Fibre-preserving homeomorphisms

An element in M,, does not provide all the data about the fibration. In
most cases, a torus fibration cannot be determined by its monodromy in any
way. Additional restrictions and data on the local models at singularities are
essential.

One remarkable encoding for the local model comes from King’s classifi-
cation in [19, 20] of isolated singularities and the local study of singularities
by Church and Timourian in [9, 10], using this we study the so-called singular
fibrations.

Roughly speaking by singular fibration we mean a smooth fibration with
only finitely many singularities each having a “nice” neighbourhood (see
Section 3.3 for a precise definition). Each singularity is then characterised by
a local Milnor fibre which is a sub-surface of the generic fibre, a binding link
K and an open book decomposition. Singular fibrations have been studied
in [11, 12, 23]. The local properties of their singularities are related to the
corresponding fibred knots (see e.g. [5]).

As an improvement of Proposition 2.1 in [12] as well as a consequence of
Theorem C and the swappability of the corresponding normal form, we have
the following stable classification of singular fibrations based on the type of
singularities up to fibre-preserving homeomorphism:
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COROLLARY B. — Let f; : M7 — S? and fo: My — S2 be torus singular
fibrations with a single singularity in each singular fibre and with O(f;) =
O(f2). Suppose that each local Milnor fibre of singularities in fi1 and fa is
etther

e q surface of genus 0 with < 2 boundary components, or
e a surface of genus 1 with only 1 boundary component.

Letﬂ:fl@ffﬁ):AZ—>52 andﬁzﬁ@f(ﬁ):]\%%sg be direct sums.
Then (M, f1) and (Ma, f2) are fibre-preserving homeomorphic.

Throughout this paper, all fibrations which we consider will be over 52,
unless otherwise stated.
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2. Connected sums and Hurwitz equivalence
2.1. Elementary transformations

We first define the elementary transformations. Throughout this subsec-
tion, G is an arbitrary group and Z(G) is the center of G. An n-tuple in
G is a sequence (gi,...,9n) of elements in G, each g; is called a compo-
nent of the tuple. Let 7¢.,, be the set of n-tuples (g1, ..., 9,) in G satisfying
g1---9n € Z(G).

DEFINITION 2.1. — For 1 < i < n — 1, the elementary transformations
(or Hurwitz moves) R; is a bijection on the set of n-tuples in G defined by:

Ri(g1,---,9n) = (91, - 7giflvgiJrlvg;—llgigithgHQa ey Gn)-

Both R; and its inverse Ri_l are elementary transformations. A pair of tuples
(g1,---,9n) and (h1,..., hy,) which can be transformed into each other by a
finite sequence of elementary transformations are called Hurwitz equivalent,
written as:

(gl7°"7gn) ~ (h17~-~7hn)-
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We emphasise that the set of all n-tuples in G can also be interpreted as
Hom(F,,G) and the subset 7¢ ,, is invariant under the elementary transfor-
mations.

LEMMA 2.2. — For (g1,...,9n) € Tan and any 1 < k < n, the tuple
(915 .- 9n) 18 Hurwitz equivalent to (g, Gk+1s -« - Iny 91592, - - - » Gh—1)-

Proof. — Applying R,_1 0 --- o Ry on the n-tuple (g1,...,9,) we get
(925 -+ 9n, 91)- O

Let o denote the concatenation of tuples: (g1,...,9n) ® (h1,...,hy) =
(91,---,9n, 1, -, hm). The power of a tuple corresponds to a repeated con-
catenation with itself. The symbol [ [ represents the concatenation of a family
of tuples.

LEMMA 2.3. — Let (g1,---,9ns 1y -y Py Gt 1y -+ s Gnanr) e an (n +
m + n')-tuple in G satisfying h; ... hy € Z(G). For 0 < k < n+n/, this
(n+m +n')-tuple is Hurwitz equivalent to

(gla"'7gkahla"'7hmagk+17-~~7gn+n’)~ (21)

In Particuzar, let (91,17 v agl,nl)) (92,13 oo 792,712); ey (gk,la e 7gk,nk)
be tuples in G satisfying g;1...9;n; € Z(G) for each of j =1,...,k. Then
their concatenations in any order are pairwise Hurwitz equivalent.

Proof. — Applying R, ym_10---0 R, if n’ > 0 and applying R;}rl 0---0

R, 1, if n >0 on the (n +m + n)-tuple we transform the tuple into
(gla s 7gn+1ah1a R 7hm7gn+27 s agn+n’)
and
(917 <oy 9n—1, hl; sty hmag’ru e 7g’n+’n’)
respectively. O

LEMMA 2.4. — Let (g1,...,9n) be an n-tuple in G satisfying g; = g;h
with some 1 < i< j<n andh in Z(G). Then

(917"'7971) ~ (glv"'7gi—1agj7gi+17"'7gj—17gi7gj+17"'7gn)'

Proof. — Applying R;_ll o--+oR;yoR;---oR;_yon(g1,...,0n) we get
the tuple

(917 e 7giflagj7gigjilgi+lgjg;17 oo agigjilgjflgjg;aghgj‘l*la v 7gn)7

which is equal to (gla < 9i-1,95,9i+15 - - -, 95-1, 94, 9541, - - - 7gn)7 as desired.
g

DEFINITION 2.5. — An n-tuple in G is said to contain a generating set
if its components form a generating set of the group G.
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For instance, the modular group PSL(2,Z) = SL(2,Z)/{+1, —I} has the
presentation

PSL(2,Z) = (a,b ] a® = b* = 1);
both (a?b, ba?, ab, ba?, a®b, ba?) and (ba, ab, ba, ab, ba, ab) contain generating
sets.

LEMMA 2.6. — Suppose that (g1,...,9n) and (h1,...,hy) are tuples in
G such that (hy,...,hy) contains a generating set. Let Q be an arbitrary
element in G. If there exists a sub-tuple of (g1,...,9n), say (gi,---,9r)
with 1 < 1 < r < n, such that H::l gi € Z(G), then the concatenation
(915---s9n) ® (h1,..., hy) is Hurwitz equivalent to

(91, o ;glfva_lngv c 'vQ_lgTQng+1a s 7gn) L4 (hlv s 7hm)

Proof. — We express a given element @) in G as ¢ ... q, such that ¢; €
{hi,hTY . e, bty @ = 1,...,u. The lemma follows from Lemma 2.3
and the following substitutions via elementary transformations for each of
7=1....,m:

(gla"'agl7"'7g’ra"'7gn).(hla"'7hj>"'7hm)

— (gla"'7gl—1ag7”+17"'7gn7h17"'ahj—17gl7"'7g’!‘ahja"'7h’m)

— (gla"'7gl—17g7’+1a"'7gn7h17"'ahj7hj_1glhja"'ahj_lg’rhj7hj+1a"')

— (917 cee 7gl713h;1glhj7 .. '7h;1.grhjvg’r+17 e 7gn) L (h'17° . ’7hj7' . ah’m)7

(917"'7gl7"’7g7“a"'7gn).(hla"'7hj7"')

— (gla"'7gl—1ag7’+1a"'7gn7h1,"'ahj7gl7"'ag7‘7hj+la"'ahm)

— (gla"'7gl71ag7“+17--~7gn7h17"'ahjfhhjglhjilw"7hjg7‘h;17hj7"'>

— (gl, ey g1—1, hjglhgl, .. .,hjgrhjl,gr+1, . 7gn) ° (hl, .. .,hj, ey hm)
O

2.2. Contraction and restoration on tuple

In this subsection, we introduce the notions of contraction and restoration
on tuples. We move on to a procedure that involves a series of operations,
including contractions, restorations, and elementary transformations. The
procedure behaves like a self-consistent machine, maintaining data about the
given tuple and operations. Our study repeatedly utilises this procedure. To
make it clear and easy to visualise, thus we start with the following definition.

DEFINITION 2.7. — An iterated tuple of height 0 in G is an element g €
G; for h > 1, an iterated tuple of height h in G is a tuple whose components
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are iterated tuples of height smaller than h such that at least one component
is of height h — 1.

Take g € G and H = (Hy,...,H,) an iterated tuple of height h > 1.
The evaluation on an iterated tuple is defined by ev(g) = g and ev(H) =
[T, ev(H;). With v € G, using the notation g* = v gv we define H" as

HY = (Hla"'aHn)v = (Hf77H£)

The elementary transformation R; acts on the set of iterated tuples with
n =i+ 1 components by taking the conjugation of each element in H; with
ev(H;y1) and swapping the positions, to wit

Ri(Hh cee aHn) = (H17 s 7Hi—17Hi+17H‘ev(Hi+1)aHi+23 c 7H'n,)

3

Given an n-tuple (g1,...,9,) in G, we keep hold of the following data:

e (hi,...,hy): an tuple in G;
e (Hy,...,Hp,): an iterated tuple in G such that

(ev(Hy),...,ev(Hp)) = (b1, ..., hm);

e F: an ordered list such that each element is either
— a pair (u,0) with g € Z and ¢ an elementary transformation
on (iterated) u-tuples, or
— a pair of integers (I,r) with 1 <1 <.

At the beginning, the tuples (hq, ..., hy,) and (Hy, ..., H,,) are the same,
i.e., both are copies of (g1, ..., gn) and the ordered list F is empty. We apply
the following operations successively on the data.

(i) Elementary transformation: Apply an elementary transformation,
say RS with 1 < i< m—1 and e = £1, on the m-tuple (hy,...,hy)
and the iterated m-tuple (Hy,..., Hy,). Then append (m, Rf) to F.

(ii) Contraction: For a pair of integers 1 < I < r < n, we replace the
tuple (R, ..., hy) with

(1, hi—1, by oo B Ry, ooy By)
and replace the iterated tuple (Hy, ..., H,,) with
(Hlv' . 'aHl—lv (Hl7' g 'aHT)vHT-‘rla .. 7H’m)

Append (I,r) to F.

(iii) Restoration: Take the last pair of the form (I,r) in F, still denoted
by (I,7). Let F’ be the sub-list of F which consists of the elements
after (I,r). Remove (I,7) and all the elements after (I, ) from F. Set
k=1and m' =m+ (r — ). We consider each pair (u,0) = (m, RY)
in F' with the order.
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o If 1 < i< k—2,then append (m/, RS) to F.
e Ifk+1<i< mthenappend(m RS ) to F.
e If 0 = Ri_1, then append the pairs

i+ (r—1)

(m,7 Rk—l)v SER) (mla Rk—1+(T—l))

to F and replace k with £ — 1. In this case, the elementary
transformation o acts on an iterated m-tuple of the form

(le"akala( /17"'7H;7l+1)7Hk+1a"'aHm)

via
(o Hpm1, (HY o Hy 1), -)

Ry (H M0 y)

e o HyH ) Hp ).

The new pairs (m/, Rx_1),...,(m', Ry_14(—)) in F act on an

iterated m/-tuple of the form

(Hla'"77-[]67177_[/17”'7H;7l+17Hk+17"‘7Hm)

via
I 1
(...,Hk_177'[17... r— l-‘rl’"')
Ryi—1 ev(H)) ’
— (.. LMY HYy )
Ry ’ ’ ev 1)ev 2) / /
—>(> 17H27Hk—1 7H3"'7 rfl+17"‘)
—
Ri—14(r—r) ’ / ev(H)).. (H;_z+1)
R Y oo Mo My yee )

e If 0 = Ry, then append the pairs (m', Ryy—p), ..., (m/, Ry)
to F and replace k with k& + 1.
o Ifo= R,;_ll, then append the pairs
(mlle;—ll)v - (m R,: 14+ (r— l))

to F and replace k with k£ — 1.

o If o= R*1 then append the pairs
(' Rty (! REY)

to F and replace k with k& + 1.
Finally, suppose that

Hy, = (Hy, ..., Hi_j ).
We replace (hi, ..., hp) with
(hl,...,hk,he?)(H{),...,G’U(H:ﬂfprl),hk+17...,hm)
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and replace (Hy, ..., Hy,) with
(Hy, ... Ho 1, Hy, oo H oy Hipn, oy Hy).

Note that above operations can be applied in any order, possibly each
appears many times and different operations may alternate with each other.
However, we apply operations only finitely many times. The following lemma
shows the main property of these operations.

LEMMA 2.8. — Ifm =mn, then (hy,..., hy,) coincides with the resulting
tuple of (g1,...,9n) after applying all elementary transformations o occur-
ring in F with the order.

Proof. — Let (I,7) be the last pair of integers in F which indicates the
last contraction operation and replaces hy, ..., h, with h;...h,. The product
exactly corresponds to the k-th component of the m-tuple after each of
the subsequent elementary transformations, where k is introduced in the
restoration operation. Therefore, the restoration cancels the contraction and
constructs the corresponding elementary transformations on the m/-tuple.
We conclude the lemma by induction. |

A direct application of the above operations requires us to maintain a
lot of data, which would be a massive and tedious project. To simplify the
application, our usage only focuses on the replacement

<h17~ . .,hm) -—=> (hl,. . .,hlfl,hl . ..hr7hr+1,. ..,hm)
of the contraction; when applying the restoration, we enumerate all possible

patterns of the corresponding contraction instead. Therefore, the iterated
tuple (Hq,..., H,,) and the ordered list F never appear in the argument.

More delicate operations for tuples in the modular group and their prop-
erties will be introduced in Proposition 4.10 and Proposition 4.29. We need
the following definition in the sequel:

DEFINITION 2.9. — Let (g1,...,9n) and (hy, ..., hy) be tuples in G with
n = m. The tuple (g1, ..,9n) s said to be an (hy,..., hy,)-expansion (or an
expansion of (hi,...,hy)) if there exist integers 0 = ig < i1 < ig < -+ <
lm =mn such that g;;_,y1...9;, = hj for each of j =1,...,m.

Suppose that (g1,...,9,) is an expansion of (hi,...,hy). Then the as-
sociated contraction operations consist of m contractions so that replace

(gl,‘..,gn) with (hl,...,hm).

2.3. Direct sums of fibrations and their global monodromies

Recall that the type O(f) of singularities of a torus fibration f is a multi-
set of fibre monodromies counted with multiplicity. Let f; : M; — S2,
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fa : My — S? be torus fibrations, possibly with different numbers of singular
fibres. Let f1 @ f2 be a direct sum of f; and f;. The global monodromy of
f1 @ f2 depends on the fibre-connected sum M; &g M, the base point p on
S? and the set of generators for the fundamental group (5% \ B). To be
precise, a global monodromy of fi @ fs is a concatenation of two sub-tuples,
say

(V7 1101, U7 D1 tb1) ® (V3 P o athe, . 5 Bon, ),

such that (¢11,...,01,n,) and (d2,1,...,P2.n,) are global monodromies of
f1 and fo respectively, 11,19 € SL(2,Z) and at least one of 1,19 is 1. In
general, global monodromies of different direct sums or of the same direct
sum but with different base points are not Hurwitz equivalent.

For any n-tuple (é1,...,¢,) in SL(2,Z) with ¢1...¢, = 1, we use
J(¢1,....6n) to denote a torus fibration that has a global monodromy equal
to (¢1,...,0n), if it exists. We use the notation f(th,---,%) for such a fibra-
tion that is also a Lefschetz fibration. Lemma 2.10 will point out that we
can always work with such a Lefschetz fibration up to expansion. Let us first
recall some facts about SL(2,Z) and Lefschetz fibrations.

Set A= [97'] and B = [7! 72| € SL(2,Z). Let L = —ABA = [1{]
and R = —AB = [} 1]. The conjugacy classes of SL(2,Z) have been de-
scribed using the geometry of continued fractions (see [16, 28, 32]). They are

classified according to the trace, which is conjugacy invariant, as follows.
(0) For trace 0, there are 2 conjugacy classes represented by B and —B.

For nonzero trace, the conjugacy classes come in opposite pairs, represented
by a matrix M and its opposite —M with ¢tr(M) > 0 and tr(—M) < 0.

(1) For trace 1, there are 2 conjugacy classes represented by A, —A2.
For trace —1, there are 2 conjugacy classes represented by —A, A2.

(2) For trace 2, there is a Z-indexed families of conjugacy classes rep-
resented by L” with r € Z.
For trace —2, there is a Z-indexed families of conjugacy classes rep-
resented by —L" with r € Z.

(3) For trace 3, there is only one conjugacy class represented by LR.
For trace —3, there is only one conjugacy class represented by —LR.

(23) In general, for trace of absolute value > 3, the words of the form

+RIVLF RIELR: | RImLFmowith mo > 1, j1, .oy s K1y e b > 1
represent all conjugacy classes. Conversely, different words of this
form up to cyclic conjugacy belong to different conjugacy classes.

Recall that the fibre monodromies of torus Lefschetz fibrations are con-
jugates of L.

— 149 —



Yibo Zhang

For convenience, we set L = —A2B and L = —BA?, which are conjugates
of L.

LEMMA 2.10. — Let (¢1,...,¢n) be an n-tuple in SL(2,Z), ¢1...¢, =
1. There exists a torus Lefschetz fibration f¥, one of whose global monodromy
is an expansion of (¢1,...,on).

Proof. — Tt suffices to show that the semigroup generated by Land L is
exactly SL(2,Z). It follows from that LL = A and LLL = B whose inverses
are A% and B? respectively. |

Now we describe the following tuples with respect to a multi-set O of
fibre monodromies. Their induced fibrations fr,, ,, f1,, fro., and fr, will
stabilise torus fibrations.

DEFINITION 2.11. — Suppose that O is a multi-set of conjugacy classes
of SL(2,Z).

(1) We define To o as (f/,f/,A2,z7f/,A2),
(2) We define To1 as an empty tuple if there does not exist a conjugacy
class of trace £3 in O, otherwise

To1 = (B,B,B,B)e(—A’BAB, BA, —ABA)>.

e define 1o 2 as the concatenation of the following tuples.
3) Wed To, h tenati he follows l
(a) If the conjugacy class represented by eL™ with r > 2 and € €
{1, =1} occurs m > 1 times in O, take m copies of

(L,...,L,L™").
N———
r+1 components

(b) If the conjugacy class represented by eR? with r > 2 and € €
{1, =1} occurs m > 1 times in O, take m copies of

(R,...,R,R™").
—_——
r+1 components

(c) Suppose that a conjugacy class of elements with |trace| > 4 is
represented by

eRIVLFLRIzL R RIm [Fm

with e = {1,=1}, m =2 1, j1,.. -, Jm, k1, km = 1. If the
conjugacy class occurs m = 1 times in O, take m copies of

k1 components k., components
j km\—1
(R,....,R,L,....,L,...,R,....,R,/L,... L, (R .. .LFm)~1).
— —
Jj1 components Jm components

Fventually, we define To as TooeTo1eTo.s.
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2.4. Hurwitz equivalence of global monodromies

If two global monodromies of torus fibrations are Hurwitz equivalent,
then they must have the same number of branch points and the same type
of singularities. The following theorem shows that the global monodromies
of torus fibrations with the same type of singularities become Hurwitz equiv-
alent up to fibre sum stabilisations.

THEOREM 2.12. — Given a torus fibration, let O be the type of singu-
larities. Suppose that fo is one of the following:

(i) a torus fibration, one of whose global monodromy is (hy, ..., hy) =
TO;

(ii) a torus Lefschetz fibration, one of whose global monodromy is a To -
expansion, denoted by (hy,..., hy).

Then all global monodromies of all direct sums f @ fo are Hurwitz equivalent
for all torus fibrations f with O(f) = O. Moreover, these global monodromies
have a specific normal form determined by O and (hy, ..., hy) as follows:

(91, a) o [[(¢in- s Pin.)

(3

where g1...q1 = I, (g1,...,q1) is the sub-tuple of (h1,...,hy) either equal
to To,o or corresponding to Too, ¢i1...¢in, = £I for each i and each
(¢i,1’ DR (bz,nl) 25 eith@’f’

e a tuple of the form (X,Y) with XY = £1I, or
o atuple of +A, +A?, +B, +L, +L, +L, £L7 ', + L=, £ L7, except
for at most 1 component.

Remark 2.13. — Theorem 2.12 and Lemma 2.10 imply the main result
Theorem A. Let Hyp = (L, L)% and

v A Y A v A v oA

be tuples in SL(2,Z). Theorem B and C again follow from Theorem 2.12,
where the torus Lefschetz fibrations fi and f& are fﬁlz and fﬁﬁo respec-
tively.

Remark 2.14. — The normal form given in Theorem 2.12, though its
precise form is not given, satisfies a remarkable property, called swappability.
We explain the swappability in Section 3.1 but as a consequence, we have
Proposition 2.15.

Let ¢ : SL(2,Z) — PSL(2,Z) be the natural group homomorphism.
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PRrROPOSITION 2.15. — Fori=1,2, let Hj (gbgq, .. ,qbgzz”) be a tuple in
SL(2,Z) such that
.00, =1
(2) d)(i)

g1V gng

for each j and each sub-tuple (¢ ) is either

e a tuple of the form (X,Y) with XY = £1I, or
o atuple of £A, +A?, +B, +L, +L, +L, £L7 ', +L~, £ L7, except
for at most 1 component.

Let (g1,...,91) be a tuple in SL(2,Z) that is either equal to To o or a To o
expansion. Suppose that

[cuet..cuel)) 1] = [or6), ... o162 | ]

and
TT((5D) o al@52))) =TT () (2.
Then, ’ ’
(gla"'agl) OH(¢§711),,¢§717)”> gla-~'7gl .H( 521)77(255727);])
J J

We need a deeper understanding of tuples in PSL(2,Z). Set a = 1(A),
b = «(B). Recall that PSL(2,Z) is generated by a and b with the relation
a® = b = 1. Some other elements are marked as follows:

so =a’b, sy =aba, sy =0ba®, ty=ba, t,=a’ba®, ty=ab.

Here 1(L) = sy, t(R) = ta, (L) = so and L(f/) = sg. We further emphasise
that s;t; = 1 for i = 0,1, 2. Elements sg, s1, so are conjugate to each other
and tg, t1, t2 are conjugate to each other.

Elements in S = {a, a?,b, sq, 51, 52, to, 1,12} are called “short” and ele-
ments in

Sy = S U {bab, ba®b, a®ba, aba?, a*bab, ababa, baba?, ba’ba, a*ba*ba®, aba’b}
are called “almost short”.

The following improves and extends Theorem 3.6 in [25], which divides
the tuples of elements in PSL(2,Z) conjugate to a, a?, b, so or ty into two
categories and, for tuples in the second category, presents the normal forms.

THEOREM 2.16. — Let g1,...,9n € PSL(2,Z) be conjugates of a, a?, b,
aba or a?ba® satisfying g, ...gn = 1. Suppose that p, of them are conjugates
of a, q, of them are conjugates of a®, ny of them are conjugates of b, p of
them are conjugates of sg and q of them are conjugates of to with pa, qa, M,

q=20andps+qo+np+p+q=n. Then,

- 152 —



Classification of torus fibrations over S2 up to fibre sum stabilisation

(1) if p = q, |pa — ¢a] = 0 (mod 3) and ny is even, then the n-tuple
(g1, -+, gn) is Hurwitz equivalenet to

(klkala’"7kn’ak;’1allvl1al1,"'7ln”aln”7ln”)

withn' +n" =n, k;,l; € G andl;’? =1,i=1,....,n,j=1,...,n";
(2) otherwise, the n-tuple (g1,...,gn) is Hurwitz equivalent to the con-
catenation of

(50, 82) xP=a:0}/2] (4, ¢,)Imaxia—p0}/2] 4
(50, o) ™ P} o, a2)minrata} o (1, ) /2]

(a,a,a) [max{pa—qa,0}/3] o(aQ, a2, a2) [max{ga—pa,0}/3]
and at most one of the following tuples:

(a2, S0, 82)7 (a'a t2a to)» (a7 50,50, 52, SO)a (a27 tOv t27 tOv tO)v
b7 50, 52, 80)7 (ba to, to, t()), (a7 ba 32)7 (a‘27 ba to)a
a, t27 t(]v ba tO7 t27 tO)v ((LQ, 50,52, b7 50, 52, 80)7
a, a, o, 52)7 (a'27 a'27 128 tO)a (Cl2, Cl2, 50,50, 52, 50)7

a, aat()7t27t07t0)7 (a27 a'27 b7 82)7 (CL, a, b7 t(])?

~—~ o~~~

2 2
(a*,a”,ta,to, b, to, ta, to), (a, a, s, 52, b, S0, 52, S0)-

The resulting n-tuple is called the normal form of (g1,...,gn)-

As a supplement, we have Theorem 2.17 and its modification.

THEOREM 2.17. — Let g1,...,9, € PSL(2,7Z) be conjugates of a, a?, b,
S0, to or ababa satisfying g1 ... g, = 1. Suppose that m of them are conjugates
of ababa. Take

Fiz = (b,b,b,b,a’bab, to, s1, a’bab, to, s1,a’bab, tg, s1).
Then (g1,...,9n) ® F13 is Hurwitz equivalent to
(hiy -y hnm—3_2,) ® (abab, ba®ba) ™ T371)/2 o (a%bab, to, 51)"
where
o cach component of (hi,...,hp_m—3-2,) is conjugate to one of a,

2 .
a-, b7 505 to;
e u=3-—mifm<3andp=(m+1) mod 2 otherwise.

THEOREM 2.18 (A modification of Theorem 2.17). — Let g1,...,gn €
PSL(2,Z) be conjugates of a, a?, b, sq, tg or ababa satisfying g ...gn = 1.
Suppose that m of them are conjugates of ababa. Take

Fiz = (b,b,b,b,abab, tg, 51, a’bab, to, 51, a>bab, ty, 51).
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Let FL be an Fi3-expansion of conjugates of so, written as

(U1,1, ey UL ey U2 Ty e e oy U2 gy e oy ULB Ty e - - 7U13,k13),

such that u; 1 ...u;k, 5 equal to the i-th component of Fi3 for each of i =
1,...,13. Then (g1,--.,9n) ® F£ is Hurwitz equivalent to
3—p
(hi,.. . hyr) @ (aQbab, ba2b‘l)(m_SW)/2 d H (uit2,15 - - - 7u3i+2,k3i+27ba2ba)
- 3 3i+4
S 1 | T
i=3—p+1j=3i+2

where:

o cach component of (hi,...,hy) is conjugate to one of a,a?,b, so,to;
e u=3—-—mifm<3and p=(m+1) mod 2 otherwise.

The proof of Theorem 2.12 relies on Theorem 2.16, Theorem 2.17 and
the above modification of Theorem 2.17. We will prove Theorem 2.16, 2.17
and 2.18 in Section 4.

Proof of Theorem 2.12. — Suppose that (hi,...,h,) = To if fo is as
in (i), or (hy,...,hn) is a To-expansion if fj is as in (ii), which is a global
monodromy of fy. We write it as a concatenation either

e of all the following tuples, or
o of the following tuples labelled (1), (2) and (4).

The list of tuples is as follows.

(1) The tuple (h1,1,...,h1,m,) is either (Lf/,Az) or else a (E,E,AQ)—
expansion of conjugates of L.

(2) The tuple (ho1,...,hom,) is either (L, L, A2) or else a (L, L, A2)-
expansion of conjugates of L, which may be different from the tuple
(hl,la RN hl,ml)'

(3) The tuple (h31,...,hsm,) is either To 1 or a Ty -expansion of
conjugates of L.

(4) The tuple (hq1,...,ham,) is either Tp o or a Tp s-expansion of
conjugates of L.

Step 1. — We first show that any global monodromy of a direct sum
f @ fo can be transformed into

(15 Pn) @ (h1ye oo hn)
where (¢1,...,¢,) is a global monodromy of f.
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Given a base point p of f & fo, a global monodromy of the direct sum
with respect to p is the concatenation

(W d1tn, -y dntn) @ [T (W M hiata, - 15 P, 2)
i€T

with the tuple (¢1,...,¢,) a global monodromy of f, elements i1, 12 €
SL(2,Z) and the index set Z either {1,2,3,4} or {1,2,4}. Each tuple in
the concatenation has the product of components equal to -1 and both of
the tuples (1h; "hy1tba, ... b5 By, ¥2) and (3 "ho1ta, ... by " ho mytha)
contain generating sets. By Lemma 2.6, we can eliminate all the v, 12 in the
global monodromy using elementary transformations. Rewrite the resulting
tuple as

(¢17 .. ,¢n) L4 (917 e agl) L (h3,17 ey h3,m3)[3ez] L4 (h4,17 .. -7h4,m4)

where 3€Z]=1if3€Z and [3€Z] =0if 3 ¢Z, such that (g1,...,9) is
either Tp o or a Tp g-expansion of conjugates of L.

Step 2. — We show that the above resulting tuple is Hurwitz equiva-
lent to

(P15 0n) ®(g1,--.,91) ® (h31,-.., h3,m3)[3€z] ° (hﬁ;,p . ‘7hﬁl,m4)
such that

e (1,...,¢pn) is a tuple of elements in simple conjugacy classes such
that @1 ..., = +£I;

e (hy1,---,hym,) depends only on (hyy,. .., h4m,) and components
of (¢1,...,¢,) in non-simple conjugacy classes.

If (hap,...,ham,) is a Tp o-expansion then, as in Section 2.2, using con-
tractions on (ha1,...,Ram,) we replace (haq,...,ham,) wWith To . The
definition of T o states that it is the concatenation of several sub-tuples.
These sub-tuples are in one-to-one correspondence with the singular fibres of
f whose fibre monodromies belong to non-simple conjugacy classes and they
are further in one-to-one correspondence with the components of (¢1, ..., ¢,)
excluding those of trace 0, £1, £3 or conjugate to £L, £R.

Suppose that there exists an (r+ 1)-sub-tuple of the form (L,...,L,L™")
in To» with r > 2. We take the corresponding component, say ¢;, which is
equal to eh 'L"h with ¢ = +1 and h € SL(2,Z). Since (g1, ...,g) contains
a generating set, by Lemma 2.6, we replace the (r + 1)-sub-tuple with

(h=Lh,...,h *Lh,h"'L™"h).

By Lemma 2.3, we further replace ¢; with (h=*Lh, ..., h~1Lh) and replace
the above (7 + 1)-sub-tuple with (eh"1L"h, h"1L="h). Again by Lemma 2.6,
the pair (eh=1L"h,h=*L~"h) can be transformed into (eL", L").
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We have similar arguments for sub-tuples of the form (R,...,R,R™") or
of the form
(R,...,R,L,...,L,...,(their product)™!)
as in Definition 2.11. For the restoration, according to each component in
T2, we rewrite the corresponding component as a sub-tuple. Notice that if
such a component belongs to some simple conjugacy class, then it is replaced
by a sub-tuple of conjugates of L. Hence the resulting tuple is as desired.

We will not modify (hf y,...,h},,,) anymore.

Step 3. — Suppose that n components of (p1,..., ¢, ) are of trace 3
and n_ components of (¢1, ..., @, ) are of trace —3. If ny. +n_ = 0, then take
(s os@hn) = (@1, .., pn) and skip the step. Otherwise, [3 € Z] = 1. We
further show that, by elementary transformations, (1,...,pn )e(g1,...,g;)e®
(h3.1,--.,h3,m;) can be transformed into

(50/17‘“75047/’).(glv"‘vgl).(Blv'”,ﬁm)

such that
o (¢h,...,¢0,)is a tuple of elements either of trace 0, £1 or conjugate
to +L or £R,

e (hi,...,hs) depends only on ng, n_ and (h3,15--- P3.my)-

If (h31,...,h3.ms) is an expansion of Ty 1 then, as in Section 2.2, using
contractions on (hs3 1, ..., "3 m,) We replace it with Tp ;. By applying The-
orem 2.17 to (t(¢1),...,t(on’)) ® flg, the tuple is transformed into

(e o (g1, 1) H@bzo,ml (—A’BAB, BA,—ABA)"

such that each of «(¢}), i = 1,...,n” is conjugate to a, a2, b, sg or tg,
t(i0) = a?bab, t(1;1) = ba*ba and p < 3. The number y is dctermlncd by
n4 + n_, which further separates the cases.

Then, the restoration operations apply on the tuple. Some components
of (¢},...,¢,,) are replaced by sub-tuples of elements conjugate to L, while
keeping each component conjugate to some preimage of a, a2, b, sg or tg.
The remaining components that might be modified by the restoration are
exactly the components of the last u sub-triples and the last 3—u components
denoted by ;9. By Theorem 2.18 they are replaced by certain sub-tuples
of (h3,1, ey hS,mg)-

The remaining components of Hle(wi,m%‘,l) are of trace +3 and they
are either £A°BAB or +BA%2BA. To restrict their dependencies only on
n4 and n_, we have to show that their signs can be rearranged to certain
positions, but this follows from Proposition 2.15.
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Step 4. — We conclude the proof of Theorem 2.12 by showing that

(‘pllw--a(p{n”). (glv~-~7gl)

is Hurwitz equivalent to

(@1 onn) @ (9155 91)
such that (¢f,..., ¢!, ) depends only on the multi-set O.

Applying Theorem 2.16 to (c(¢}),...,t(¢),,)), we transform the tuple
(@}, ... ) into a new tuple, denoted by (Y, ..., ¢/, ). For the first case in
Theorem 2.16, as (g1, ..., ;) contains a generating set, applying Lemma 2.6
we further transform the concatenation into a resulting tuple, denoted by

(ef,....@l,)e(g1,...,q1), satisfying
(L(Qalll)v RN} L(QDZ/’)) = (507 tO)Ml b (av 0’2)#2 b (b7 b)HS d (a’ a, a)#4 b (a27 a27 a2)l»¢5

with pq,...,pus determined by O. The theorem then follows from Prop-
osition 2.15. O

Remark 2.19. — Alternatively, instead of using Proposition 2.15, one
may apply the substitutions

(e1A’BAB,e; BA’BA) e (g1,...,q1)

— (eiBA’BA,e;B*A’BAB V) e (g1,...,q1)
= (BA’BA,e;A’BAB) @ (g1,...,91)

— (A’ BAB,e; BA’BA) o (g1,...,q1)

at the end of Step 3 and

(7’1A2B7T2BA2,T3A2B) — (TQBAQ,T:[ABA,TBA2B)
— (TQBA2,73AQB,T1BA2)

at the end of Step 4, where €1, €2, 71, T2, 73 € {—I,+1} are arbitrary. They
appeared in an earlier version of this paper.
We end with the proof of Corollary A.

Proof of Corollary A. — The fibre monodromy of a singular fibre dis-
tinguishes the type in the Kodaira classification. The corollary follows from
Theorem B. ]
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3. Swappability and local models
3.1. Swappability of the normal form

In this subsection, we introduce the notion of swappability for a tuple in
SL(2,Z) with a stabilisation.

DEFINITION 3.1. — Let (¢1,...,dn), (91,---,91) be tuples in SL(2,7Z).
Suppose that, for any abelian group G and tuples (e1,...,€,), (€1,...,€.),
(01,...,01) in G such that the following multi-sets of conjugacy classes in
G x SL(2,Z) coincide:

[CZ((Elv ¢1))7 LERE Cl((ena an))} = [Ol((ella ¢1))a AR CZ((G%, ¢n))]7
we have
((Jl,gl), ey (legl)> L4 ((617 ¢2), ey (E'rn ¢n))
~ ((01791)7 ey (legl)) L ((6,17 ¢Z)7 ey (efln,v (bn))
In this case, we say that (¢1,...,én) s (g1,...,91)-stabilised swappable.

Remark 3.2. — The normal form given in Theorem 2.12 is an example
of swappable tuples, which is guaranteed by Proposition 3.3.

PROPOSITION 3.3. — Let [[,(di1,---,¢in,) be a tuple in SL(2,Z) such
that ¢; 1 ... ¢;n, = £I for each i and each (¢;1,...,¢in,) is either
e a tuple of the form (X,Y) with XY = £1I, or
o atuple of +A, +A?, +B, +L, +L, +L, +L7 ', +L~, £ L7, except

for at most 1 component.

Let (g1, -.,91) be a tuple in SL(2,Z) either equal to Tp o or a To o expansion.
Then the tuple [],(¢i1,- .., Gin,) 5 (91, ., 91)-stabilised swappable.

Proof. — We need only prove the proposition for the case (g1,...,q1) =
To.0.

Set (¢1,...,0n) =[L;(di1,- .., ¢in,) and consider the tuple

((01791)7 R (legl)) L d ((617 ¢1)7 R (ena d)n))

in G x SL(2,Z). It suffices to show that, for any two components (¢;, ¢;) and
(€5, ;) such that ¢; is conjugate to ¢;, one can interchange ¢; and €; using
elementary transformations.

When ¢; = ¢;, the swapping follows from Lemma 2.4.
When ¢; # ¢; but ¢;, ¢; belong to different sub-tuples, using Lemma 2.6

for the sub-tuple containing (e;, ¢;), we transform the component (e;, ¢;) into
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(€i,¢;). After swapping (¢;, ¢;) and (€5, ¢;), we apply Lemma 2.6 again to
make other components unchanged.

When ¢1 # ¢; and ¢;, ¢; belong to a sub-tuple not of the form (X,Y)
with XY = +1, we must have ¢; conjugate to one of L, —L, L' and —L~ L.
Recall Tp,o = (L,L,A?) o (L, L, A?) and notice that the (first) (L, L, A2)
contains generating sets. If ¢; and ¢; are conjugate to =L, then take Q); and
Q; be such that Q;lgﬁiQi =+L and Qj_lgijj = + L, therefore

QiQi':iQiQ; = ¢; and QiQ;'9,Q;Q; " = ¢i.
Using Lemma 2.6 and Lemma 2.4, we have the following substitutions

(oo (€ di)y-n s (€4, 05),...) @ (81, L), (82, L),..., (6, A%))
— (e (6, Q5 15 Qi), -+, (€5, Q5 105 Q0), .. )
o ((01,L),(82,L),...,(d6,4%))
— (-, (61, L), . (%Q '$;Qi) )
((%Q Qi) (62, L),..., (06, A%))
— (., (61,Q )...,(ej,¢j),...)
(@,; Qi) (82, L), ..., (36, A7)
— (0 (01, JIQZLQ Q) (65, Q71 9,Q5),- )
o ((€,Q7'9:Q1), (82, L), ..., (36, A%))
— (v, (01, leLQ 'Qj)s - (6, Qi Qi) - )

«%QJ@@>@,LWA%AW
— (o (01, QLQTY), - (6, QQ 6:QiQ5 ), )
«%Qf%%)@f%~(%Am
— (oo, (01,L), . (61, Q71QQ7 1 1QiQ5 Qi) - )

((ej?Q] 1¢JQ]) (627 )’-'-7(66"42))
— (s (6, Q5 15Q)), - (6, Q1 QiQ7 1 9iQiQ; Qi) - . )
«%iM%,% , (56, A%))

)

—>( ’(eij’LQj 1¢JQ] ) 7(67,7QjQi_1¢iQin_1)7"')
((617 7(62a )a' (667 2)

(

)
:( 7(€J7¢1) (ehd)J) ). (517 ) (527‘2)’"'7(667‘42))'
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If ¢; and ¢; are conjugate to £L~!, then using the contraction on the
iterated tuple ((J2, L), (83, A?)) we have a similar sequence of substitutions.

When ¢; # ¢; and ¢;, ¢; form a sub-tuple of the form (X,Y’) with
XY = &1, there exists Q € SL(2,Z) such that Q7 '¢;Q = ¢; and there-
fore Q7 1¢;Q = ¢;. By Lemma 2.6, the sub-tuple ((e;, ¢;), (€, ¢;)) can be
transformed into ((€;, Q@ 1¢;Q), (€, Q™ 19;Q)). O

As a consequence, we prove Proposition 2.15.

Proof of Proposition 2.15. — Let G = {1,—1} be the group under mul-
tiplication. We define

SL(2,Z) 3 6+ #(6) = (1) € G x SL(2,2)
such that trace(y) > 0, € = sgn(trace(¢)) if trace(¢) # 0 and € = 1 otherwise.

This map is well-defined, injective and conjugacy-preserving, but not a group
homomorphism.

Consider the tuple

LTS w8 wd ) =TT, 468))

J J
and the tuple
2 2 2) 2
LI )., e ) = [T, 562
J J
in x SL(2,Z). Their components present the same conjugacy classes counted
with multiplicity and %(1;2 = 1/)(2) for all 7 and k. Besides, each sub-tuple of

I, (1/)%1 Yo a¢3(1727) is either a tuple of the form (X,Y) with XY = +7 or a

tuple of A, —A2, B, L, L, L, L=, L~ and L. This proposition follows
from Proposition 3.3. ]

3.2. Fibre-preserving homeomorphisms: from local to global

This subsection investigates fibre-preserving homeomorphisms between
torus fibrations. We start with the following definitions.

DEFINITION 3.4. — Suppose that f : M — S? is a torus fibration and
p; € S% is a branch point. The singular fibre f~1(p;) may be locally symmet-
ric in the following sense. Let U C S? be any sufficiently small neighbourhood
of pj and p € OU be an arbitrary point. Identifying f~'(p) with T?, we use
¢; € Mod(T?) to denote the monodromy along U at p. Let 1) € Mod(T?) be
an arbitrary mapping class such that y¢; = d)jl/) We suppose that there exists
a (self-)homeomorphism Wy« f~H(U) — f~Y(U) such that fo V¥, = f and
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Wis|p-1(p) represents 1. In this case, we say that the singular fibre f~'(p)
is locally symmetric.

In particular, all singular fibres of a torus Lefschetz fibration are locally
symmetric.

DEFINITION 3.5. — Suppose that fi : My — S? and fy : My — S? are
torus fibrations with branch sets By = {pgl)} and By = {p§-2)}. We say that
the singular fibres fi 1(pg»l)) and fy 1(]3;2)) are locally fibre-preserving home-
omorphic if, for any sufficiently small neighbourhood U(l) ofp(l) there exist
homeomorphisms ¥g ; : U(1 — S%and U fy (U(1 )= fo (\IISJ(U(D))
such that fooWas; = \IJS,JOfl We further say that (M17 f1) and (M, fg) are

fibre-preserving homeomorphic if there exist homeomorphisms Ug : S? — S?
and Wy : My — My such that foo Wy = Ugo fy.

DEFINITION 3.6. — We say that a locally fibre-preserving homeomor-
phism (Us ;,¥ar i), as defined above, is compatible with given global mon-
odromies (gbgl),...7 ,(11)) of f1 and ( (2)7...,@3) of f2, in the following

sense. Recall that the global monodromy is determined by a base point p(®)

and a collection of loops % ), . ,’yn) based at p(’) such that ~; @)

s exactly
the boundary of a neighbourhood ofpj , say ’y 3D( , fori=1,2. With-
out loss of generality, assume that Uj C Dj(-l) and ¥g ; (U;l)) C Dj(-2). Let
BJ@ be an arbitrary path in Dj(-i) joining p{) to some point on aDj(-i), for
i =1,2. The locally fibre-preserving homeomorphism (Vs 4, Vs ;) is pushed
forward to a homeomorphism 1 € Homeo(T?) between the generic fibres at
base points. We say that (VUar;, Vs,;) s compatible with the global mon-

odromies if [z/;]d)gl) = ¢§2)[1/)]

The compatibility does not depend on the choice of BJ@, for i = 1,2.
Indeed, for a different choice of (,8(1) B )) then [¢] is replaced by

(05 = [wl(e5)
for some k1, ks € Z. It is easy to check that
(@)l (6 ) ol = 6 (6 w16y,

Besides, the compatibility does not depend on the choice of global mon-
odromies. Indeed, a different pair of global monodromies replaces (;55.1) and

¢§2) with Q;1¢§1)Q1 and Q2_1¢§2)Q2, respectively. The set of all possibilities
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for [¢] is
{(Q21¢§2)Q2)k2Q21[w]Q1 (@roia)"” ‘ Fioks € z}.

It is easy to check that

((Q:'6P22) @5 'l (@6 Q)" ) @r o,
= Q2_1¢§2)Q2 ((Q2—1¢§2)Q2)k2Q2—1[¢]Q1 (Q;1¢§1)Q1)k1).

THEOREM 3.7. — Let fi1 : M1 — 5% and fo : My — S? be torus fibra-
tions with branch sets By = {pg»l)} and By = {p§»2)}, |B1| = n = |Bal, with
global monodromies (d)(l) ce, 511)) and (¢(12), e 512)) such that each singu-
lar fibre is locally symmetric. Suppose that, for each j, there exists a locally
fibre-preserving homeomorphism between fl_l( (1) ) and fg_l( (2) ) compatible

with the given global monodromies. Let f1 = f1 &) fo(f1 M1 — 52 and

fo= fz@fo(f ) . My — S2 be direct sums. Then (M, f1) and (Ma, f2) are
fibre-preserving homeomorphic.

Remark 3.8. — The one-to-one correspondence between singular fibres
via locally fibre-preserving homeomorphisms in the hypothesis of
Theorem 3.7 implies that O(f1) = O(f2).

The following definition first appeared in Part II, Definition 4 in [27].

DEFINITION 3.9. — Suppose that f : M — S? is a torus fibration with
branch set B = {p;}. Let a : S — Homeog(T?) be a closed curve in the
group of homeomorphisms of T? isotopic to the identity. Let D C S*\ B
be a disc. Identify OD with S' and f~1(D) with D x T?, then « defines a
canonical homeomorphism

a: f~40D) — d(D x T?).

Denote Mp o = M \ f~1(D) Us (D x T?) and let fpo : Mp.o — S? be the
map which is equal to f on M \ f~1(D) and equal to the projection D x T? —

D on D x T2. Thus the map fD,a is a torus fibration, called the a-twisting
of M at D.

LEMMA 3.10. — Let f : M — S? be a torus fibration and fp . be an
a-twisting of f for some o : S — Homeog(T?) and disc D C S?. Suppose
that f has surjective monodromy homomorphisms. Then f and fp. are
fibre-preserving homeomorphic.

Proof. — See Proposition 2.1 in [12]. O
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Proof of Theorem 3.7. — By Theorem 2.12, we suppose that (Ml, f1)
and (MQ, fg) have the same branch set B = {p1, ..., pi+m}. Taking the base
point p € S%\ B and loops 71,...,%Vi+m based at p, we further suppose
that the global monodromies of (M, f1) and (M 5, f2) determined by p,
Y1y .-+ Vi+m coincide, say

(g1, 91) (D1, Om).

Since the compatibility of a locally fibre-preserving homeomorphism does
not depend on the global monodromy, we may assume that there exists the
permutation o € S, such that

. fl_l (pj) and fQ_ !(p;) are locally fibre-preserving homeomorphic com-
patible with the global monodromies, for j =1,...,[;

° fl_l(pj) and fz_l(pHg(j,l)) are locally fibre-preserving homeomor-
phic compatible with the global monodromies, for j = I+1,...,l+m.

Let G = Zey + - - - + Zey 4, be the free group of rank [ + m. Consider the
tuples

((61791)7 ey (6l7gl)7 (6l+17 ¢1)7 ey (6l+m7 (bm))v
((Elagl)a DR} (Elagl)v (€l+0(1)a ¢1)a ey (€l+o(m)a (z)m))

in G x SL(2,Z). The swappability of the global monodromy implies that
one tuple can be transformed into the other by elementary transformations.
Thus, using a fibre-preserving homeomorphism, we may suppose that o is
the identical permutation.

Consider the locally fibre-preserving homeomorphisms ¥g; : U](l) —

U]@), Uarj - ffl(U;l)) — fgl(UJ@)) with sufficiently small neighbour-
hoods U;i) of pj, for j = 1,...,1 4+ m and i = 1,2. They extend to lo-
cally fibre-preserving homeomorphisms \Ifg)j : U;l) U B;l) — U;z) U ﬁj(.z),
Wiyt fvl_l(UJ(l) Uﬁ;l)) — f;‘l(UJ@) Uﬁ]@)) where, for i = 1,2, Bﬁi) is a path
joining p to some point dgi) € 8UJ@ such that BY), e ,ﬂl(j_)m, Ul(i)7 PN Ul(j_)m
are disjoint away from p and dgi), . ,dl(i)m.

The mapping class represented by ¢; = ¥}, . | o ) satisfies [¢;]g; =
gilel it j=1,...,1or [p;l¢;—1 = ¢j_i[p;] otherwise. All singular fibres are
locally symmetric. Set I'; = Uj U;i) N B](-i) for i = 1, 2. Therefore we obtain a
fibre-preserving homeomorphism g : I';y — 'y, Wy, : ffl(l“l) — f;l(I‘g).
One may further assume that I'y = I = I's without loss of generality.
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It remains to prove that fl Ir and fg |r extend to the unique torus
fibration over the complementary disc of I within S2, up to fibre-preserving
homeomorphism, but this follows from Lemma 3.10. ]

3.3. Singular fibrations and singularities

This subsection introduces singular fibrations and illustrates Corollary B.

Let f: M* — S2 be a smooth map between a connected closed oriented
4-manifold M* and the 2-sphere with finitely many critical points, with
generic fibre F2. Church and Timourian proved that each singularity p of f
is cone-like, i.e. the singularity p admits a cone neighbourhood in the singular
fibre V = f=1(f(p)); see [10, Lemma 2.1 and (Lemma) 2.4] and also see [11,
p. 835-836].

Isolated singularities are separated. In fact, there exist arbitrarily small
adapted neighbourhoods of cone-like singularities, as introduced by King
in [19, p. 396]. An adapted neighbourhood around a singularity p € M*? is a
compact neighbourhood Z* C M* satisfying the following:

(1) The restriction f|zs : Z* — D? is a proper map onto a disk D? C
S2.

(2) The fibre f~!(z) is transversal to 9Z* for each z € int(D?) and
E=fYSYHnz*coz.

(3) Set V.= f~1(f(p)) and K = VN 9Z* Then N(K) = f~1(D%) N
0Z* is a tubular neighbourhood of K within 9Z* endowed with a
trivialization  : N(K) — K x DZ induced by f, where D} C D? is
a sufficiently small disk containing f(p).

(4) The composition fx = ro f: 0Z*\ K — D? — S! is a locally
trivial fibration over S', where r is the radical projection.

(5) The data (0Z%, K, fx, ) is an open book decomposition.

It is equivalent to the date (fz, ®) satisfying the following:

(1) The map fz : Z* — D? is proper and induced by f. Set V =
;1 (fz(p), K = VNnoz* and B> = f;(S') € 9Z*. Then the
restriction fz : E® — S is a fibration with fibre FpQ.

(2) The flow ® on Z* is continuous along directions parallel to D? such
that
(a) f(®(z,d)) = f(2) +d for z € Z* and d € D? when both sides

are within Z%;
(b) the mapping (z,t) — ®(x, —tfz(x)) is a homeomorphism from
E3 % [0,1) to Z*\ V;
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(c) there exists a vanishing compact subset A C E? such that
x + ®(x, —fz(x)) induces a homeomorphism from E3\ A to
V' \ p and sends A to p.

King proved that, for the fibration of a manifold M™ in dimension
m # 4,5, one can always find adapted neighbourhoods for singularities dif-
feomorphic to the m-disk. In dimension 4, however, adapted neighbourhoods
can only be supposed to be contractible. We call a singularity reqular if it
admits an arbitrarily small adapted neighbourhood which is diffeomorphic
to the 4-disk.

DEFINITION 3.11. — A smooth map f : M* — S? between a connected
closed oriented 4-manifold and the 2-sphere is a singular fibration if it has
only finitely many critical points, all of them being regular.

The binding K C 9Z* of an open book decomposition is a fibered link.
Each fibre of fx is a surface that has the boundary K and is homotopic
to the local Milnor fibre F2. It is proved in [19, Theorem 1] that the lo-
cal mapping torus E3 and the vanishing compact subset A C E® up to
isotopy form a complete invariant of the adapted neighbourhood up to fibre-
preserving homeomorphism. In particular, if a singular fibre contains only
one singularity and the fibre monodromy is given, then the singular fibre is
determined by the isotopy class of local Milnor fibre, up to fibre-preserving
homeomorphism.

In general, there could be many singularities in a singular fibre, say
P1s- -, Pn. The horizontal homeomorphisms given by disjoint adapted neigh-
bourhoods reveal that the local Milnor fibres F7, ..., F are disjoint com-
pact subsurfaces embedded in the generic fibre F2 of the fibration. The fibre
monodromy around the singular fibre is a mapping class of the generic fibre
F2, denoted by ®r-1(f(p:))- The inclusions ¢; : F2 — F' induce the homo-

morphisms Mod(F?,) — Mod(F?) which send the local monodromies ¢z of
the mapping tori E2 — S' to mapping classes of the generic fibre. Therefore

Pr-1(5(pe)) = t1,+(BF2 ) 0 - 0 lnu(Pr2 ), (3.1)

which does not depend on the order. Furthermore, the following should be
well-known.

LEMMA 3.12. — In a singular fibration f : M* — S2, each local Milnor
fibre of an adapted neighbourhood diffeomorphic to the 4-disk is connected
with a non-empty boundary.

Proof. — Suppose that p is a singularity of the singular fibration f :
M* — S2%.If we assume that the binding link K of a singularity is vacuous,
the adapted neighbourhood implies a locally trivial fibre bundle $3 — S,
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which is a contradiction. Since the completion of the local Milnor fibre has a
non-empty boundary, the reduced cohomology group H? (FZ?) is trivial. We

use Alexander duality and obtain that H(S3 \FT?) is trivial. Hence F? is
connected. O

DEFINITION 3.13. — A continuous map g1 : X1 — Y7 is locally topolog-
ically equivalent at x1 € X1 to a continuous map go : Xo — Ys at x5 € Xo
if there exist sufficiently small open neighbourhoods Uy of x1, Uy of x2, V1
of g1(x1), Va of ga(x2) and homeomorphisms o : Uy — Us, 8 : Vi — Vo such
that 8 o g1 |U1: J20ow |U1'

A point at which f fails to be locally topologically equivalent to the pro-
jection R* — R? is called a branch point, which is necessarily a singularity.
Church and Lamotke have shown that a local Milnor fibre is diffeomorphic
to the 2-disk if and only if the associated singularity is not a branch point;
see [8, Proposition p. 151]. We conclude that, up to fibre-preserving home-
omorphism, one may assume that a torus singular fibration has no local
Milnor fibre of genus 0 with only 1 boundary component.

3.3.1. Local Milnor fibre of genus zero

When the local Milnor fibre Fp2 is a genus zero surface with r» > 2 bound-
ary components, then E? = §Z*\ K is the mapping torus of some mapping
class ¢F§ that is identical on boundary, denoted by My _,. The group of

D

mapping classes identical on the boundary, denoted by Mod* (Fg)7 is gener-
ated by Dehn twists along the following loops; see [33].

e Loops 6;;, 2 < i < j < r, that each separates two boundary com-
ponents from the others.

e Peripheral loops as,...,qa,, that are parallel to the latter r — 1
boundary components.

The peripheral loops are mutually disjoint and they keep away from the
loops d; ;. Therefore, d)pg is the composition of the product of (positive
and negative) Dehn twists along peripheral loops and a mapping class ©F2
generated by the Dehn twists along the rest loops, denoted by

Pr2 = (H T&") ©r2

i=2
with ug,...,u, € Z. The following shows a necessary property for local
Milnor fibres of genus zero in a fibration f : M* — S2.
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LEMMA 3.14. — Let f : M* — S? be a smooth map between a connected
closed oriented 4-manifold M* and the 2-sphere. Let p € M* be an isolated
singularity. Given a contractible adapted neighbourhood of p, if the local Mil-
nor fibre Fp2 s a genus zero surface with r > 2 boundary components and
the local monodromy is given by d)p}g = H;ZQ T3 with ug, ..., u, € Z, then
u;, ==+1,1=2,...,r.

Proof. — The first homology group of Fp2 is isomorphic to Z"~! and
generated by the cycles around boundary components, but excluding the
first component. Therefore, ¢F57* = idHl(Fg,z) and the homology group
Hy(My,,,Z) = Hy (F2,Z) %4, .« ([7]) is isomorphic to Z", where 7 is the
closed curve in the mapping torus induced by a fixed point on the first
boundary component of F.

Write Hq (M¢F2,Z) = (ag,...,a,,t). The boundary Z* of the adapted
neighbourhood is the union of the mapping torus ./\/lqug and r more solid

tori, which is a homology 3-sphere. The inclusion mapping the connected
components of the intersection to the mapping torus derives from (positive
or negative) powers of the Dehn twist along peripheral loops, which are
denoted by T, ..., T~ respectively. By Mayer-Vietoris we have

— Ho(0Z*,7) —
— H\(T?,Z)" — Hy(My ,,Z) ® Hi(S" x D")" — Hy(0Z*,Z) —

where 7 is an isomorphism. After the choice of the natural basis, the corre-
sponding (2r) X (2r)-matrix is given by

-1 0 1 u9
10 1 ug
-1 0 1 wug
-1 0 1 u,
/0 1.0 1 0 1 0 1 0 1
A= 1 0
1 0
1 0
1 0
i 1 0]
Note that det(A) = £1. It follows that ug...u, = £1. O
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In particular, we have the following consequence.

COROLLARY 3.15. — Let f : M* — S? be a smooth map between a
connected closed oriented 4-manifold and the 2-sphere. Given a contractible
adapted neighbourhood of a singularity, if the local Milnor fibre is a genus
zero surface with ezxactly two boundary components, the local monodromy is
either a positive or a negative Dehn twist.

Proof. — In this case, the local Milnor fibre sz is an annulus whose map-
ping class group is generated by the Dehn twist along the unique peripheral
loop. By Lemma 3.14 we have us = 1. Hence ¢F3 is either the positive or
the negative Dehn twist. O

3.3.2. Local Milnor fibre of genus one

We consider the case when the local Milnor fibre for a contractible adapted
neighbourhood of a cone-like singularity in f : M* — S? is a torus with » > 1
disks removed, say Fy = T?\ (D1 U---U D,). Again, let ¢p2 € Mod(F}) be
the local monodromy. By the Mayer-Vietoris sequence on 0Z* we have

— Hy(02%,7) —
— H\(T?,Z)" — Hy(My,,,Z) & Hi(S" x D', Z)" — H(0Z*,Z) — .
p
Since the boundary 0Z* is a homology 3-sphere, H 1(Ms,,,Z) is isomorphic
to Z".

Now we compute the homology group H; (./\/lqu2 ,Z) of the mapping torus.
Write Mg _, as the union of A = Fp2 x I; and B = Fp2 x I and take the
inclusion maps i : ANB — A, j: ANB < B, k: A< M,;_, and
l: B <= M, .. By Mayer-Vietoris we have ’

— Hi(AN B, Z) 0 1y (A,2) © Hy(B,Z) 27 Hy(M,,,,2) 2

Ho(AN B,Z) ) Hy(A,2) & Hy(B,Z) 2= Ho(M,,,,Z) — 0.

Notice that im . is isomorphic to ker(Hy(A N B,Z) Liid), Hy(A,Z) &
Ho(B,Z)) ~ Z. To ensure that Hy(My_,,Z) is isomorphic to Z", we require

that ker 0, ~ Z"~! and therefore
im(Hy (AN B,Z) Y7 H(A,2) @ Hy(B,2)) ~ 23+
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LEMMA 3.16. — Let f : M* — S? be a smooth map between a connected
closed oriented 4-manifold M* and the 2-sphere. Let p be a singularity of f
with a contractible adapted neighbourhood. Suppose that the local Milnor fibre
FZ? is a torus with a disk removed and consider the inclusion ¢ : Fg — T2.
Then the binding link K C 0Z* = S3 is either the trefoil knot or the figure-
etght knot. Furthermore, the local monodromy qi)ppz induces a mapping class

of the torus t.(¢rz) € Mod(T?) ~ SL(2,Z) which is conjugate to one of

i A

Proof. — We only prove the assertion of the local monodromy and a
complete proof has been introduced by Burde and Zieschang (see Proposi-
tion 5.14 in [5]).

The mapping class group of Fg is generated by the Dehn twists along
two intersecting loops «, 8 and the Dehn twist along the peripheral loop §.
With a careful arrangement, the peripheral loop is away from the others
and therefore the local monodromy is the composition ¢ F2 =T§ opp2 with
u € Z and ©r2 generated by the Dehn twists along «, . Thus, along the
inclusion ¢ : F2 < T?, the pushforward ¢, (¢ r2) is equal to the pushforward
t+(pFz). Fix the isomorphism between Mod(T?) and SL(2,Z) such that the
induced homomorphism Mod(F?) — SL(2,Z) sends T, (resp. Tj) to

1 0 1 -1
11 resp- o 1| )
Suppose that ¢.(¢r2) € Mod(T?) is expressed by A = [24] € SL(2,Z)

We take the basis of the homology group Hi (Fg) consisting of the cy-
cles which are parallel with a and 3, which further determines the bases of
Hy(A,Z), H(B,Z) and H,(ANDB,Z). The pushforward Dpz2s Hl(FPQ, Z) —
Hl(Fg, Z) is again expressed by A. The homomorphism Hi(ANB,Z) M
H(A,Z)® Hy(B,Z) is an isomorphism whose corresponding 4 x 4-matrix is

given by
I A
I I

satisfying det(] — A) = £1. Hence a +d =1 or 3. O

Conversely, we do have a connected closed oriented 4-manifold M* with a
singular fibration f : M* — S? that has the singularities as desired. Both the
trefoil knot and the figure-eight knot are defined by the links of polynomial
maps R* — R? with an isolated critical point at 0. An explicit realisation of
the trefoil knot was first given by Brauner (see [4]) who constructs a complex
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polynomial

(fBrauner : (C2 — (C) : (u, U) — u2 — 1}3.

Perron found the first realisation of the figure-eight knot in [30].
We end with the proof of Corollary B.

Proof of Corollary B. — Without loss of generality, we assume that
there does not exist any local Milnor fibre of genus 0 with only 1 boundary
components. By Corollary 3.15 and Lemma 3.16, the type of singularities
O(f1) = O(f2) consists of simple conjugacy classes of SL(2,Z).

All singular fibres are locally symmetric. If the local Milnor fibre is an
annulus, then a mapping class that commutes with the fibre monodromy
preserves this annulus up to isotopy. If the local Milnor fibre is a torus with
a disc removed, then no mapping class changes the local Milnor fibre up to
isotopy.

Any pair of singular fibres with conjugate fibre monodromies has local
Milnor fibres compatible with their fibre monodromies, so they have the
same local Milnor fibre up to isotopy. Therefore, there exists a local fibre-
preserving homeomorphism compatible with their fibre monodromies.

The corollary follows from Theorem C and Theorem 3.7. g

4. Theorem of R. Livné, complement and extension

In this section, G is the modular group PSL(2,Z) ~ Z/27 x Z/3Z, which
we represent as (a,b | a® = b = 1). Each element in G has the unique reduced
form as a word in {a, a?, b} where b’s and powers of a appear alternatively.
The length of an element g € G is defined as the length of its reduced form,
denoted by I(g).

Recall that elements in

S = {a,a®,b,s9 = a’b, 51 = aba, s5 = ba®, ty = ba,t; = a*ba’, ty = ab} C G

are “short”; the rest conjugates of short elements in G are called “long”,

which are expressed by Q@ 'a‘Q, Q7 'bQ or Q 'aba‘Q with € = 1,2 and
[(Q) = 1. The following diagram shows all conjugates of short elements and
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their conjugates with a, a? and b.

a a b a a
) 2 (_? o,
I a? ba 4 a?ba? 4 ab
Q'aQ Q7'a®Q Q@ le \_j/ \_j/
“LabaQ “1a2ba’Q

Note that there are nice circuits along sg, s1, s2 and tg, t1, 2. In fact, we
will see a lot of symmetric properties on them. For convenience, the sub-
scripts are regarded as elements in Z/3Z and represented by 0, 1,2 without
further explanations.

Recall that elements in
Sy = S U {bab, ba®b, a*ba, aba?, a*bab, ababa, baba?, ba*ba, a*ba*ba?, aba’b}

are “almost short”; the rest conjugates of almost short elements in G are
called “almost long”, which are expressed by

Q 'babQ, Q taba‘Q, QL aba Q or Q ta‘baha‘Q
with € = 1,2 and I(Q) > 1. The almost short elements correspond to six

conjugacy classes of G, five of which have been illustrated and the following
is the last one.

b

Q'ababaQ a?bab — ababa — baba?
o
gb b
ba*ba 3 a*ba*ba® 3 aba®b Q™ 'a?ba?ba’Q

b

Recall that elementary transformations R;, 1 < i < n — 1 on n-tuples in
G send (g1,-..gn) to

(g1, agif1,gi+179;+119igz‘+1a9i+2, ey Gn),
respectively. The inverse of R; is given by R, ! sending (g1,...,gn) to
(gla~~'7gi71,gigi+1g;1agiagi+2;"~:gn)~

Both R; and R, L are called elementary transformations. Especially, we will
neither apply R; if g; = 1 nor apply R;l if giy1 = 1, but use R;l and R;
instead respectively to avoid troubles.
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Elementary transformations introduce several elegant substitutions for
pairs of short elements. Here we list some substitutions in the following
graphs for readers unfamiliar with them.

(s2,81) (s, a) (a,8i+1) (ti a) (a,tit1) (t2,t0)
/ (82‘7 a2) e ((127 81‘,1) (tz‘7 112) b (az, t,ifl) \
(s0,52) (s0,b) —— (b, s2) (to,b) —— (b, t2) (to, t1)

\ (s2,b) —— (b, 50) (t2,b) —— (b,t0) /

(81, %0) (sistiv1) = (tiy1,si-1)
(siytic1) — (tix1,8i)

DEFINITION 4.1. — An n-tuple (g1, ...,gn) in G is said to be inverse-free
if, applying any finite sequence of elementary transformations, the resulting
n-tuple satisfies the following requirements:

(1) it contains no adjacent elements which are mutually inverse;
(2) it contains no sub-triple of the form (h,h,h) with h3 = 1.

For instance, (s1,t1), (a,a?), (b,b), (a,a,a) and their concatenations are
not inverse-free.

THEOREM 4.2 (Livné). — Let ¢1,...,gn be conjugates of s1 such that
g1---9n = 1. Then, the n-tuple (g1,...,9,) is Hurwitz equivalent to an n-
tuple (hi,...,hyn) with each h; short (i.e. the component h; is equal to one
of so, s1 and s3).

Moishezon showed a proof of Theorem 4.2 and introduced the following
complement in [27].

THEOREM 4.3 (Moishezon). — Let hy, ..., h, be such that each of h;, i =
1,...,n, is equal to one of sg, s1 and sy satisfying hy...h, =1. Then,n =0
(mod 6) and the n-tuple (hy,. .., hy) is Hurwitz equivalent to (sg,s2)™/?.

In this section, We first extend the above theorems for (g1, ..., gn) with

each g; conjugate to some short element, then we show a similar result for
(g1,---,9n) when each g; is conjugate to some almost short element.

4.1. Tuples of short elements

Recall the set of short elements is S = {a,a?,b, sq, 51, 52, t0, t1,t2}. We
first show that an inverse-free tuple of short elements cannot contain both
s; and t; for any (i,j) € (Z/3Z).
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ProproSITION 4.4. — Let g1,...,9, be short satisfying at most one of
them is equal to one of a, a®>, b and gy ...gn = 1. Suppose that (g1,...,gn)
is inverse-free. Then, either each of g;, i = 1,...,n is equal to one of
a,a?,b,sg,51,52 or each of g;, i = 1,...,n is equal to one of a,a®,b,tg,t1,ta.

Proof. — Assume that at least one of g1,..., g, is conjugate to so and
at least one of ¢1,...,g, is conjugate to to. The substitution of (s, txt1),
(tg+1,8k—1) and the substitution of (sg,tx—1), (tk+1,Sk) imply that the
tuple (g1,...,9n) can be transformed by elementary transformations into
(h1,...,hy,) withp,q > 1, p+q € {n—1,n} such that hy € {a,a? b,so, 51,52},
h; € {so, 81,82} fori =2,...,n—qand h; € {tg,t1,t2} fori =n—q+1,...,n
Let A be the set of elements in {hi,...,h,}, As = AN {so, 51,2} and
Ay = AN {ty,t1,t2}. The inverse-freeness requires that s; and ¢; cannot
appear together in A.

Assume that |Ag| = 1 = | A¢]. Then the product Ay ... h, is expressed by

hs“t” with h € {1,a,a2,b}, u,v > 1 and j # k. To ensure that (g1, ..., g»)
is 1nverse—free the product must be one of the following forms with u,v > 1.

h=1= s§t? = (a*b)“(a*ba®)",
3 = (a2b)" (ab)”,
sttty = (aba)®(ba)?,
syty = (aba)"(ab)"”,
suty = (ba*)“(ba)®,
5510 = (ba?)*(aba?)".
h=a=— asyty = a(a®b)“(a*ba?)’ = b(a®b)* " (a*ba?)",
asits = a(aba)*(ab)”,
assty = a(baa)®(ba)’.

h = a? = a’sity = a*(a®b )Y,
a’sity = a2(aba)“(ba)” ba(aba)**(ba)",
(

2 ugv
a“sqet; = a

~~
S
—
)
=

a*ba?)’ = a*(ba®)*"*(a*ba?)".

However, each of them cannot express 1, which contradicts the fact that
hlhn =4g1.--9n = 1.
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Assume that |As] = 1 and |A;| = 2. Pairs of the form (¢;,t;41) never
appear since the substitutions of (tg,t1), (t1,t2) and (t2,%9) imply a con-
tradiction with the inverse-freeness. If # 1, then the tuple (hq,...,hy) is
expressed by (h) e (sj)“ o (tj—1)" ®(tj41)" with h e {a,a,b}, u,v,w > 1 and
some j. The substitution of (a, s;), (sx_1,a) and the substitution of (a2, s,),
(sk+1,a?) reveal that h=b. However, the substitution of (b, sg), (s2,b), the
substitution of (b, s2), (s0,b) and the following substitutions

(b) @ (s1)" @ (to)" @ (t2)" — (b) ® (to)" @ (s1)" ® (t0)"
— (b) o (t2)" @ (o)™ @ (s1)"

further conclude that h = 1. Thus, g1...-9n = hi...h, is expressed by
sgtsty, sitoty or sytity each of which cannot express 1, which is a contra-
diction.

We have a similar argument for the case where |As| = 2 and | A;| = 1.
Hence either none of g1, ..., g, is conjugate to sg or none of gi,...,g, is
conjugate to ty. We finish the prove of the proposition. |

As an immediate consequence, we have Lemma 4.5.

LEMMA 4.5. — Let g1,...,gn be equal to sg, $1, S2, to, t1 orta satisfying
g1 ---9n = 1. Suppose that (g1,...,9n) is inverse-free. Then

n=0 (mod 6)
and the n-tuple (g1,...,9,) is Hurwitz equivalent to either (so,s2)™/? or
(to, t2)"™/2.
Proof. — By Proposition 4.4, either each g; is equal to one of sq, s1, S2,

or each g; is equal to one of tg, t1, to. By Theorem 4.3, the n-tuple can be
transformed by elementary transformations into either

(50, 52,50, 52, 50, 52) % or (Lo, t2, to, b2, to, t2)™/°. O

Note that sgsasps280s2 = totatotatots = 1 and in fact sextuples with al-
ternative s;’s and s;’s (resp. t;’s and ¢;’s) can be transformed into each other
by elementary transformations. In general, we will show the reduced form of
the product for a tuple with alternative powers of sg and sa (resp. powers of
to and t3). We will only prove Proposition 4.6 but omit the proof of Propo-
sition 4.7, which is quite similar. The idea comes from Moishezon (see [27,
p. 181-187]) but with a slight modification and a more subtle analysis.
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PROPOSITION 4.6. — Let (g1,...,gn) be a tuple of so, so withn > 1 and
take p,v > 1. Let T be the set of tuples of so, sa obtained from (g1,...,9n)
by elementary transformations. Suppose that each tuple in T satisfies the
following requirements:

(i) 4t starts with at least p so;
(ii) 4t ends with at least v sp;
(iii) 4t contains no consecutive sub-tuples of the form (sg,s2)3.

Then, the reduced form of gi...gn is given by (ba®)*~*bRb(a’b)*~1 with
some R € G.

PROPOSITION 4.7. — Let (g1,--.,9n) be a tuple of tg, to withn > 1 and
take p,v > 1. Let T be the set of tuples of tg, ta obtained from (gi,...,9n)
by elementary transformations. Suppose that each tuple in T satisfies the
following requirements:

(i) 4t starts with at least p to;
(ii) 4t ends with at least v ta;
(iii) 4t contains no consecutive sub-tuples of the form (to,t2)3.

Then, the reduced form of g1 ...gn is given by (ba)*~1bRb(ab)”~t with some
RedG.

Proof of Proposition 4.6. — Using elementary transformations on the
tuple (g1, ..., gn) we can get different resulting tuples in {sg, s2}, which form
the set 7. Suppose that (hq,...,h,) is the maximal among them according

to the lexicographical order given by sg < so. We write (hq,...,h,) in the
following form

—

I
—

(.o ha) = [T G20 o (s0)"

3
with Zi\;l(ui + v;) = n, where u; > pu, vy = v and u; > 0,v; > 0 for all
i=1,...,N.

Claim 1. — u; ,1=2,3,...,N.

=2
Claim 2. — vy > 2
Claim 3. — For i € {1,2,...,N — 2}, if v; = 1 then v;41 > 1.

Claim 4. — Fori € {2,3,...,N —1}, if v; = 1 then u; > 3 and u;41 > 3.

Claim 1 relies on the maximality of (hy,...,h,). Claim 2 uses the first
hypothesis. The third hypothesis guarantees both Claim 3 and 4. Now, set
Y; = (s0)" @ (s9)%+ for i = 1,..., N — 1, say it to be of the second type if
v; = 2, the first type if v; = 1. Claim 2 shows that Y7 is of the second type
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and Claim 3 reveals that there is no adjacent pair in the first type. Hence,
we are able to find sub-tuples Z1, ..., Zys of (hq,...,hy) such that each Z;,
j=1,..., M, is either

e equal to some Y; of the second type with i € {1,...,N — 1}, or
e the concatenation Y; e Y;q with i € {1,..., N — 2} where Y;; is of
the first type.

We can write (hi,...,h,) in the form

M
(s h) = (s2)" o [T 25 0 8™

For j = 1,...,M, if Z; is equal to some Y; of the second type, then
the product of components of Z; has the reduced form a?R;a? with some
R; € G. Indeed, Z; = (s0)" ®(s2)"** with v; > 2 and u;11 > 2, the product
of whose components is equal to (a?b)"~ta(ba?)*+ 71 If Z; = Y; ¢ Y; 11,
i€ {l,...,N — 2}, then the product of its components is given by

‘987 S;i+188i+18724i+2 _ (a2b>vi—1a(ba2)u,i+1—2a2(ba2)ui+2—2

with v;41 = 1, uj41 = 3, uj42 = 3 and v; > 2, which also has the reduced
form aQRja2 with some R; € G. Hence, g1 ...9n = h1...hy, has the form

“1HaRa Zp)on

with R; € G, j = 1,..., M where each of a*R;a? is reduced. O

4.2. Conjugates of short elements and tuples

Suppose that (g1,...,9n) is an n-tuple with each g; conjugate to some
short element (i.e. the component g; is conjugate to a, a, b or sy, t1). In
this subsection we show that, in the vast majority of cases, by successive
application of elementary transformations the n-tuple can be transformed
into an n-tuple of short elements.

LEMMA 4.8. — Let g1, g2, h, Q" € G be such that h = g1g2. Then both
(Q'h 1 g1hQ', Q" h ™ g2h@) and (@ hgih Q@ hgeh Q)

are Hurwitz equivalent to (Q'~'g1Q’, Q" ~1g2Q’).
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Proof. — Using Ry %, we transform
(Q/ilhilgthl, QlflhfnghQ/)

into (Q''g1Q’', Q" 'gy 'hQ’). The result is equal to (Q"'g1Q’, Q" '¢2Q")
as g; 'h = gy. Similarly

(Q'hg1h™'Q', Q" hgah ' Q)
can be transformed into (Q'~1g1Q’, Q" "1g2Q’) by applying R?. O
LEMMA 4.9. — Let e = +1 and suppose that (11,72) is equal to one of
{(a®ba,a™°), (a™¢, aba’), (ba™,a™ ), (a™ ¢, a™b), (a%, ba®), (a®b,a)}.

Let (g1,92) = (Q7'1Q, Q" '2Q) be a pair in G with Q € G and suppose
that Q=111 12Q is short. Then (g1, g2) is Hurwitz equivalent to a pair of short
elements.

Proof. — When 7175 = ab, since Q~'abQ is short, Q is either (a*b)¥as
or (ba=¢)!a¢ with k,l >0 and ¢ =0,1,2. If Q = a, then both Q~'7,Q and
Q~'712Q are short. The result follows from Lemma 4.8. When 7175 = ba‘ or
T1To = aba, the proof is similar. O

We introduce the following operations and their restorations on an n-
tuple (g1,...,9gn) of elements in G conjugate to some short elements.

Operation 1. — For i € {1,...,n— 1}, suppose that the reduced forms of
g; and g;11 are expressed by Qi_lriQi and Q;rllriﬂQiH with 7;, 741 € S,
Qi, Qit1 € G such that Q; = Q;41, (74, Tiy1) is listed in Table 4.1 and either
Qi; =1or ;741 =1 or both 7;, 7,41 are powers of a. Then, the operation is
a contraction as in Section 2.2 that replaces (gi, gi+1) with g;gi11.

Operation 2. — For i € {1,...,n}, suppose that g; = 1. The operation
moves the identical component to the rightmost position via elementary
transformations, removes it and reduces (g1,...,9n) to an (n — 1)-tuple.

Operation 1 is a contraction, whose restoration is introduced in Sec-
tion 2.1. The restoration of Operation 2 will simply add an identical element
on the right side of the tuple. The following proposition shows that, if we
use the technique introduced in Section 2.1 carefully, the resulting tuple is
under control.

PROPOSITION 4.10. — Let (g1,...,9n) be an inverse-free n-tuple of ele-
ments in G conjugate to some short elements such that g1 . .. g, = 1. Suppose
that we first apply the following operations successively on (g1,...,gn):

(i) the elementary transformation R;, but avoiding that g; is short and
9 119:gi+1 is long;
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Table 4.1. Some pairs (g;, gi+1) of short elements and the products g;g;+1.

zi R Ji+1 a a? b a’b aba  ba? ba a’ba® ab
a a? 1 b aba  ba®>  a%b
a? 1 a ab  ba a®ba? b
b 1 a? a
a?b a’ba®  a?® a 1
aba ab a 1
ba? b ba a 1
ba ba? b 1 a?
a’ba’? a?b 1 a?
ab aba a 1 a?

(ii) the elementary transformation Ri_l, but avoiding that g;41 is short
and gigi19; ' is long;

(iii) Operation 1;

(iv) Operation 2;

then apply restorations of Operation 1 and 2 in the reverse order. If all
components in the resulting tuple before restorations are short, then the initial
tuple is Hurwitz equivalent to the resulting tuple after restorations and further
Hurwitz equivalent to a tuple of short elements.

Proof. — Lemma 2.8 shows that the initial tuple is Hurwitz equivalent
to the resulting tuple after all operations and restorations. We suppose that
each component is short in the tuple before restorations.

Operation 1 may combine @ '7;Q and Q~'7;Q into Q~'7;7;Q with Q €
G and 7, 7; € S. By elementary transformations, the product is sent to a
conjugate of the form P~'Q~!'r;7;QP with some P € G. To restore the
operation, it is further rewritten as a pair

(P'Q™'mQP, PT'Q™';QP).
Suppose that P~'Q~'7;7;QP is short and (7;, 7;) is listed in Table 4.1.

When 7;7; € {a,a?}, the element QP must be a power of a. It is not
true that both P7'Q7'r;QP and P~1Q~17;QP are short in general, as
a conjugate of b with a power of a may be long. We list all exceptional
possibilities of (P7'Q™'7,QP, P7'Q~'7;QP) as below.

(ba?, aba?), (aba, a®ba), (ba, a’ba), (a*ba?, aba?),

(a®ba, a®b), (aba®, aba), (aba?, ab), (a*ba, a*ba?).
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However, each of them can be transformed into a pair of short elements by
at most two elementary transformations.

When 7;7; = b, the element QP must be a power of b. A conjugate
of a or a® with a power of b may be long. The exceptional possibilities of
(P7'Q7'm,QP, P~'Q11;QP) that one of the components is long are listed
as below.

(bab, ba?), (ba®b, ba), (ab, bab), (ab, ba?b).

Again, each of them can be transformed into a pair of short elements by an
elementary transformation.

When 7,7; = 1, we get P = 1. Assume that one of Q7'7;Q and Q~'7,Q
is long, the inverse-freeness of (g1, ..., gn) implies that 7, and 7; are powers
of a and @ is not a power of a. Due to the hypothesis that elementary trans-
formations never make short elements long, after all restorations, Q_lrﬂjQ
(as an additional identical element) will become a sub-tuple (hq,...,hy,)
with m > 2 such that hq,..., h,, are conjugate to the powers of a simulta-
neously. It contradicts the inverse-freeness. Thus, both Q7 '7;Q and Q7' 7;,Q
are short.

The remaining cases shown in Table 4.1 are covered by Lemma 4.9. Hence,
by successive application of elementary transformations, each of the compo-
nents of the resulting tuple is short. |

DEFINITION 4.11. — The S-complexity of an element g € G conjugate
to some element in S is defined as f(g) such that

Q) ifg=Q twQ is long, w € {a%,b,aba’le = 1,2}, Q € G
flg) = o
0 if g is short.

DEFINITION 4.12. — Let (g1,...,gn) be an n-tuple in G such that each of
gi, 1 =1,...,n, is conjugate to some element in S. A sequence of elementary
transformations (R;!,...,R;™), €1,...,€m € {1,—1}, is said to make the
sum of S-complexities of (g1,-..,9gn) strictly-smaller if, for each m’ < m,
the composition Rf;",' o---o R transforms (g1, ...,9n) into a tuple with the
same sum of S-complexities but Ri™ o --- o Ri' transforms (g1, ..,9n) into
a tuple with a smaller sum of S-complexities.

A sequence of elementary transformations that makes the sum of S-
complexities strictly-smaller never makes short elements long, as described
in Proposition 4.10(i) and (ii).

Let (g1,...,9n) be an n-tuple in G. For i = 1,...,n— 1, suppose that the

reduced forms of g; and g;11 are expressed by té? . tgi) and f(li) . f}l) with
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ki = Ug:), L = Ugivn)s 1) € {a,a®,b}, j = 1, k; and £ € {a,a? b},
j=1,...,1;. The reduced form of ¢;g;+1 is then either

e D et Y

where r; € G, I(r;) <1 and 0 < my; < Ky l;.

or t;fi) e tg,?iﬂri or rﬁ(n?iﬂ . .fx%

LEMMA 4.13. — Let (g1,...,9n) be an n-tuple in G such that each of
gi, 1 =1,...,n, is conjugate to some element in S and gy ...g, = 1. Let m;
be the same as above and set mg = m,, = 0 for convenience. Suppose that

(1) there is no pair of adjacent components g;, gi+1 of the reduced forms
Q7 '71Q, Q7 '71Q with Q € G and (7, 7i+1) in Table 4.1 such that
either Q; =1 or 7,741 = 1 or both T;, 7,41 are powers of a;

(2) there is no sequence of elementary transformations that makes the
sum of S-complexities Y, f(g;) strictly-smaller.

Then mg, ..., m, have the following properties.

(a) Fori=1,...,n—1,m; < 5(9'i2)+71 and m; < 7“97’*21)“,

(b) Fori=1,...,n, mj—1+m; > 1(g;) only if the reduced form of g; is
Q; ta%Q; with ¢; = 1,2, Q; € G and 1(Q;) > 0.

(¢) If mi—1 +m; <l(g;) for each of i =1,...,n, then n = 0.

Proof. —

(a). — When both g; and g;11 are short, since (g;, g;+1) does not figure
in Table 4.1, we check all possibilities and get that

<L g, el

When g; € § but g;+1 ¢ S, say
gir1 =Q; 1a%Q; or Q;'bQ; or Q;'a“ba”Q;
with ¢, = 1,2 and 1(Q;) > 1, therefore I(g;) < 3 < I(g;+1). Assume that
m; > %, then m; = I(g;) and I(g;) = 2. If I(g;) = m; = 2, as g;+1
is long, then 1(g;gi+19; ") < l(gir1) — 2, contradicting the hypothesis (2).
If I(g;) = m; = I(gix1) = 3, then the pair (g;,g;41) is either (s1,a?ba) or
(t1,aba?), which can be transformed into a pair of short elements by R2,
contradicting the hypothesis (2). If i(g;) = m; = 3 but I(g;+1) > 5, then

again 1(gigit19; ") < 1(gis1) — 2, a contradiction. Hence m; < l(g"'% <

U(git1)+1
S .

When ¢; ¢ S but g;11 € S, there is a similar argument.

When both g¢; and g;11 are long, suppose that their reduced forms are
Q;'w;Q; and Qi wit1Qis1
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with w;, wiy1 € {a,a?,b,aba,a*ba®}. Assume that 1(Q;) < I(Q;y1) without
loss of generality. Assume that m; > min{%, W} Therefore Q41
ends with Q;. Write

Qiy1 = @QiJrl and (g, gi+1) = (QflwiQmel@_lwiH@Qi)

Suppose that [(Q) = 0. We further assume that [(w;) < {(w;41) without
loss of generality. Since m; > 1(Q;)+ %, w;w;4+1 7 1 and one of w;, w41
is not a power of a, the pair (w;, w;1) must be either (a,a?ba?) or (a?, aba).

Therefore, l(gigi_ﬂgi—l) < U(git+1) — 2, contradicting the hypothesis (2).

Suppose that the element @ is of length at least 1. Therefore I(w;) <
(@_ w1+1é) and m; > M If l(w;) = 1, then m; > 1(Q;) + 1 and
l(gzglﬂgl D < Ugit1) — 2, contradlctmg the hypothesis (2). If I(w;) = 3
and [(Q'w;11Q) = 3, then (w;, @ w;41Q) is either (s1, aba) or (t1, aba?)
and therefore (g, gi1+1) can be transformed into either (Q;'a?bQ;, Q; '0Q;)
r (Q;labQi, Q;lei) by R?, contradicting the hypothesis (2). If I(w;) = 3

and l(éilw“_lé) > 5, then m; > Z(Qz) + 3 and l(gzgz—i-lgz_l) < l(gz+1) -2,
contradicting the hypothesis (2).

(b). — Suppose that m;_; +m; > I(g;) for some i =1,...,n — 1.

Suppose that ¢g; € S. If g; is of length 2 (i.e. the element g; is one of
S0, S2, to and t3), then m;_y = m; = 1. Therefore, one of g;_1, giy1 is
equal to b, contradicting Table 4.1. If g; = b, then one of g;—1 and g¢;41 is
long starting and ending with b. Therefore, either l(g;lgi,1gi) < 1(g;—1) or
1(g:igi+19; ") < U(giv1), contradicting the hypothesis (2). If g; = a“ba® with
€; = 1,2, then one of m;_; and m; is equal to 2 and thus one of g;_1, git+1
is long. It is impossible as long elements are of length at least 3.

Suppose that g; is long. If g; = Q;lei, then either g;_1 = bQ; or g;41 =
Q; b, but thus either g;_1g:9;,", = bQ;(Q; 'bQ:)Q; b = b or g gigit1 =
bQi(lebQ,»)leb = b If g; = Q;'a%ba*Q; with ¢; = 1,2, then either
m;_q1 = l(Q7 ab) or m; = 1(baQ;). It implies that either gi—1 = ba"%Q;
or git1 = Q; a La=¢ib, thus either g;_ 19i9;_ 1 = a%%b or gl+1glgi+1 = ba.
Both cases contradict the hypothesis (2).

We conclude that either g; = a® or g; = Q;la“Qi.
(¢). — Assume that n > 1.

By (2), when m;_1 +m; = l(g;), then g; = Q;laeiQi with ¢, = 1,2 and
1(Q;) = 0.If g; = a® is short and assume that m;_; = 0, m; = 1 without loss
of generality, then g; 1 is either a“*ba® or a long element starting with a*. If
gi = Q7 1a%Q; is long and m; 1 = 1(Q;), to avoid I(g;_1g:g; ) < I(gi) then
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gi—1 must be longer than Q; ! contradicting the hypothesis that m;_; =
1(Q;). Therefore, neither m;_; nor m; is equal to [(Q;) and in particular,
mi—1 +m; < l(gi)

The proof of (2) and the above observation show that there is no possi-
bility to fully reduce g; or g;+1 in the product ¢;g;+1 and m;—1 +m; < I(g;)
if g; # a. They imply a contradiction that ¢ ...g, # 1. O

Now we introduce the main result in this subsection.

THEOREM 4.14. — Let g1, ..., gn be such that each of them is conjugate
to some element in S and g1 ...g9, = 1. Then, the n-tuple (g1,...,9n) is
Hurwitz equivalent to either

o (hi,...,h,)e(so,to)™* 8(a,a*)™ e (b,b)™ e(a,a,a)™ e(a?, a?,a?)™
with > 0, mg, Mg, My, o, 11 = 0, p+ 2(mg + mg + my) +
3(no + n1) = n such that (hi,...,h,) is an inverse-free p-tuple of
short elements, or

o (ki kit ke kN 0 byl b, 1) with s, >0, 25 + 3t = n,
ki,...,ks € G, l1,...,; € G andl? =1 foreachj=1,...,t.

Proof. — We first attempt to make the tuple inverse-free. Applying any
finite sequence of elementary transformations to (g, ..., gn), if we get a pair
of mutually inverse elements or a triple of the form (I,1,1) with [ € G and
I3 = 1, then we move it to the rightmost position via elementary transfor-
mations and the resulting tuple is the concatenation of a shorter tuple and

either a pair or a triple. By induction on the length, we suppose that the n-

tuple (g1,...,9n) is transformed into the concatenation of (hq,...,h,) and
(kv kit oo ke, k0 Dy, o Ly Ly ) with st > 0, p+2s + 3t = n
such that l]?-’ =1 for each j =1,...,t where (hi,...,h,) is inverse-free.
We will always use the notation m; to indicate the length of the reduced
part in hhiq for i =1,..., 0 — 1 and set mg = m, = 0 as before.
To prove the theorem for (h1,...,h,), we use induction on
o
(M, > f(hi), 1), - l(h@)
i=1
and apply the following operations on (h1,...,h,). If there exists a pair of

adjacent components which has the reduced form (Q7'7,Q,Q™'7;Q) with
Q € G, (74, 7j) in Table 4.1 such that either Q@ = 1 or 7;7; = 1 or both
Ti, T; are powers of a, then we replace them with their product and reduce
(hi,...,hy,) toa (u— 1)-tuple. If there exists an identical component, then
we move it to the rightmost position and remove it. If there exists a proper
sequence of elementary transformations that can make >, f(h;) strictly-
smaller, then we apply it.
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When each of the above operations fails, the resulting tuple, still denoted
by (h1,...,h,), satisfies all hypotheses in Lemma 4.13. Suppose that p > 1
and there exists some i = 2,..., u—1 such that h; = Q;laef‘Q withe; = 1,2,
Z(Ql) >0and m;_1 =m; = Z(Ql) + 1. Then, either

o (i) = (aba,a%), o
e the previous component h;_; is long and I(h;—1) > I(h;).

In the second case, we first assume that [(h;—1) = I(h;). Then h,_y =
Q;laéiQi = h;, which is a contradiction. Hence, {(h;—1) > I(h;) and, to
avoid l(hi_lhi_lhi) < I(h;—1), we claim that h;_; must end with a*Q; and
start with Q;la_ef‘. In both cases, l(h;lhi,lhi) < l(hi—1) and we are able
to reduce (h1,...,h,) to an n-tuple, say (ha,... ,Eu), such that >, f(h;) =
>, £(hy), 1(hy) = U(hy) for 1 < j <i—1 but I(hi—1) = I(h;) < I(hi—1) via
the elementary transformation R;_;.

The induction does not stop unless u is equal to 0. Due to Proposi-
tion 4.10, by restoring the operations and applying more elementary trans-
formations, we get a resulting p-tuple of short elements that can be obtained
from the original (hy, ..., h,) via elementary transformations directly. Hence,
the n-tuple (¢1,...,9n) can be transformed into

h’llv"'7hluak17k.1_17"'7k37k;17[17113[17"'7ltalt7lt)

(

with p,s,t >0, u+ 2s + 3t = n, l? =1 for each j = 1,...,t such that each
of hi, i =1,...,p is short and (hy,...,h),) is inverse-free.

Suppose that p > 0. There is always a pair (h;, h}) of components with
1 <i# j < pthat is a generating set of G. By Lemma 2.6, each pair of the
form (k,k7!) = (Q " wQ, Q" 'wtQ) with Q € G, w,w™! € {a,a?b,s0}
in the resulting tuple can be transformed into (w,w~1!). There is a similar
argument for each triple (I,1,1) with [> = 1. Hence, by elementary transfor-
mations, the n-tuple can be transformed into a tuple of short elements. [

Theorem 4.14 is surprising. In fact, there are infinitely many pairs (gs, g¢)
in G up to Hurwitz equivalence such that gsg: = 1 and g,, g¢ are conjugates
of so and ty respectively. However, all triples (g4, gs, gs) that gogprgs = 1
and g4, gs, gs are conjugates of a, b, sy respectively, are mutually Hurwitz
equivalent. In particular, for any @ € G, we have

(Q7'aQ, Q 'aba’*Q, Q tabaQ) ~ (a,b, s3).
4.3. Classification of tuples up to Hurwitz equivalence

Given ¢1,...,9, and hy,...,h, € G conjugate to elements in S such
that g1...9n = h1...h, = 1, suppose that the n-tuples (gi,...,gn) and
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(h1,...,hy) have the same number of components in each conjugacy class.
In this subsection, we show that the tuple (¢1,...,¢gn) is Hurwitz equivalent
to (h1,...,hy,) in most cases. In particular, we introduce a normal form for

tuples of elements conjugate to some short elements that only depends on
the numbers of components in every conjugacy classes.

The following theorem is a partial result, which interprets the projective
global monodromy of an achiral Lefschetz fibration. Matsumoto presented a
slightly different theorem in [25, Theorem 3.6].

THEOREM 4.15. — Let g1,...,9, € G be such that p of them are con-
jugates of sg, ¢ = n — p of them are conjugates of to and g1...g, = 1.
Then,

(1) if p > q, then p— q¢ = 0 (mod 6) and the n-tuple (g1,...,gn) s
Hurwitz equivalent to (sg,s2)P~9/2 e (s0,10)%;

(2) if p < q, then ¢ — p = 0 (mod 6) and the n-tuple (g1,...,9n) i
Hurwitz equivalent to (to,t2)97P)/% & (s0,19)P;

(3) if p = q, then the n-tuple (g1,...,9n) s Hurwitz equivalent to
(ky, k7t .,k,,,k:;l) where each of kj, j = 1,...,p, is conjugate
to sg.

Proof. — Theorem 4.14 reveals that, by elementary transformations, the
n-tuple can be transformed into either (ki, k', ..., ke k7!) with s =p=¢q
or (hi,...,h,) e (s0,t0)™* with p > 0, mg > 0, pt + 2mg = n such that
(hi,...,h,) is an inverse-free p-tuple of short elements. On the latter, by
Lemma 4.5, we get p = 0 (mod 6) and (hy,...,h,) can be transformed
into either (sg,s2)"/? or (tg,t2)*/? by elementary transformations. Hence,
mst = min{p, ¢} and p = |p —q|. O

In general, we have Theorem 2.16, whose proof will be given at the end.

LEMMA 4.16. — Let g1,...,gn be a?, sg, 81 or sy such that only one of
them is equal to a® and gy ...g, = 1. Then, n =3 (mod 6) and the n-tuple
(91, --,9n) is Hurwitz equivalent to

(a?, so, s52) ® (50, 82)(n_3)/2-

Proof. — Since a cyclic permutation of an n-tuple in G can be obtained
by a finite sequence of elementary transformations as in Lemma 2.2, we may
assume that g; = a? without loss of generality. Since ¢1...g, = 1, then
n > 3. If n = 3, then the pair (g192, g3) must be equal to (¢;,s;) with some
j and therefore (g1, g2,93) is given by (a?, sj11,s;) as at; = sj41. Other-
wise, n > 4. We replace g; and go with their product, which is one of ¢y,
t; and to. The n-tuple (g1,...,9,) is replaced by an (n — 1)-tuple whose
first component belongs to {tg,t1,t2} and the rest components are sg, s1
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or sp. By Theorem 4.15, (n — 1) — 2 = 0 (mod 6) and the (n — 1)-tuple
can be transformed into (sg, s2)"3)/2 e (s9, o) by successive application of
elementary transformations. We note that the original n-tuple (g1,...,gn)
must be inverse-free and, after combining sy and ¢y into 1 and removing
it, we make the result an inverse-free tuple of short elements. By Proposi-
tion 4.10, it implies a sequence of elementary transformations sending the

n-tuple (g1,...,gn) into (s, a?, s1) ® (s0,52)"~3)/2. In any case, the substi-
tutions of (sg, $2), (81, 0) and (82, s1) transform the n-tuple (g1, ..., g,) into
(a2, 50,52) ® (50, 52)"%/2. O

The following lemma can be proved similarly and we omit the details.

LEMMA 4.17. — Let g1,...,9, be a, ty, t1 or ta such that only one of
them is equal to a and g1 ...g, = 1. Then, n = 3 (mod 6) and the n-tuple
(91,---,9n) is Hurwitz equivalent to

(a,t2,t0) ® (to,t2)(n_3)/2~

LEMMA 4.18. — Let g1,...,9n be b, sg, s1 or sa such that only one of
them is equal to b and g1 ...9, = 1. Then, n = 4 (mod 6) and the n-tuple
(g1,---,9n) is Hurwitz equivalent to

(b, 50, 52, 50) ® (50, 52) " /2.

Proof. — Without loss of generality, we assume that all the n-tuple in
{b, s0, 1, $2} resulting from the successive application of elementary trans-
formations on (g1,...,9,) contain no consecutive sub-tuples of the form

(50, 82)3.

Take the n-tuple in {b, sg, s1,52} that starts with b and contains the
minimal number of components equal to s; among all resulting tuples that
we can get using elementary transformations on (g1, ..., gs), still denoted
by (g1,.-.,9n). We write it as

no 12 i

®) o [ 152" o (50 | o [ TTs0) o | TL52)" @ (s0)

Jj=1 i=1 j=1

with p >0, Aq,..., A, =21, ng,n, 20, ng,...,nu—1 = 1 and u; 5, v;; =0
fori =0,...,p, 5 =1,...,n; where u;; > 1 for j > 1 and v;; > 1 for
j < n;. The minimality further requires that u;; > 1 for¢ =1,...,x and
Vip, = 1fori=0,...,p0—1.

Assume that (g1,...,9,) does not start with (b, s2) or (b) e (s9)"! e
(52, 80), nor end with sg or (s2,50) @ (s2)“*"#. Then, up 1 = vy, =0, either
no < 1 or uge > 2 and either n, < 1 or v,,,1 > 2. Applying Propo-
sition 4.6 with the above restrictions, we obtain that the reduced form of
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g1 -.-9n is not equal to 1, which is a contradiction. Hence, using the sub-
stitution of (s, s2, so) and (sa2, g, s2) and a cyclic permutation if necessary,
the n-tuple is transformed into an n-tuple in {b, sg, s1, s2}, still denoted by
(91,---,9n), such that (g1,92) is equal to either (b, ss) or (sg,b). We com-
bine g; and go into their product and replace (g1,...,9,) with an (n — 1)-
tuple in {a?, sq, s1, 82} starting with a?. By Lemma 4.16 we get n — 1 = 3
(mod 6) and, by successive application of elementary transformations, the
(n—1)-tuple can be transformed into (a2, so, s2)® (50, 52)*~4/2. By Proposi-
tion 4.10, we obtain an n-tuple of the form either (b, so, 50, 52) ®(s0, 52)("~4)/2
or (sg,b,50,52) ® (50,52)™ /2 from (gi1,...,9,) using elementary trans-
formations. The substitution of (sg,s2,s0) and (s2,So,s2) completes the
proof. O

Again, the following lemma is similar and we omit the proof.

LEMMA 4.19. — Let g1,...,9n be b, tg, t1 or ta such that only one of
them is equal to b and g1 ...gn, = 1. Then, n = 4 (mod 6) and the n-tuple
(91,---,9n) is Hurwitz equivalent to

(b) to; t27 tO) o (IJ/'O7 t2)(n_4)/2.

LEMMA 4.20. — Let g1,...,9n be a, sg, s1 or so such that only one of
them is equal to a and g1 ...g, = 1. Then, n =5 (mod 6) and the n-tuple
(g1, --,9n) is Hurwitz equivalent to

(a, s0, So, S2, S0) ® (S0, 52)("*5)/2_

Proof. — Without loss of generality, we assume that each n-tuple in
{a, s, 81, 82} that results from the successive application of elementary trans-
formations on (g1,...,9,) contains no consecutive sub-tuples of the form

(50,82)3.

Take the n-tuple in {a, so, s1,s2} that starts with a and contains the
minimal number of components equal to s; among all resulting tuples that
we can get using elementary transformations on (g1, ..., gn), still denoted
by (g1,...,9n). Assume that

(91792) 7é (CL,SO), (gn;gl) 7& (SQaa’) and (gnaglng) 7& (Sl,CL,Sl)-
Then, the n-tuple (g1,...,gn) is written as

no 123 4

(@ e { TL(s2)"07 o s | o { TT(s0)™ o [ TL(s2)" @ (s0)™
j=1 i=1 j=1
with > 0, Ai,..., A, =21, ng,n, =20but ng+n, 21, ng,...,n,1 21

and u; j,v;; = 1 fori=0,...,pn, j =1,...,n;. Applying Proposition 4.6,
we notice that the reduced form of g;...g, is not equal to 1, which is a
contradiction. Hence, one of the above requirements cannot be fulfilled.
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If either (g1, 92) = (a, o) or (gn, g1) = (82, a), using a cyclic permutation
if necessary, then the pair (g1, g2) is equal to either (a, sg) or (s2, a). We com-
bine g1 and g9 into a single b and replace (g1, ...,g,) with an (n — 1)-tuple
in {b, so, s1, s2} starting with the only b. By Lemma 4.18, we get n — 1 =4
(mod 6) and there exists a finite sequence of elementary transformations
that transforms the (n — 1)-tuple into (b, s, 52, 59) ® (50, 52)*~)/2. Proposi-
tion 4.10 implies that (g1,...,gn) can be transformed by elementary trans-
formations into either

(a750750752750) b (80352)(’”75)/2 or (527CL,50,$2,50) b (50352)(’”75)/2'

If (gn, 91, 92) = (81,0, 1), by a cyclic permutation and an elementary trans-
formation, then the n-tuple can be transformed into (s1, o, @, 93, - -, gn—1)-
We combine s; and sy into a, further combine a and a into a single a?
and replace the n-tuple with an (n — 2)-tuple in {a?, so, 51, s2} starting with
the only a?. By Lemma 4.16, we get n — 2 = 3 (mod 6) and the (n — 2)-
tuple can be transformed by elementary transformations into (a2, sg, s2) @
(s0,82)(~%)/2. By Proposition 4.10, the n-tuple (gi,...,gn) can be trans-
formed into (s;41, 84, a, S0, S2) (S0, 52)("~5)/2 with some j. The substitutions
of (so, 82), (81, 80), (82, s1) and the substitution of (sg, s2, S0), (s2, S0, $2) con-
clude the lemma. g

Once again, the following lemma is similar and we omit the proof.

LEMMA 4.21. — Let g1,...,gn be a?, tg, t1 or ta such that only one of
them is equal to a®> and gy ...gn = 1. Then, n =5 (mod 6) and the n-tuple
(91,---,9n) is Hurwitz equivalent to

(a’za to, t2, to, to) ° (to’ {;2)(”75)/2.

Proof of Theorem 2.16. — By Theorem 4.14, we are able to transform
(g1,---,9n) into either

(klak;17'"ak57k;17l17ll7l17"'7ltalt7lt)
with s, >0, 25+ 3t =n and I3 = 1 for each j = 1,...,t, or
(hi,...,hy) e (s0,t0)"" e (a, a®)™e o (b,b)™ e (a,a,a)™ o (a2,a2,a2)"1

with g > 0, mgs, ma, mp, no, N1 2 0, g+ 2(mg + ma +myp) + 3(no +n1) =
n such that (hi,...,h,) is an inverse-free u-tuple of short elements. The
former case just so happens to be the first case of Theorem 2.16, therefore
we consider only the latter and suppose that u > 0. As (hy, ..., h,) is inverse-
free, it contains at most two a’s, at most two a?’s, at most one b and it does
not contain both a and a®. Let A be the set of elements in (hq, ..., h,). Let
1, and I, be the numbers of components conjugate to some power of a and
b respectively. Take As = AN {sg, s1,$2} and A; = AN {tg, 1,12}
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Step 1. — Suppose that I, + I, < 1. Proposition 4.4 shows that ei-
ther A or A; is empty. Thus, by Lemma 4.5, 4.20, 4.17, 4.16, 4.21, 4.18
and 4.19, by elementary transformations the inverse-free tuple (hi,...,h,)
can be transformed into one of the following partial normal forms.

(1) (80, S92, 80, S2, S0, SQ)H/6, (to,t27t0,t2,t0,t2)u/6 where n = 0 (mod 6);

(2) (a?, 50, 52)®(s0,52) " 3/2 and (a, ta,ty)e(tg, ta) =3/, where u = 3
(mod 6);

(3) (b, 50, 52,50) ® (50, 52)#=9/2 and (b, tg, o, to) ® (to, t2)#~4/2, where
p=4 (mod 6);

(4) (a, 0,50, 52,50)®(50,52)#2)/2 and (a?, to, t2,to, to) ® (to, t2) /2,
where ¢ =5 (mod 6).

Step 2. — Suppose that I, =1 = I, and a® € A with ¢ = 1. It is clear
that p > 3.

If there exists an element h’ € A equal to one of ba¢, ah, a~ba™¢ then,
using elementary transformations, we place a® and h’ in adjacent positions
that form a pair (a¢, h’). The pair is further replaced by the product a¢h’
and we replace (hq,...,h,) with a (u —1)-tuple, say (y1,...,y,—1). Each of
Y1, .- .,Yu—1 is short, one of them is equal to b and each of the rest is neither
a power of a nor b. By Theorem 4.14, Proposition 4.4 and Lemma 4.18, 4.19,
the (1 — 1)-tuple (y1,...,yu—1) can be transformed into either

(ba 50,52, SO) ° (507 52,50, 52, S0, 82)u o (307t0)v
or
(b7 t07t27t0) L4 (thtQathtQath t2)u L4 (3071/.0)71

with u,v > 0 and 5+ 6u + 2v = . Proposition 4.10 shows that (hi,...,h,)
can be transformed into one of them with exactly one of the following ad-
justments: replace an sq (resp. sq, to, t2) with (a,t2) (resp. (a,t1), (a?,s1),
(a?,50)). The substitutions

(b, a,ta, s2,50) — (b, ta, s2,a,s0) — (b, a,to, S0, S0)
b,a,so) e (to, s0) — (a,b, s2) e (sg,to),
b, so,to,a, so) — (b,a, so) ® (so,t0)
a,b,ss) e (so,t0),

ba stslaath) — (bv 82,slatlaa)

(ba S0, @, tla SO)

(bv 50, 52, (L,tg)

o~ o~ o~ o~ o~ o~

.
N
.
.
— (b, s2, S0,t0,a) — (a, b, s2) ® (s0,t0),
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(ba 30752a50).(a7t275275()’32750’32) — (ba 30752aa7t2).(80752a 50752750752)7
(ba SO,823SO).(807a7t1,80782780782) — (SOaba sOaa,tl).(SOMSQ; 50782,80782)a
(b7 50, 52, 30) L4 (a7t27t0) — (b7 50,52, SO) L4 (t07a7t2)

— (ba 50,52, a7t2) L4 (SOatO)

and their symmetrical manners further transform the resulting p-tuple into
one of the following partial normal forms.

(1) (a,b,s2) e (so,s2, S0, 52, 50, 52)" ® (s0,t0)" " with u,v > 0;

(2) (a,tz,to) e (b,to, ta,to) ® (to, ta, to, ta, to, ta)" @ (so,t0)" ! with u >0
and v > 1;

(3) (a2,b,t) @ (to,t2,to, ta,to, t2)" ® (s0,t0)" ! with u,v > 0;

(4) (a?, s0,52) ® (b,s0,52,50) ® (50,52, S0, 52, S0, 52)" ® (s0,t0)" " with
u>0and v > 1.

Otherwise, one of As and A; is empty. If there exists an element h' €
A equal to either ba™¢ or a~¢b then, using elementary transformations,
we place a® and A’ in adjacent positions such that their product is equal
to b. The pair is further replaced by a single b. Therefore, the resulting
(1 — 1)-tuple has exactly two different components conjugate to b and the
rest are either conjugates of sy or conjugates of ty. Applying Theorem 4.14,
we have shown in Step 1 that such an (p — 1)-tuple can be transformed by
elementary transformations into either (sg, s2, S0, 52, 50, 52)#~3)/6 @ (b, ) or
(to, ta, to, ta, to, t2)#~3)/6 & (b,b). Proposition 4.10 implies that (hq,..., hy)
can be transformed into a concatenation of either

(50752)(u—3)/2 or (to,tg)(“‘3)/2

and one of the following triples, which can be further transformed into a
result consistent with the previous case.

(0’7 S0, b)a (a2a t2) b)7 (527a7 b)7 (t07a27b)7 (ba a, 50)5 (b7 012,1‘;2), (ba 52, a/)a (b7 th a/z)'

Step 3. — We consider the last case left in Step 2 where A = {a®, b, a®ba®}
and I, = 1.

In fact, we have u > 4. By elementary transformations we place a® and
two different aba’s in adjacent positions that form a triple of the form
(a®ba, af, aba®). The triple can be further transformed into (a¢ba, a=¢b, a®).
‘We combine the first two components into a® and then rewrite the triple as
a single a~¢. The resulting (u — 2)-tuple is composed of a~¢, b and several
aba®. Step 2 has shown that such a tuple can be transformed by elementary
transformations into either

(a,t2,t0) ® (b,to,t2,t0) ® (to, t2, to, t2, to, t2)"
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or

((12, 50, 52) ® (b, 50, 82, 50) ® (S0, 52, S0, 52, 50, 52)"
with v > 0. By Proposition 4.10, elementary transformations can transform
(h1,...,hy,) into either

(tj, tj+1, a2, tg, to) [ ] (b7 to, tQ, to) o (t07 t27 ?f()7 t2, to, tg)u
or
(s5,8j—-1,a,50,52) ® (b, S0, 52,50) ® (50, 52, S0, S2, S0, 52)"
that can be further transformed into the result in Step 2 using

(tj tjs1,a” ta,to) @ (b to, ta,to) — (a® ta,to, ta,to) ® (to, t2,t0, b)
(a b, to) e (to,ta,to, ta, to, t2),
(sj,8j—1, 0, 50,52) ® (b, 0, 52,80) — (a, S0, 52, 50, 52) ® (S0, S2, S0, b)
— (a, b, s2) ® (S0, S2, S0, S2, S0, S2).
Step 4. — Suppose that I, = 2.

We place the powers of a in adjacent positions and replace them with
their product. The resulting (1 — 1)-tuple contains exactly one power of a
and can be transformed by elementary transformation into one of the eight
partial normal forms introduced in Step 1 and 2. By Proposition 4.10, one can
simply rewrite the powers of a as pairs of powers of a and obtain eight more
partial normal forms. Replacing the inverse-free tuple (hi,...,h,) of short
elements by a partial normal form in the resulting tuple of the elementary
transformations on (g1, ..., gn), we finish the proof of the theorem. O

4.4. Conjugates of almost short elements and tuples

Suppose that (g1,...,9n) is an n-tuple with each g; conjugate to some
almost short element (i.e. the component g; is conjugate to either a, a2, b, s1,
t1 or ababa). In this subsection, we first show that by successive application
of elementary transformations the n-tuple can be transformed into

m

1@ 71Qi, ., Q; 7, Qi)

i=1
withm > 1, Y% n;=n, Q; € G, 7,; € Sy such that 7;1...7,,, = 1 for
i=1,...,mand j =1,...,n;. For the concatenation of (gl, ..., gn) and a

fixed tuple, we further Show a result extremely similar to Theorem 2.16.
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Table 4.2. Some pairs (g;, g;+1) of almost short elements and the prod-

ucts gigi+1-

g git1 a a? b a?b aba ba? ba a?ba? ab bab
a a? 1 ab b a’ba  aba® aba ba® a’b
a? 1 a a?b ab ba a?ba®  a?ba  aba® b
b ba ba? 1 ba’b a? a bab  ab
a?b a?ba  a’ba®  a? a 1 b
aba aba? ab a 1 aba?b
ba? b ba  ba’b  bab a baba? 1
ba ba® b bab 1 ba’ba a? ba’b
a?ba? a?b a?ba a’bab 1 a?
ab aba  aba® a 1 a? a?b
bab ba b ba? ba’b
ba’b ba? ba b 1
a’ba a?ba®  a®b a? a
aba? ab aba a? a
a’bab a’ba a?b  a?ba?®
ababa aba ab
baba? bab ba? ba
ba’ba ba’b ba? ba
a?ba?ba? a?b a’ba’
aba?b aba? aba ab a
g git1 ba*b  a’ba aba’? abab  ababa baba? ba*ba  a’ba’ba®  aba’b
a ba a’ba’? bab
a? aba ba? ba’b
b a?b aba® a?ba
a’b ab ba? aba
aba a? a’b ba?
ba? a? aba a?b
ba a ab a’ba?
a?ba? a ba ab
ab b a’ba’? ba
bab 1 a
ba’b bab a?
a’ba 1 a?ba’ba’ b aba?
aba? ababa 1 a’ba b
a’bab a® a’baba? 1
ababa aba? aba?b 1
baba? b ba’ba 1
ba’ba b 1 baba?
a’ba’ba’ a’ba 1 a’bab
aba?b 1 ababa
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The first part of this subsection follows a similar line as in Section 4.2.
Proposition 4.29 is an analog to Proposition 4.10. Lemmata 4.22, 4.23, 4.24,
4.25, 4.26, 4.27 and 4.28, which have technicalities referring to Lemma 4.9,
will be used to prove Proposition 4.29.

We introduce some pairs of almost short elements in Table 4.2 as in Sec-
tion 4.2. Broadly speaking, each pair of almost short elements in Table 4.2
behaves well under the contraction operation introduced in Section 2.2
which is explained in lemmata 4.23, 4.24, 4.25, 4.26, 4.27 and 4.28. Besides,
each pair of almost short elements not in Table 4.2 satisfies the inequality

m; < min{%, w} which is the first step for Lemma 4.32 (a). (See

Lemma 4.13 for the precise definition of m;.) Furthermore, Table 4.2 has to
fulfil some irregular requirements which appear in the proofs of Lemma 4.32
and Theorem 4.33. Unfortunately, we do not have high conviction in sift-
ing out the pairs of almost short elements. What is worse, Theorem 4.33
needs a patch based on Lemma 4.22 which considers a triple of almost short
elements.

LEMMA 4.22. — Let (11,72, 72) be a triple of the form
(a™ bab,ba‘b,baba™ ) or (ba”“ba‘,a‘, aba”b)

with € = 1. Set (g1, 92,93) = (Q7'11Q,Q 'Q,Q 1m3Q) with Q € G and
suppose that Q 1mi1m3Q € So. Then (g1, 92,93) is Hurwitz equivalent to a
triple of almost short elements.

Proof. — We only consider (71,72, 72) = (a~“bach, ba®b, baba~¢).

Since Q' mmQ = QacQ is almost short, Q is one of 1, a*€, b and
a*¢b. In the case that Q = b, the triple (g1, g2, g3) = (ba~“ba, a, a*ba~°b) is
already of almost short elements. In the cases that Q = a° or ab, the lemma
follows from the following substitutions:

(a™ma,a” “a%, a” “13a°) = (ababa’, a”baba’, a” “bad)

I, (a”ba‘ba‘,a”“ba” “ba” “ba” “ba‘, a” “bab)

EiZN (a™“ba‘ba’, a”ba‘b, baba™°) LN (a™“ba’b, ba®b, baba™c).
(ba™T1a%b, ba™ “T2ab, ba” “T30b) = (ba®babab, ba” baba‘b, ba”ba)
Ri=N (bababab, ba™ ba’, a*)

fa, (ba™ba’, a”ba™ba™*, a®) SN (ba™¢ba‘, a®, a“ba™b).

For the rest two cases, the approach is similar. (|
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LEMMA 4.23. — Let (11,72) be a pair of almost short elements in Ta-
ble 4.2 such that 7172 is a power of a. Set (g1, 92) = (Q7'11Q, Q™ Q) with
Q € G and suppose that Q= 11 72Q is almost short. Then (g1, g2) is Hurwitz
equivalent to a pair of almost short elements.

Proof. — The pair (71, 72) must be one of
(cf6 afe), (b,ba®), (ab,b),
(a”ba" %, aba™ ), (a~ba,a”ba™ ), (ba®, a” ba‘), (a“ba™, ab),
(a™°b,ba™¢), (aba’, a™°b), (ba™¢, aba®),
(a‘ba™ b, bab), (bab,ba™“ba*)
and @ € {1,a%,a ¢, b,ab,a” b} with e = +1. Now we fix e = £1.

When (71,72) = (a=¢,a™), the pair (g1,¢92) is a pair of almost short
elements. When one of g1, g2 is conjugate to b and the other one is con-
jugate to a°b, either (g1,g2) is a pair of almost short elements or (g1, ¢2)
is equal to one of (a®b,ba™bacb), (ba®ba—b,bac), (ba~ba‘b,baba~b) and
(ba=cba—b,ba‘ba”cb). In this case, the substitutions given by the follow-
ing graph show that (g1, g2) can be transformed into a pair of almost short
elements via elementary transformations.

Ry Ry
(b, a®b) ——— (a®b, ba=“ba‘b) —> (ba~ba‘b, ba~ba~°b)
R T LR
(ba<,b) (R— (bacba=b,ba) «—— (ba=“ba~b,baba~°b)
1 1

When both of g1, g2 are conjugate to a~¢b, either (g1, g2) is a pair of almost
short elements or (g1, g2) is one of (ba“bacb,ba™¢), (a™ b, ba®bab) which can
be transformed into (ba~¢, a~b) via Ry, R] ! respectively. When one of g1,
go is conjugate to a® and the other one is conjugate to a=“ba™ba™¢, either
(g1,92) is a pair of almost short elements or (g1, g2) is one of

(ba™ba®, a” ba‘ba®), (a®ba‘ba™ ¢, aba™ D),

(a™¢baba‘,a”ba” ba™ ), (a” “ba” “ba™ , ababac),

(ba‘baba™ b, ba‘ba™¢), (a~“ba‘b, ba~ba‘bab),

(ba™“ba™“ba™ b, bababa™ D), (ba™ babab,ba”ba” “ba™ D).
In this case, the following graphs show that (g1, ¢2) can be transformed into
a pair of almost short elements via elementary transformations.

Rl Rl
(bacb,baba®) — (ba=“bac, aba‘ba®) —— (a~“baba‘,aba"ba™*)
R T LR,

(a“ba™<b, ba®b) <R— (a“baba™¢, aba™b) «—— (a~“ba~“ba~¢, aba‘ba~¢)
1 1
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R1 Rl
(ba‘ba™¢, a®) <— (bababa™<b, baba™¢) <= (ba~ba~ba~ b, baba‘ba~cb)

Rl 1R,
(a, a=cbacd) ? (a=bacb, ba=bacbacb) = (ba~babah, ba~ba~ba~°b) 0

1 1
LEMMA 4.24. — Let (11,72) be a pair of almost short elements in Ta-

ble 4.2 such that Ty72 = b. Set (g1,92) = (Q'11Q, Q™ Q) with Q € G and
suppose that Q= 1172Q is almost short. Then (g1, g2) is Hurwitz equivalent
to a pair of almost short elements.

Proof. — The pair (71, 72) must be one of
(a®,a™b), (ba™¢, a%), (a™ b, bad),
(batb,ba™¢), (baba™¢, aba™ ), (a~“ba‘, a”“ba‘b)
with € = +1 and Q € {1,a,a?,b,ba,ba?}. The lemma follows from the fol-
lowing graphs with ¢ = +1.

R R
(af, aba®) = (abac,a=“ba‘ba®)  (a~cbac,a “ba~“ba~¢) > (a=“ba=cba™¢, ababa™ba~¢)
BT LR By 1 1R

(a=b,a¢) «— (a~baba‘,a™cb) (a®babac, a=ba®) «—— (a‘ba‘baba™¢, a“baba®)
1 1

R R
(b,ba‘ba™¢) - (batba=¢, abababa¢) (a~ba‘,a”“bacd) 1, (a=¢bacb, a=ba‘b)

R LR RiT LR,
(a®ba™b, b) «—— (aba~baba™¢, aba=b) (ba~cba‘,a ba®) «—— (ba~“bah, ba~ba)
1 1 D
LEMMA 4.25. — Let (11,72) be a pair of almost short elements in Ta-

ble 4.2 such that 7179 = ba‘b with e = £1. Set (g1,92) = (Q7'11Q, Q™1 1Q)
with Q € G and suppose that Q~1Ti7Q is almost short. Then (g1,go) is
Hurwitz equivalent to a pair of almost short elements.

Proof. — The pair (71, 72) must be one of
(a®,a”ba‘d), (baba™¢, a®), (b, ab), (ba®,b), (ba™¢,a~b), (ba™ b, ba™b)

with e = +1 and @ € {1,b,bac, ba™¢, bah, ba—“b}. The lemma follows from
the following graphs.

R R
(bab, ba=cba®) —— (ba~“ba®, a~“ba‘ba®) — (a=baba®, a=ba~ba~¢)
RiT 1R
(a“ba™<b, bacd) «—— (ababa™¢, aba™b) «———— (a"ba"ba"¢, a“baba*°)
1 1

R R
(a¢,abacb) ——— (a~bach, ba— bacbab) —— (ba~babach, ba— ba—ba—<b)
R T LR,

(bacba™¢, a®) «——— (bacbacba~cb,ba‘ba™¢) «—— (ba~“ba~cba~ b, ba‘ba‘ba™b)
1 1
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Ry Ry Ry
(b, a°b) —> (a®b,ba~“ba‘b) — (ba™ba‘b, ba™ba~b) (ba™¢,a=b) — (a~ b, ba‘ba‘b)
BT LR BN
(bac,b) «— (ba‘ba=<b,bac) «— (ba~cba~cb, ba‘ba—*b) (babacb,ba™*)
R1 Rl D
LEMMA 4.26. — Let (11,72) be a pair of almost short elements in Ta-

ble 4.2 such that Ty75 = a~ba® with e = +1. Set (g1, 92) = (Q7'11Q, Q™' 1Q)
with Q € G and suppose that QT 7Q is almost short. Then (g1,9g2) is
Hurwitz equivalent to a pair of almost short elements.

Proof. — The pair (71, 72) must be one of
(a%,aba®), (a™ ¢, bac), (a”ba™ " a™ ), (a™ b, a)
(b,ba™ba’), (a”bab,b), (a” ba"ba" ¢, aba™ ), (aba™ ¢, a“baba®)

with e = +1 and @ € {1,a%,a"¢,a"“b,a “ba®,a~“ba"¢}. The lemma follows
from the following graphs.

R R
(a%, a®ba®) —> (acba®, a~“ba‘ba®) (a¢,ba™¢) = (ba™¢, a“bacba™*)
RiT LR R LR
(a=¢b,a¢) «— (a~“ba‘ba’,a™b) (aba’, a) (R— (aba‘ba¢, aba‘)
1 1

R R
(a®ba¢, aba™cb) LN (a®ba™<b, baba—b) (b, bacba*) — (ba=bac, ababa~ba)

Bi1 LR Byl LRy
(bacba™¢, aba™¢) «—— (baba~ b, ba‘ba~¢) (a=bab, b) «—— (a~baba™bac, a~“ba‘b)
1 1

R
(a™“ba, a=ba"ba"¢) SN (a=“ba=“ba™¢, ababa~ba~*)

RiT LR
(a®babac, a~ba) «———— (a“ba‘ba~ba~°, a*bacbac)
1 O
LEMMA 4.27. — Let (11,72) be a pair of almost short elements in Ta-

ble 4.2 such that 71710 is one of a‘b, ba® and a~“ba™¢ with ¢ = £1. Set

(91,92) = (Q7'1Q,Q Q) with Q € G and suppose that Q™11 m2Q is
almost short. Then (g1,g92) is Hurwitz equivalent to a pair of almost short
elements.

Proof. — Since Q™ '7172Q is almost short, the element Q is equal to either
(172)FaS or (1172)"la® with k,1 > 0 and ¢ = 0,1,2. When @ = aS, the only
exceptional cases that at least one of Q7' Q, Q@ 'Q is not almost short
is that (71, 72) is equal to one of

(b, ba‘d), (ba®b,b), (a~ b, ba™b), (ba™ b, ba™*)
with € = £1, where both (a™¢71a%, 6™ 2a®) and (a°T1a™ ¢, am2a™¢) can be
transformed into pairs of almost short elements by applying either R; or
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Ry'. In general, Lemma 4.8 shows that (g1, g2) can be transformed into a
pair of almost short elements. O

LEMMA 4.28. — Let (11,72) be a pair of almost short elements in Ta-
ble 4.2 such that 179 is almost short and conjugate to ababa. Set (g1, ga2) =
Q7 '1Q,Q Q) with Q € G and suppose that Q=11 12Q is almost short.
Then (g1,g2) is Hurwitz equivalent to a pair of almost short elements.

Proof. — Since 1175 is almost short and conjugate to ababa, it must be
one of a~¢bab, ba~ba® and ababa® with ¢ = +1. When 179 = a~ba®b,
since Q717 72Q is almost short, the element @ is either (a~“ba‘b)¥aS or
(a=bab)*(a‘b)a® with k € Z and ¢ = 0,1,2. Lemma 4.8 induces that it
suffices to suppose that

Qe{l,aa “a b,a” ba’,a” ba”}.
Besides, (71, 72) is one of
(a™ba™% a” D), (a”baba™°, a‘ba™ D).

Each possible (g1, g2) is either a pair of almost short elements or transformed
into a pair of almost short elements by RI—LI. When 7175 = ba™“ba or a“baba®
we have similar arguments. ]

We introduce the following operations and their restorations on an n-
tuple (g1,...,9gn) of elements in G that are conjugate to some almost short
element.

Operation 1. — For i € {1,...,n — 1}, suppose that g; = Q7 17;Q and
giv1 = Q7 '741Q with Q@ € G and (7, 7i41) listed in Table 4.2. Then,
the operation is a contraction as in Section 2.2 that replaces (g;, gi4+1) with
9igi+1-

Operation 1. — Fori € {1,...,n—2}, suppose that g; = Q7 '7;Q, gi11 =
Q '7i11Q and giy2 = Q' 742Q with Q € G and the triple (7, Tit1, Tit2)
is equal to either

(a®bab, bab,baba®) or (aba’b,ba’b, baba).

Then, the operation is a contraction as in Section 2.2 that replaces
(9is 9i+1, Gi+2) With gigit19i12.
Operation 2. — For i € {1,...,n}, suppose that g; = 1. The operation

moves the identical component to the rightmost position via elementary
transformations, removes it and reduces (g1, ..., gs) to an (n — 1)-tuple.

Operations 1 and 1’ are contractions, whose restorations are introduced
in Section 2.1. The restoration of Operation 2 will simply add an identical
element on the right side of the tuple.

- 196 —



Classification of torus fibrations over S2 up to fibre sum stabilisation

PROPOSITION 4.29. — Let (g1,-..,9,) be an n-tuple of elements in G
which are conjugate to some almost short element such that g1 ...g9, = 1.
Suppose that we apply the following operations successively on (g1,...,Gn):

(i) elementary transformations;
(ii) Operation 1;
(iii) Operation 1';
(iv) Operation 2;

then apply the restorations of Operations 1, I’ and 2 in the reverse order. If
each component in the resulting tuple before restorations are almost short,
then the initial tuple is Hurwitz equivalent to the following tuples:

(a) the resulting tuple after restorations;
(b) the concatenation of some tuples of the form

(Q71T1Q7 QilTQQa ERR QileQ)

withm>1, Q € G and 11,...,T;m € Sy such that 71 ...7,, = 1.

We emphasise that Proposition 4.29 does not require an inverse-free tuple
(91,---,9n) in G as in Proposition 4.10. Besides, an elementary transforma-
tion is allowed to transform a pair into such that has a bigger sum of Ss-
complexities. That is why we cannot transform it into a tuple of almost short
elements but get a concatenation of several tuples of almost short elements
each with a diagonal conjugacy.

Proof. — Lemma 2.8 shows that the initial tuple is Hurwitz equivalent
to the resulting tuple after all operations and restorations. We suppose that
each component is almost short in the tuple before restorations.

We revisit the introduced operations. Operation 1 may combine Q~17;Q
and Q~'7;Q into Q'7;7;Q with Q € G and 7, 7; € Sa. By elementary trans-
formations, the product becomes a conjugate of the form P*IQ’lTiTjQP
with some P € G. To restore the operation, we further rewrite it as

(P'Q'mQP, P'Q '1;QP).
Operation 1’ is similar.

If Operation 2 has never been used, the proposition follows from lem-
mata 4.23, 4.24, 4.25, 4.26, 4.27, 4.28 and 4.22. In general, suppose that
P7'Q7'7;7;QP = 1. Then P =1 and the restoration replaces the identical
element with (Q~'7;Q, Q’lTj Q). We counsider the remaining restorations on
(13, 7;) instead. O
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DEFINITION 4.30. — The Sy-complexity of an element g conjugate to
some element in Sy is defined as f2(g) such that

1Q) if g = Q 'wQ is almost long
with @ € G, w € {ba‘b,aba™ ¢, aba’, ababa‘le = 1,2};
fal9) = 1/2  if g € {ababa,a’*baba’};
0 otherwise.

DEFINITION 4.31. — Let (g1,...,gn) be an n-tuple in G such that each of
gi,© =1,...,n, is conjugate to some element in Sy. A sequence of elementary
transformations (R;!,...,R;™), €1,...,€m € {1,—1}, is said to make the
sum of Sa-complezities of (g1, ..., gn) smaller if Rf: 0--+0 R:ll transforms
(g1,---,9n) into a tuple with a smaller sum of Sa-complexities.

LEMMA 4.32. — Let (g1,---,9n) be an n-tuple in G such that each of g;,
1=1,...,n, is conjugate to some element in Sy and g1 . ..g, = 1. Let m; be
the same as in Lemma 4.18 and set mg = m,, = 0 for convenience. Suppose
that

(1) there is no pair of adjacent components g;, gi+1 of the reduced forms
Q7 '71Q, Q '111Q with Q € G and (1i,7;41) in Table 4.2;

(2) there is no sequence of elementary transformations that makes the
sum Y. f2(gi) smaller.

Then m;, i =0,...,n have the following properties.

(a) Fori=1,...,n—1,m; < % and m; < w,

(b) Fori=1,...,n, mj_1 +m; = l(g;) only if the reduced form of g;
is either Q;la“Qi or Q;la“baeiba”Qi with ¢, = 1,2, Q; € G and
1(Qs) 2 0.

(¢) If mi—1 +m; <l(g;) for each of i =1,...,n, then n = 0.

Proof. —

(a). — When both g¢; and g;41 are almost short, since (g;, g;+1) does

not figure in Table 4.2, we check all possibilities and get that m; < l(g%

U(git1)+1
S .

)

When g; € S; but g;11 € Sz, we have concluded that g; ;1 = Q~'wQ with
w € {bab, a®bac, abac, a®baba |e = 1,2} and Q € G such that [(Q) > 1.
In particular, {(g;+1) = 5 > l(g;). Assume that m; > % Suppose that
[(g;) = 2. Then m; = 2 and the symmetry of g;11 implies the contradic-
tion l(gigiﬂg;l) < U(git1) — 2. Suppose that I(g;) = 3. Then m; = 3.
The symmetry of g;11 and the fact that I(w) > 3 imply the contradiction

1(9igiv19; ") < 1(git1) — 2. Suppose that I(g;) = 4. Then g; = aba=b
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or ba‘ba~¢ with ¢; € {1,2}. Therefore m; = 3 or 4. If I(Q) = 1 and
gi = aba~ b, then m; = 4 and l(gigiﬂgi_l) < U(gi+1) — 2, contradicting the
hypothesis (2). If I(Q) = 1 and g; = ba®ba™%, then g;11 = a“ba+1ba~*
with €41 € {1,2} and l(gigiﬂgi_l) < U(gi+1) — 2, contradicting the hypoth-
esis (2). If I(Q) > 2, then we again get 1(gigiv19; ') < I(git1), contradict-
ing the hypothesis (2). Suppose that I(g;) = 5 and then m; = 4 or 5. As
gi = a®baba’, m; must be 5. Therefore, if I(Q) > 2 then we get the con-
tradiction l(gigiﬂg;l) < U(gi+1). If (@) = 1 then g;11 must be a~ba~“ba*
but the following substitution makes the sum of Sp-complexities smaller and
induces a contradiction.

(9i, giv1) = (a“ba® ba’, a™ba™“ba‘)
— (a”ba”ba’, a”“ba‘b) — (a~“ba‘b, ba™ D).

We have a similar argument when g;11 is almost short but g; not.

When both g; and g; 41 are almost long, suppose that their reduced forms
are Q; Lw; @, and Q- +11 w;+1Qi+1 and assume that without loss of generality
1(Qi) < UQi41). Assume that m; > min{%, W} Therefore Q;+1
must end with ;. Write

Qiy1=QQi and (gi,9i11) = (Q; 'wiQs, Q; ' Q™ wi11QQs).

Suppose that I(Q) = 0. The assumption on m; contradicts Table 4.2. Suppose
that [(Q) > 1. Therefore {(w;) < 5 < I(Q 'w;4+1Q) and m; > %. If
I(w;) = 3 then m; > 1(Q;) + 3 and l(gigi+1g;1) < U(git+1) — 2, contradicting
the hypothesis (2). If I(w;) = 5 and [(Q w11 Q) = 5, then

(9i9i11) = (Q; 'wiQi, Q' Q™ wi11QQy)
= (Q; 'a“ba“ba Q;, Q;  a”“ba"“ba Q;)
whose sum of Sy-complexities can be smaller using elementary transforma-

tions. If I(w;) = 5 and [(Q 'w;41Q) > 7, then Ugigis19; ") < U(giv1) — 2,
contradicting the hypothesis (2).

(b). — Suppose that m;_; +m; > I(g;) for some i =1,...,n— 1.

Suppose that g; € Ss. If g; = b then either m;_1 =0, m; =lorm;_1 =1,
m; = 0. Therefore either g;_; ends with b or g; 1 starts with b. Table 4.2
shows that either g;_; or g;41 is almost long, starts and ends with b. Hence
it implies the contradiction either l(gigiﬂgi_l) < l(gi41) or l(gi_lgi_lgi) <
1(gi—1). If i(g;) = 2, then one of g;_1, ¢g;+1 must be b, which is impossible
based on Table 4.2. If I(g;) = 4, then either g;—1 = a“-1b or g;y1; = ba“i+
with €_1,€;+1 € {1,2}, which is impossible based on Table 4.2. If I(g;) = 3
and g; = a“ba® with ¢; € {1,2}, then either g;_; = ba™% or g;11 = a”“b.
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If I(g;) = 3 and g; = a“ba™“ with ¢; € {1,2}, then either g;_1 = ba™ or
gi+1 = ab. Both are impossible again based on Table 4.2. There are only
two possibilities left: either g; is conjugate to a power of a or g; = a®ba ba.

When g; is almost long, g; is one of
Q 'babQ, Q raba"Q, Q  aba’ Q,Q aba ba Q
with ¢, € {1,2}, Q € G and I(Q) > 1. If g; = Q 'a%ba*Q or g; =
Q la‘ba=Q then either g;y1 = Q" ta"%b or g;11 = Q tab. Therefore
g;_llgigiﬂ € {Q1ba*Q, Q~'bQ} which is a contradiction.

We conclude that g; is either Q;laE"Qi or Q;laef‘baeiba”Qi withe; = 1,2
and [(Q;) > 0.

(c). — We assume that n > 1 and suppose that m;_; +m; = l(g;) for
some 2 < i < n— 1. By (2), g; is either Q;laEiQi or Q;lafibaﬁiba‘iQi with
€ = ].,2 and Z(Qz) 2 0.

If g; = a® and suppose that m;_1 = 0, m; = 1, then g;,; is either one of
aba®ba®, a®ba~ b, a”“ba"ba"% or an almost long element starting with
a® and ending with a~¢. However, g;+1 cannot be a~“ba~"“ba™ since the
elementary transformation R, ! makes the sum of Sy-complexities smaller.

If g; = Qi_lafi » with 1(Q;) > 1, then either g;_1 = Q; or g;+1 = Qi_l,
which implies the contradiction either g;_1g;g;_ 11 =a or 9¢_+11 Gigi+1 = a“.

If g; = Q ta%bafba“Q with 1(Q) > 0, then either g; 1 = ba=“Q or
giy1 = Qla=%b. Therefore Table 4.2 denies the case of Q = 1 and, when
Q # 1, either gi_lgig;ll = a‘ba’b or gijrllgigiﬂ = ba®¢ba, which is a
contradiction.

The assertion (b) and the above observation show that m,;_1 +m; < 1(g;)
if g; # a®. They further imply a contradiction that ¢ ... g, # 1. O

Now we state the main result in this subsection.

THEOREM 4.33. — Let g1, ..., 9y be such that each of them is conjugate
to some element in S and g1 ...g, = 1. Then, the n-tuple (g1,...,9n) is
Hurwitz equivalent to

M@ 7i1Qir - Q7 i, Q)
=1

withm > 1, Yt n; =n, Q; € G and 7, ; € So such that 7,1 ...T;n, =1
fori=1,... mandj=1,...,n;.

Proof. — We will always use the notation m; to indicate the length of
the reduced part in h;h;y1 for ¢ = 1,..., 4 — 1 and set mg = m, = 0 as
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before. To prove the theorem for (gi,. .., gn), we use the induction on

<n,_2'f2<gi>,wgl>, y .,z<gn>>.

and apply the following operations: If there exists a pair of adjacent compo-
nents of the form (Q~ ' Q,Q '7Q) with Q € G and (71, 72) in Table 4.2,
then we replace it with the product Q17 72Q and reduce (g1, ...,g,) to an
(n — 1)-tuple. If there exists a triple of consecutive components of the form

(Q 'a™babQ, Q™ babQ, Q~ *baba Q)

with Q € G, € = £1 as introduced in Operation 1/, then we replace it with
Q'a‘Q and reduce (g1, . . ., gn) to an (n—2)-tuple. If there exists an identical
component, then we move it to the rightmost position and remove it. If
there exists a sequence of elementary transformations that makes Y, fo(h;)
smaller, then we apply it.

When each of the above operations fails, the resulting tuple, still denoted
by (g1,---,9n), satisfies all hypotheses in Lemma 4.32. Suppose that n > 1
and there exists some i = 2,...,n — 1 such that m;_1 +m; > (g;).

When g; = a% with ¢; = 1,2, Table 4.2 reveals that either g;_; is one
of ba=¢ba‘, a~“ba~“ba"%, a“ba“ba“, or g;_1 is an almost long element
starting with o~ and ending with a“. Meanwhile, either ¢;;; is one of
a“ba=%b, a~“ba"“ba", a“ba“ba‘, or g;11 is an almost long element
starting with a¢ and ending with a~%. The triple (g;—1,9i,¢i+1) cannot
be (ba™“ba,a a“ba"“b) due to Operation 1’. Therefore, either (g;_1, g;)
can be transformed into (g;_1,9;) = (a,a"%g;_1a%) with fo(gi—1) = f2(g:)
but l(gz—l) < l(gi—1)~

When ¢; = ba‘b with ¢, = 1,2, Table 4.2 reveals that either g;_1 =
a”“ba“b or g;—1 is almost long starting with ba~“ and ending with a“b.
Meanwhile, either g;11 = baba™% or g;41 is almost long starting with ba®
and ending with a=¢b. The triple (g;—1, g:, gi+1) cannot be

(a=“ba“b, ba*b, baba™ )
due to Operation 1'.

Therefore, the tuple (g;—1, ¢, gi+1) can be transformed into (g;—1, Gi, Gi+1)
with fo(gi—1) + f2(gi) + f2(gir1) = f2(Gio1) + fa(gi) + f2(Git1), 1(giz1) =
I(gi-1), Ugi) = Ugi), Ugiv1) = U(gix1) but either I(g;—1) < [(gi—1) or
HGiv1) <U(gitr)-

When g; = Qi_lae’?Q with ¢; = 1,2, I(Q;) > 2, we have m;_1 = m; =
1(Q;)+1and I(g;—1) > I(g:). To avoid l(gi_lgi_lgi) < 1(gi—1), gi—1 must end

with aQ; and start with Q; 'a~%. In this case, I(g; 'gi_19:) = I(gi_1) and,
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using the elementary transformation R;_, we are able to reduce (g1, ..., gn)
to a new n-tuple, say (¢1,...,9gn), such that Zj falgj) = Zj f2(g;), U(g;) =
1(g;) for 1 <j <nandj¢&{i—1i} but l(gi—1) = U(g:) < I(gi-1) = 1(gi)-

When g; = Q; "a“ba‘ba“Q; with ¢; = 1,2, Q; € G and 1(Q;) > 0, then
mi;—1=m; = Z(QZ) + 3. If l(glfl) = l(gl) = l(giJrl), then

(gi-1,9i gir1) = (Q7 "a“ba“ba™“ Q;, Q; " a“baba” Q;, Q; " a”“baba” Q;)
that can be transformed into a triple with a smaller sum of Sp-complexities
via the following substitution.

(9i-1,9i Giv1)
—)(Q;lae"'bae"’baeiQi, Q—la—€7‘,ba€7‘,ba€iQi’ Q—la—eibaeibaeiQi)

(@ a " ba%ba" Qi Qb b~ ba " ba“ Qy, Q7 "a”“ba ba” Q;)

%

—>(Q;1a_€" baba® Q);, Q;la_” baba® Q;, Q;la_ei ba“ibQ;).

If 1(gio1) = U(gi) < U(gir1), then g1 = Q; 'a~“ba“wa baQ; with
the word w starts and ends with b. Therefore, by elementary transformations
the triple can be transformed into

(Q; 'a“bwba™“Q, gi-1, 9:)
with a smaller sum of Ss-complexities, which induces a contradiction. If
1(gi—1) > l(g;) then again using the elementary transformation R;_; we
are able to reduce (g1, ...,9,) to a new n-tuple, say (g1, ..., dn), such that
225 2(95) = 22, f2(95), Ugs) = U(g;) for 1 < j < nandj¢&{i—1,} but
Ugi-1) = U(g:) <U(gi-1) = U(gi)-
The induction does not stop unless n is equal to 0. Due to Proposi-

tion 4.29, by restoring operations and applying more elementary transfor-
mations, we get a resulting n-tuple of almost short elements that can be

obtained from the original (g1,...,¢g,) via elementary transformations di-
rectly. (|
COROLLARY 4.34. — Let ¢1,...,9n be such that each of them is con-

Jugate to some element in Sy and g1 ...9, = 1. Let (g1,-..,9,,) be a tuple
containing a generating set. Then, the tuple (g1,...,gn)® (g1, .-, b)) is Hur-
witz equivalent to (hy,...,hy) e (g, ..., g5,) where (hy,..., hy) is an n-tuple
of almost short elements.

Proof. — The corollary follows from Theorem 4.33 and Lemma 2.6. O

Recall that Fi3 = (b, b)%e(a?bab, tg, s1)>. Theorem 2.17 and Theorem 2.18
show that we are able to construct the normal form of (g1, ..., g,)e Fi3 that
depends only on the number of components in each conjugacy class as in
Theorem 2.16. We prove them using the following.
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THEOREM 4.35. — Let g1,...,9, € PSL(2,Z) be conjugates of a, a2,
b, aba, a®ba® or ababa satisfying g ...gn, = 1. Suppose that m of them are
conjugates of ababa. Let (v1,...,v.) be a tuple containing a generating set,
and let (vi,...,v.) be a (b,b,b,b)-expanding tuple whose components are
conjugate to a,a?,b, sy orty. Then,

(g1, gn) @ (V] .., vL) @ (v1,...,v.)
is Hurwitz equivalent to
(hi,..., hn) e (a®bab, ba?ba)(M3TH/2 o (V1,5 0e)s

where all components of (hy,...,hy) are conjugate to a, a®, b, sg, to, ababa
and only 3 — u of them are conjugate to ababa, where p =3 —m if m < 3
and p = (m+1) mod 2 otherwise.

Proof. — We assume that (vf,...,v.) = (b,b,b,b) without loss of gener-
ality. Rewrite (g1,...,9n) ® (b,b,b,0) ® (v1,...,v.) as

(hi,...,hi) e (b,b) e (vy,...,0v.) e (a®bab,baba)’,
with (hy,...,hk) = (91,--.,9n,b,b) containing at least one component con-
jugate to b, with £k = n+2 and [ = 0. Following Corollary 4.34, we transform
(h1,...,hx) into a tuple of almost short elements that contains at least one
component of the form either b, a?ba or aba?.

We first apply the following inductions on & when m — 2] > 3.

Suppose that there exist two components, say h; and h; with ¢ # j,
such that both of them are conjugate to ababa and h;h; = 1. We move
h; and h; to the rightmost positions. Since (v1,...,v.) contains a gener-
ating set, by Lemma 2.6, they are further transformed into a pair of the
form (a?bab,ba’ba) by elementary transformations on (gi,...,g,) ® (b,b) e
(v1,...,v:). Therefore, we get the following tuple

(hi,... . hx_s) e (b,b) e (v1,...,v.) e (aZbab, baba) !
where (7L1, e ,iNzk_g) is further transformed into a tuple of almost short ele-
ments.
Suppose that with a pair (75, Tapaba) €
(b, a®bab), (b, ba*ba), (b, baba?), (b, aba?b),

(aba?, ababa), (aba?, a*ba*ba?), (aba?, baba?), (aba?, abab),

(a®ba, ababa), (aba, a*ba*ba?), (aba, a*bab), (a*ba, ba>ba)
there exist some components of the form 7, and at least two components of

the form 7,pqpq- Using elementary transformations we gather them together
and obtain a pair of mutually inverse elements via the following substitution.

-1 -1 -1
(Tb7 Tababa Tababa) ” (Tababm b, Tababa) > (Tababm Tababa TabababTababa)~
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The pair of mutually inverse elements is further moved to the rightmost
position and transformed into (a?bab, ba®ba). The resulting tuple again has
the expression with a lower k.

Once the above induction stops but m—2[ > 3, there is at most one almost
short element conjugate to ababa, say T.pqp, that appears more than once in
(h1,...,ht). Take a proper 7, € {b, a®ba, aba®} such that (7, Tapapa) belongs
to the above set of pairs. Transform the extra pair (b,b) into (73, 7,) with
the help of (v1,...,v.). Again we gather all components of the form 7,papq in
(h1, ..., hi) together with an additional 73, using elementary transformations
and apply the following substitutions:

-1
(Tb7 Tababay + - 7Tababa) ? (Tababa’ b, Tababay - - - 7Tababa)

-1 -1
— (Tababa’ < Tababa? b, Tababas - -+ » 7-ababa)'

We make all mutually inverse elements within the above resulting tuple
pairs of the form (a?bab, ba?ba) and move them to the rightmost positions. By
elementary transformations the tuple (g1,...,gn)® (vf,...,v.) e (v1,...,vc)
has been finally transformed into

(h1,...,hi) e (v1,...,v.) @ (a2bab, bazba)m//Q,

where (hi,...,hy) is a tuple of almost short elements containing at most
three components conjugate to ababa and m —m’ < 3. O

Proof of Theorem 2.17 and Theorem 2.18. — We only prove Theo-
rem 2.17 while the proof of Theorem 2.18 is similar. Since (a®bab,ty,s1)
contains a generating set, Theorem 4.35 has shown that the concatenation
(915 ---,9n) ® F13 can be transformed into

(Ri,..., hp) e (a*bab, baQba)(m_3+”)/2 o (a®bab, ty,51)>,

where p is determined by m, only 3 — p components of (hy,...,h, ) are
conjugate to ababa and the rest are conjugates of a, a2, b, sg or tg.

Consider each of ¢ = 1,2,3 in turn. Let h, be the first component
in the tuple (hq,...,h, ) conjugate to ababa. Since the first triple of the
form (a2bab,ty, s1) within the concatenation contains a genearting set, by
Lemma 2.6 we can transform (hq, ...,y ) into a tuple with a simultaneous
conjugation such that h, = ba®ba Therefore we are able to make the a-th
component in (hy,...,h, ) and the first component in the triple a pair of
the form (a%bab, ba?ba). Hence (hy, ..., h,)e(a?bab, tg, s1)*~" is transformed
into (h},...,h.,) e (a?bab,tg,s1)>"" e (a?bab,ba’ba) with n” =n’+1. O

n
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5. Stable classification vs. unstable classification
5.1. Hurwitz equivalence fails without stabilisation

We give some examples of global monodromies which are Hurwitz equiv-
alent up to stabilisation, as in Theorem B and Theorem C, but fail to be
Hurwitz equivalent. This illustrates why it is necessary to consider fibrations
up to the fibre-connected sum.

Example 5.1. — Let f; be an achiral Lefschetz fibration which has a
global monodromy of the form (—A%2B,—BA,—A?B,—BA) and let f, be
an achiral Lefschetz fibration which has a global monodromy of the form
(-A?B,—BA,—ABA, A2BA?). Though f; and f, have the same type of
singularities, these two global monodromies are not Hurwitz equivalent.

Proof. — Indeed, the following graph shows all resulting tuples in the
group PSL(2,Z) from (sg,to, So,to) using elementary transformations.

+1 +1
I 0

(50,t0,to, S0)
B m
R /D C\ R

RE!
(50, t0, S0, to) ¢ (S0, 50, t0,t0) RQﬂ (to, to, S0, S0) «— (o, 50, %0, 50)
2

1i1 (to, 50, 50, to) ;1

R R

In particular, one cannot transform (sg, to, S0, to) into (so, to, s1,t1). O

Ezample 5.2. — Let (b, b,a?bab, ba*ba) and (aba?, a?ba, a*bab, baba?) be
tuples in PSL(2,7Z). We claim that for arbitrary positive integer N,
(b, b, a*bab, ba*ba) e (b, b)™
cannot be transformed into
(aba?, a?ba, a*bab, baba?) e (b, b)™
by elementary transformations.

Proof. — Assume that (b, b, a>bab, ba®ba)e(b, b)™ can be transformed into
(aba?, aba, a®bab, baba?) e (b,b)™ by elementary transformations for some N.
Then there exists an element g € PSL(2,7Z) which is a product of b, a%bab
and baba such that aba®? = g~1bg, which implies b = (ga)~'b(ga). Therefore,

the element g is either a2 or ba?, but the number of occurrences of the letter
a in g modulo 3 is equal to 0, which is a contradiction. O
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5.2. Unstable classification of achiral Lefschetz fibrations

We consider torus achiral Lefschetz fibrations having fixed cardinality of
branch sets |[B| = n > 1. A singular fibre is of type I;" if its fibre monodromy
is conjugate to L = —ABA = [1 9] and a singular fibre is of type I if its
fibre monodromy is conjugate to R = —AB = [} 1].

By Theorem B, global monodromies of a pair of torus achiral Lefschetz
fibrations are Hurwitz equivalent after performing direct sums with ff if
and only if they have the same type of singularities. However, the Hurwitz
equivalence between global monodromies is more difficult to state, especially
when singular fibres of type Ifr and I; occur in pairs. In this subsection,
we enumerate all possible Hurwitz equivalent classes of global monodromies
of torus achiral Lefschetz fibrations, without stabilisation. This will prove
Theorem D.

By a rooted tree we mean a directed tree in which a specific vertex is called
the root, such that each directed edge indicates the parent-child relationship
between two vertices. A rooted forest is a disjoint union of several rooted
trees. In general, given a (directed) graph I', we always use V(T') to denote
the set of vertices.

DEFINITION 5.3. — Given a rooted forest T and a non-negative integer
k, we define QT k) to be the set of formal sums 3, <y, () M- over vertices
with my, > 0 and > m, = k such that any two vertices vy # ve with my,, > 1,
My, = 1 have no ancestor-descendant relationship (i.e. there does not exist
a directed path joining vy to vy ).

DEFINITION 5.4. — Forn = p+ q with p > 0, ¢ > 0, we define
Hom;Z(Fn_l,SL(ZZ)) to be the set consisting of all monodromy homo-
morphisms of torus achiral Lefschetz fibrations f : M — S? with O(f) =
[P S S

p components q components

THEOREM 5.5. — Let n, p and q be arbitrary integers such that n > 1,
p=20,¢20andp+q=n.

e If p +# q, then the set Bn\HomZZ(]F‘n,l, SL(2,Z)) is a singleton.
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o If p=q, then there exists a one-to-one correspondence:

B,,\ Hom " (F,,_1, SL(2,Z))

s {ptyu <p|;| Q(Too,k:)> L (D Q(Too,k;)>

k=0 k=0

p—1
u<|_| Q(Too,k)> UQ(Too U Too U T, p),
k=0

where Ty, is the rooted complete infinite binary tree.

Recall that each matrix g with non-zero trace in SL(2,Z) is uniquely
expressed by €@ with e = 4+ and @Q a word in {A, A%, B} in which B’s
and powers of A appear alternatively. The length of an element g € SL(2,Z)
is defined as the length of the word @, denoted by I(g). Here we list all
possibilities for fibre monodromies of a torus achiral Lefschetz fibration:

—A%2B,—ABA,-BA? and ePABAQ,
—BA,A’BA?, —AB and ePA’BA%Q,

where P, Q are words in {A, A%, B} in which B’s and powers of A appear
alternatively, PQ = £I, e = +I is uniquely determined by I(Q) such that
the trace is equal to +2.

Let g1 and g2 be matrices in SL(2,7Z). Suppose that g; and go are ex-
pressed by ety ...t and € .. .1, respectively, with e,€ € {I,—I}, k = l(g1),
I =1(g), t; € {A, A2 B}, j=1,....,kand t; € {A, A%, B}, j =1,...,1.
The product g1g- is either

Tlg . - .tmrt~m+1 .. t~l or Ttg...t,, v oOr Trt~m+1 7

for some 7 = 7(g1,92) € {I,—1I}, r = r(g1,92) € G such that I(r) < 1 and
0<m=m(g1,92) <kl

Let Q = BA**BA*2 ... BA* B> be a matrix in SL(2,Z) with m > 0,
ki,...,km € {1,2} and A € {0,1}. We introduce the suffiz tree T; which
is a rooted binary tree with infinitely many vertices, whose each vertex is
labelled with a pair of inverse elements in SL(2,7Z). Set

Q=B A*>"*"p. A3k pBA’FB

so that @Q = =41 and let € = +1I be such that trace(e@ABAQ) = 2. The
root of Ty is labelled with the pair

(€QABAQ, —eQA’>BAQ)
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and the suffix tree T is defined by the following form iteratively, where each
directed edge indicates the parent-child relationship between a vertex and
the root of a suffix tree.

(€QABAQ, —eQA2BA2Q)

7N

Tpaqg Tpazq

All conjugates of L and R occur in pairs. They are in one-to-one corre-
spondence with the vertices in the following infinite directed graph I', where
each directed edge again indicates the parent-child relationship between a
vertex and the root of a suffix tree.

(-A2B,—BA)  (—ABA,A2BA?)  (—BA? —AB)

ST

The vertices labelled by
(-A?B,~BA), (~ABA,A?BA%) or (~BA? -AB)

Tpa2 Tpa

are called exceptional. The components of these labels project to short ele-
ments in PSL(2,7Z), as in Section 4.

Let (g1,--.,9n) be a global monodromy of torus achiral Lefschetz fibra-
tions, which is an n-tuple of elements conjugate to either L or R. The com-
plexity of this tuple is defined to be

exty(gu, -, gn) == Y oxty(g:),
[

Q) ifg; = eQABAQ or gi = cQAZBA2Q
0 otherwise.

exty(gi) = {

LEMMA 5.6. — Let (e1,e1"), (ea,e5') € V(T') be distinct vertices.

(a) If there exists an ancestor-descendant relationship between (ey,ej ")
and (e, 62_1), then by a sequence of elementary transformations the
quadruple

(61761_1762562_1)

can be transformed into a quadruple of the form
-1 -1
(6/17 6/1 ) 6/27 6/2 )
such that cxty(ey, 7!, eq,e50) > exty(e’1, €7, €/a,e/5 ).
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(b) If one of (e1,e1"), (e2,e5") is not exceptional and they have no

ancestor-descendant relationship, then m(g1, gs) < min{ @, @}

for any g1,92 € {el,efl,eg,egl} unless g1go = 1.

Proof. —

(a). — We first assume that (ej,e; ') is exceptional. Then (e, ey ') can-
not be exceptional and we suppose that

(62, 62_1) = (EQPQABAQQ, 762P2A2BA2Q2).

When (e1,e; ') = (—A%B, —BA) the pair (e, e; ) is a vertex of either Tg
or Tga. If it is a vertex of Ty, then both words P,ABAQ» and P, A2BA2Q,
end with AB and start with BA. Therefore the following sequence transforms
(e1,e7 ', ea,e51) into a desired quadruple with a smaller complexity.

(—A%B, —BA,es, e;l) — (—AQB, ea, e;l, —BA)
— (—~A?B, —BA, A’BeyBA, A?Be; ' BA).

Otherwise, (62,62_1) is a vertex of Tga. Both P ABAQ, and P,A2BA%Q,
end with ABA and start with A2BA. Therefore, the following substitution
is desired.

(—A?B,—BA, eq,e5") — (ea,e5 ", —A’B, —BA)
— (~A?B,—~BA, BAey A’B, BAe,; ' A’B).

When (ej,e;') = (~ABA, A2BA?) or (e1,e;') = (—BA?% —AB), we

have similar arguments.

Now we assume that both (e1,e; ') and (eg, e5 ') are unexceptional. Sup-
pose that (e;,e; ') = (¢, PLABAQ;, —e;P;A2BA?Q;), for i = 1,2. Then Qs
is extended from Q1 by a product of finitely many but at least one BA or
BA? on the left, say

17
Q2 = (H BA“')Ql

i=1
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with g > 1 and r; € {1,2}, for each i = 1,..., u. Therefore, the following
substitution is desired for the case r, = 1.

(61,6171,62,6271)

= (€1P1ABAQ1, —€1P1AQBA2Q1, 62P2ABAQ2, —62P2A2BA2Q2)

= <61P1ABAQ1, —€1P1AZBA2Q17

1 Iz
2P (H A?"”B> ABA (H BA”) Q.

i=p i=1
1 Iz
— &P, <H A3“‘B) A’BA? (H BA”) Q1>
i=p =1
1 7
— <€1131143/1Q17 €2P1 <H ASHB> ABA (H BAH) Q17
i=p i=1
1 Iz
- €2P1 (H ASWB> A/42B142 (H BAT1> Qh —€1P1A2BA2Q1>
i=p i=1

— <€1F)1143146217 —61P1142B1426217

1 pn—1
€2P1A< H A?’_”B>ABA<H BA”)AQQM

i=p—1 i=1

1 p—1
—62P1A< 1T A3‘”B>A23A2<H BA”)AQQl).
t=p—1

i=1
Besides, the following substitution is desired for the case r, = 2.

(ela 61_17 €2, 62_1)
= (61P1ABAQ1, —61P1A2BA2Q1, EQPQABAQQ, —€2P2A2BA2Q2)

= <€1P1ABAQ1, *€1P1A2BA2Q1»

1 L
e2P; (H A?’_”B> ABA (ﬁ BA”) Q1,

= i=1

1 Iz
— &Py ( A3‘”B> A’BA? (H BA“) Q1>
= =1
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1
— <€2P1 (H A3‘”B> ABA (ﬁ BA”) Q1,

i=p i=1

1 Iz
— e P (H A3_”B> A’BA? <H BA”) Q1,

= i=1

61P1ABAQ1, —€1P1A2BA2Q1)

— <61P1ABAQ1, —€1P1A2BA2Q1,

1 p—1
62P1A2< 11 A?”“iB)ABA(H BA”)AQl,

i=p—1 =1

1 p—1
62P1A2< 11 A3“B>A2BA2<H BAH)A@).

i=p—1 i=1

(b). — When one of (e;,e;!) and (eq,e5 ') is exceptional, the other be-
longs to the unique sub-tree either Tz 42, T or T 4. Therefore, m(gy, g2) < 1
unless g1g2 = I. When (ey,e; ') and (e, e; ') belong to different sub-trees
of Tga2, Tp and Tg4, again we have m(g1, g2) < 1 unless g1g2 = I.

Now we assume that (e1,e; ") and (eg,e; ') are vertices of the same sub-
tree either T2, T or Tpa. Let (ePABAQ, —ePA?BA%Q) be the lowest
common ancestor of (ey,e; ") and (ea, e, ). Therefore, there exist the re-
duced forms of ey, el_l, es and 62_1 such that

(eivei_l) = (ezP(AgimB)wz(BAm)Q’ —ezP(AB*""tB)w’L—l(BArl)Q)
with r;, € {1,2}, ¢, = £I, w; € SL(2,Z) and ri # ro, for i = 1,2. Hence,
m(g1,92) < U(Q)+ 1 unless g1g1 = 1. 0

Suppose that a tuple of the form (ey, e, .. .,ep,ezjl) in SL(2,Z) is a
global monodromy of torus achiral Lefschetz fibrations. One can write it as
a formal sum ZUEV(F) m, - v such that Y m, = p. By Lemma 2.3, different
tuples which can be written as the same formal sum are Hurwitz equivalent.

LEMMA 5.7. — Let 3 cv/(r) Mo - v be a formal sum over vertices of T'.
Let (er,er?, ... ,ep,eljl) be a tuple in SL(2,7Z) expressed by ZvGV(F) My - V.
Suppose that there exist distinct vertices vi, vi such that m,, = 1, my, =
1 and there exists an ancestor-descendant relationship between vi and vs.
Then, by a sequence of elementary transformations the (2p)-tuple can be
transformed into a tuple of the form (e'l,e'fl, . ,e’p,e’;l) with a smaller
complexity.
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Proof. — The lemma follows from Lemma 5.6 (a). O
On the other hand, we have the following lemma.

LEMMA 5.8. — Let Evev(r) m, - v be a formal sum over vertices of T'.
Let (e1,e1 ", ... sep,e, ') e a tuple in SL(2,7Z) expressed by 2 wev () Mo " -
Suppose that any two distinct vertices vy, vy with v1 > 1, vo > 1 have no
ancestor-descendant relationship. Then, either

(i) there exist at least two distinct exceptional vertices with m, > 1, or
(ii) there exists at most one of the three exceptional vertices satisfying
my, = 1.

In Case (i), all components of the (2p)-tuple are short (i.e. cxty(e;) =0
fori=1,...,p) and by a sequence of elementary transformations the (2p)-
tuple can be transformed into

(—A’B,-BA) e (—ABA, A’BA?)P71,

In Case (ii), the tuple (e1,e;",.. .,ep,e];l) is minimal according to the
complexity among tuples obtained from (e, ef17 cos€p, e;l) using a sequence
of elementary transformations. Besides, all minimal tuples according to the
complezity among them of the form (€1, e’l_l, o€y, e’;l) are expressed by
the formal sum -, vy Mo - v.

Proof. — As in Case (i), when there exist at least two distinct exceptional
vertices occurring in the product form, by an elementary transformation, the
corresponding quadruple can be transformed into

(—-A%B,—BA,—ABA, A’BA?).

Besides, the resulting quadruple contains a generating set of SL(2,Z). There-
fore, by Lemma 2.6, the (2p)-tuple can be transformed into (—A2B, —BA) e
(~ABA, A2BA?)P~1 as desired.

In Case (ii), we assume that there exists a sequence of elementary trans-

formations that transforms (el,el_l,...,ep,e;l) into a new tuple with a

smaller complexity or a new tuple of the form (¢'y, e'fl, ey €y, e’;l) with
the same complexity but expressed by a different formal sum of vertices in

V(T). Therefore, there exists at least one component of the new tuple, say

Q~'wQ, where w is equal to some component of (e, el_l, .y €p, e;l) and Q) is
aproduct of ey, .. ., e, and their inverses, such that cxty(Q'wQ) < cxty(w).
It contradicts Lemma 5.6 (b). O

Proof of Theorem 5.5. — Since each component g € SL(2,Z) in a global
monodromy of torus achiral Lefschetz fibrations is uniquely determined by
t(g) € PSL(2,Z), by Theorem 4.15, torus achiral Lefschetz fibrations of

- 212 —



Classification of torus fibrations over S2 up to fibre sum stabilisation

type O = [I{,..., I, I ,...,I; | have pairwise Hurwitz equivalent global

p components g components
monodromies when p # q.

When p = ¢, each global monodromy is Hurwitz equivalent to a tuple in

SL(2,7Z) of the form
(er,elt, ... ,ep,eljl)

and hence can be written as a formal sum ZUGV(F) m, - v. We enumerate
all possible formal sums of vertices that express minimal tuples according to
the complexity among all Hurwitz equivalent tuples. By Lemma 5.7, there
is no ancestor-descendant relationship between any two distinct vertices in
such a formal sum of vertices.

If there are at least two distinct exceptional vertices vy and wvg such that
my, = 1 and m,, > 1, by Case (i) in Lemma 5.8, then all possible formal
sums like this are associated with the same tuple up to Hurwitz equivalence.

If there exists the unique exceptional vertex v occurring in the formal
sum, then other vertices belong to the same sub-tree T' that is either Tg 42,
Tp or Tpa. Therefore, by Case (ii) in Lemma 5.8, all possible formal sums
are in one-to-one correspondence with elements in Q(T,p — m,,).

Otherwise, there is no exceptional vertex in the formal sum. Again by
Case (ii) in Lemma 5.8, all possible formal sums are in one-to-one corre-
spondence with elements in Q(Tpa2 UTs UTBA,p). a

Appendix A. Computability

We have included this section to demonstrate that all Hurwitz equiv-
alences occurring in our results (including Theorem A, Theorem B, The-
orem C) are computable. For Theorem A, an algorithm exists to provide
a sequence of elementary transformations that transforms one tuple to the
other. Its time complexity is

n n 2
o ent X S XS] ).
ie{1,2} j=1 ie{1,2} j=1
We implement the algorithm in C++ and make our code available on GitHub:
https://github.com/AHdoc/monodromy_normalisation.

The main goal is to analyse the computability of Theorem 2.16. In par-
ticular, in Theorem 4.14, we need an algorithm to make a tuple inverse-free
by elementary transformations, but we cannot use Theorem 2.16 directly.
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Step 1. — Suppose that (g1,...,9,) is a tuple in PSL(2,Z) whose com-
ponents are conjugate to short elements. Recall that Theorem 4.14 shortens
the tuple by removing some pairs of the form (x,27!) and triples of the
form (I,1,1) with I3 = 1; the resulting tuple is an inverse-free tuple of short
elements. The proof uses an induction on an inverse-free tuple, within which
one operation seeks to make the sum of S-complexities strictly-smaller by a
sequence of elementary transformations. In fact, it is sufficient to check all
transformations of the form (R;)" with ¢t € {—2,—1,41,+2}.

However, if we throw out the inverse-freeness, the induction still works
well and ends with ¢ = 0, but the restoration operations (see Section 2.2)
cannot result in a tuple of short elements. Indeed, a pair of long elements
of the form (x,2~1) could have been combined into a single 1, which was a
contradiction in Proposition 4.10. Therefore, restorations result in a tuple
(h1,...,hm) that probably contains sub-pairs (h;, hiy1) = (z,271) or/and
sub-triples (hj, hii1, hire) = (1,1,1) with I3 = 1. Using cyclic permutations,
we move these pairs and triples, if exist, to the rightmost positions. Hence,
we get a tuple of short elements, still denoted by (h1,...,hn).

Proposition 4.10 asks us to handle each restoration (hiha) --» (h1,h2)
carefully. We repeat the search for (R;)" with ¢t € {-2,—1,+1,+2} that
makes f(h;)+ f(hit+1) strictly-smaller. In conclusion, Step 1 calls the follow-
ing procedure.

1: procedure SHORTEN((g1,...,9gn))

2: (h1y.oooyhm) < (91,---,9n), (k1,...,k;) < empty tuple

3: while True do > see Section 4.2
4. if 3¢ : Operation 1 is available on (h1,..., hy,) for i then

5: combine (h“ hi+1) into hihi+1

6: else if 3i: h; =1 then

7 (h1,.-. hm) < (L,hy, ... hi—1, higr, .o hay) > via a cyclic permutation
8: else if 3iand t € {—2,—1,+1,+2} : (R;)" makes Zj f(hj) strictly-smaller then
9: (h1yevoshm) < (R) (b1, oo hn)

10: else if 34 : R; keeps Z]_ f(hj) unchanged but makes I(h;) smaller then

11: (hl,‘.‘,hm)%Ri(hl,.‘.,hm)

12: else

13: break while

14: end if

15: end while .

16: while 3 a restoration on h; = h; h2~d9\,

17: (h1,.. yhm) <= (h1,...,hi—1,h1,ha, hig1,. .. hin)

18: while True do

19: if 3t e {-2,—1,+1,+2} : (R;)" makes Zj f(hj) strictly-smaller then
20: (R1y- s hm) < (R) (R, -, han)

21: else
22: break while
23: end if
24: end while

25: end while

26: while 3¢ : h;h;11 =1 do

27: (k1y .-y ki) < (hiyhiv1) @ (k1, ..., ki)

28: (h1yov s hm) = (h1, .. hic1, higa .o hay)
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29: end while
30: while 3¢ : h; = hijy1 = hj42 and hihi41hiy2 =1 do

31: (k1,... k) < (hi,hiy1,higo) ® (ki,... k)
32: (h1,. -y hm) < (hi,o ooy hica, higs, oo han)
33: end while

34: return (hi,...,hyn) and (k1,..., k)

35: end procedure

The input of SHORTEN is an arbitrary tuple (g1,...,9,) in PSL(2,Z)
of conjugates of short elements. The output is the concatenation of a tuple
(h1, ..., hy) of short elements and some pairs of the form (z, 2~ ') and some
triples of the form (I,1,1), I3 = 1, say (h1,...,hy) ® (k1,..., k). In general,
the tuple (hq, ..., h;,) is not inverse-free. Therefore the difficulty is inherited
to the next step.

Time complexity. — A step of the induction in SHORTEN either de-
creases y_, f(h;) or decreases the number of the pairs (i,j) such that
1 < i < j < mbutl(h;) > l(hj). Therefore, the time complexity of
SHORTEN((g1,...,gn)) is O((n® + 3, 1(gi))n >, 1(gs))-

Step 2. — The tuple (hi,...,h,) of short elements probably has two
components (resp. three components) that form a tuple of mutually inverse
elements (resp. a triple of the form (I,1,1) with [*> = 1). In this case, we move
these components to the rightmost positions using cyclic permutations so
that (hq,...,hy) is transformed into the concatenation of a shorter tuple,
still denoted by (h1,...,hn), and a pair (resp. a triple). However, cyclic
permutations do not keep components of (hi,...,h,,) short. We end up
with this reduction in an extra call on SHORTEN((hq,...,h:)) and then
repeat it.

Time complexity. — Using two/three cyclic permutations, we transform
a tuple of short elements into a tuple, denoted by (hy,...,hm), such that
> U(hi) = O(m). Therefore, the above reduction is O(m(m?* + m)m?) =
O(mb).

From now on, we can assume that (hq,...,h,,) contains at most 2 com-
ponents equal to a, at most 2 components equal to a2, at most 1 component
equal to b and a,a? cannot appear together within this tuple. We mark
a tuple of short elements with ¢, components equal to a, c,2 components
equal to a? and ¢, components equal to b with the signature [cq, cqz2, cp]. The
following diagram shows a method to simplify such a tuple into a tuple of
signature [cq, cq2, cp] With ¢, + cq2 + ¢ < 1 (cf. Step 2, Step 3 and Step 4 in
the proof of Theorem 2.16).
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1
a%,a%) --»a 2
[0,2,1]( ) [1,0,1] Ea \

(s1,a,51) = (51,50, )
- ((I,Q) -2 (I'2

(tl,a,t1)2%2(t1,t2,a2) (a?,t3) -=» b or
--» (a*,a?) -2 a o b
(to,a) =25 a2, 50) s 1,
(2,0,1] [0,1,1] or (a2, s1) --» L
o2

a,a) --»

In the diagram, a reduction from a tuple of signature [cq, ¢4z, ¢y to a tuple
of signature [c],,cl ., ;] is a directed edge endowed with some elementary
transformations and contractions on a pair or a triple. The reduction starts
with cyclic permutations that create a sub-pair or a sub-triple with which
the edge is first endowed. It ends with a call on SHORTEN.

Signature [0, 0, 2] is the only exception that does not satisfy the hypothe-
ses on the tuple. However, with at most 4 contractions, any tuple of short
elements satisfying hypotheses can be transformed into a tuple of signature
[Cas Caz, cp] With ¢q + ¢42 + ¢ < 1. Indeed, if a tuple of signature [1,0, 1] has
to be aimed at a tuple of signature [0, 1, 1], then it is a tuple of a, b, s; and
it is transformed into a tuple of a2, b, sg, 51, 52 of signature [0,1,1], which is
further transformed into a tuple of signature [0, 0, 1].

Time complexity. — Both cyclic permutation and contraction are linear.
We have shown that a cyclic permutation on a tuple of short elements
results in a tuple such that Y, l1(h;) = O(m). The simplification along the
diagram calls SHORTEN at most 4 times, therefore its time complexity is
O((m? +m)m?) = O(m?).

From now on, we can further assume that (hy,...,h,,) contains at most
1 component equal to either a, a? or b. Proposition 4.4 claims that, if
(hi,...,hm) is inverse-free, then it is either a tuple of a,a?,b, sq, s1, s2 or
a tuple of a,a?,b,tg,t1,ts. The proof is a rearrangement of sg,sq,ss and
to,t1,t2. To introduce a similar reduction, we provide the following proce-
dure.

1: procedure ST-REARRANGEMENT((K1, ..., K))

2: if 34: k; € {a,a? b} then

3: (K1yeeoyRy) = (Kiy Kigly oo Kl K1y o ooy Kie1) > via a cyclic permutation
4: end if
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5 while 3 i : k; € {to,t1,t2} and k41 € {so,s1,s2} do
6 if (Ni,ﬁi+1) S {(to,SQ) (tl,sl) (t2,82)} then

7 return (Ki,...,Ki—1,Ki42;,---,

8: else if (Hi,ﬁi+1) E {(tg, 51) (tl,Sg) (tg, 80)} then
9: (nl}.,‘,n,)eRi_l(m,.‘,,m)

10: else if (i, kit1) € {(to, s2), (t1,s0), (t2,s1)} then
11: (Nl,‘..,lﬂ)(*Ri(lil,‘.‘,lﬂ)

12: end if

13: end while
14: if 3i<j: (ki ,k5) € {(50,150) (al,tl) (ég,tz)} then

15: return (K1,...,Ki—1, 1+1,..4,m1 T R,y KL

16: else if 341 < j < k: (ki, k5, kK) € {(s0,t1,t2), (s1,t2,t0), (s2,t0,t1)} then

17: (K1, ooy k1) < (R2)? (ki Kjs Koy K Mﬁjﬁkw‘-,N;_f_fkw‘»,HJ+1,»‘»,H1€+1,-~~)
18: return (K3, ..., K;)

19: elseif 3i<j<k: (m,mj,nk) S {(52,5177&0) (50,53,’721) (s1, 80,t2)} then

20: (51, s 1) = (R2) ™ (i g i ™3™ e
21: return (k3,..., Kom)

22: else

23: return (Ki,...,Km)

24: end if

25: end procedure

The input of ST-REARRANGEMENT is a tuple of short elements, say
(k1,..., k1), that contains at most 1 component equal to a,a? or b. The out-
put is either a tuple of short elements of length I, meaning that (k1,. .., ;) is
inverse-free, or a tuple (k1,...,K—2) of length [—2, meaning that (k1,...,k;)
can be transformed into (K1,...,K;_2) ® (8;,t;) with some i by elementary
transformations.

We call ST-REARRANGEMENT and SHORTEN with (A1, ..., hy) re-
peatedly unless the tuple is inverse-free. In conclusion, Step 2 calls a pro-
cedure, named as INVERSE-FREE, whose input is a tuple (hq,..., ;) of
short elements and output is an inverse-free tuple (1, ..., ;) of short ele-
ments such that at most 1 component is equal to a,a? or b.

Time complexity. — The procedure ST-REARRANGEMENT decreases
the length of the tuple and transform a tuple of short elements into a tuple,
denoted by (k1,...,K1), such that >, l(k;) = O(l). The time complexity of
ST-REARRANGEMENT is O(1*).

Meanwhile, SHORTEN transforms the tuple back to a tuple of short ele-
ments. In conclusion, the time complexity of INVERSE-FREE(hy, ..., hy)
is O(m® +m* + m(m* + ((m? + m)m?))) = O(m®).

Step 8. — To slightly improve the complement to Theorem of R. Livné
introduced in [27, p. 180-187] to a tuple of a,b, sp, s1, s2 that at most 1
component is equal to a or b, we first introduce the following procedure
named as MOISHEZON (cf. Proposition 4.6).
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1: procedure MOISHEZON((k1,..., 1))

2: if 34: K; € {a,b} then

3: (K1sevosRy) = (KiyKigly oo Kl K1y o ooy Kie1) > via a cyclic permutation
4: end if

5: while True do

6: if 34 : (ks, kit1) = (81, S0) then > decrease # of s
7: (Hl,...,lil)%Ri(lﬂl,.“,lﬂ)

8: else if 34 : (ki, ki+1) = (s2,s1) then > decrease # of s
9: (Iil,...,l{l) (—R;l(lﬁl,...,.‘{l)

10: else if 3¢ : (Ki, Ki+1, kit+2) = (S0, S2, S0) then > Claim 1
11: (Kl,.,.,lﬂ) < (I{l,...,Hi_l,SQ,SQ,SQ,l{i+3,...,Iil)

12: elseif 3¢+ 1<j: (ki,...,kj4+1) = (81,82,...,82,50,52) then > Claim 2
13: (Kiyeooy k1) = (K1, Kio1,51,50,52,80++-,50,Kj42,-+-, K1)

14: elseif 3i+2<j: (ki—1,...,Kkj+1) = (s2,50,52,...,82,50,52) then > Claim 3
15: (K1,... K1) < (K1,.. ., Ki—2,82,80,52,50,,80, Kj42,---,K[)

16: (K1yeooy k1) = (K1, ooy Kim2, 80, -+ 80, Kjg2, - o5 K1)

17: else if 3¢ : (Ki,..., Kits) = (S0, S2, S2, S0, S2, S2) then > Claim 4
18: (Kiyeo oy B1) = (K1, ooy K1, Kig6y - -+ 5 K1)

19: else if 34 : (Ky,...,Kit5) = (82, s2, So, S2, 2, So) then > Claim 4
20: (K1yevooy k) = (K1ye ooy Kim1s Kidt6y -« o5 KL)

21: else

22: break while

23: end if

24: end while
25: end procedure

The input of MOISHEZON is an inverse-free tuple (k1, ..., k;) of a, b, so,
$1, 2 that at most 1 component is equal to a or b. The output, denoted by

(K}, ...,K}), is again a tuple of a, b, s, 51, s2 and shows that (k1,...,k;) can
be transformed into the concatenation of (1, ..., ) and some sextuples of
the form (so, $2, S0, S2, S0, S2) by elementary transformations. If (k1, ..., ;) is

a tuple of sq, s1, 52, then I’ = 0; otherwise, by Lemma 4.18 and Lemma 4.20,
either

o (K1, r5) = (a,50) or (K}, K1) = (s2,0) or (K], K1, Kp) = (81,0, 1), OF
(

Ki,...,K;) starts with (b, s2) or (b) e (s9)"** @ (s2,50) with vg1 > 1,
or
o (Kh,...,K], k) ends with (sg,b) or (s2,50) ® (s2)"* " e (b) with
Upom, = 1.
By elementary transformations and at most 2 contractions, tuple (i, ..., x},)

is further transformed into a tuple of a,a?,b, s, s1, s2 that at most 1 com-
ponent is equal to a,a® or b.

Time complexity. — The procedure MOISHEZON((k1,...,k1)) is loop-
ing, seeks the minimal number of components equal to s1 and seeks the min-
imal according to the lexicographical order given by sg < s3. Therefore, the
number of times that the loop loops is related to the number of reverse pairs,
i.e. 1 < j but k; > K according to the lexicographical order, which is O(1?).
The time complexity of MOISHEZON is O(I°).
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In Step 3, we consider an inverse-free tuple (K1, ..., ;) of short elements
that contains at most 1 component equal to a,a? or b. Let A be the set of
elements in (k1,...,k;). We follow the diagram below to reduce the tuple
using elementary transformations and at most 3 contractions.

(s1,a,81) = (51,80, 0)
A= o (ea) —a g A=
{a,50,51,52} MOISHEZON {a®, 50,8182} (42 ;) > 25— oy, 051,82}

INVERSE FREE
(a,s0) --+ b (s2,a) --» b
MOISHEZON
(b, s2) --5 a? (s0,b) --5 a?

(50, 52, 50, 52, S0, 52)""°

{b 505 51, 92} MOISHEZON

A symmetric procedure, named as MOISHEZON ™!, can handle a tuple
of a2, b, to, t1,ts that at most 1 component is equal to a? or b. Therefore, we
have a symmetric diagram for the rest of the cases.

Time complexity. — In conclusion, Step 3 contracts the tuple at most 3
times, calls MOISHEZON several times and calls INVERSE-FREE at most
once. Its time complexity is O(1°).

Step 4. — We have shown that by elementary transformations and at
most 7 contractions, the initial tuple (g1, ..., g,) is transformed into a con-
catenation of the following tuples:

(817t1)Qa(tlasl)Q7(a7a'2)Q (Cl Cl) (b b) (a7a’a/)Q7(a27a/27a/2)Qa
(307 52, 50,52, 50, 52)7 (t07 t27 t07 t27 tOv tQ)?
where @ € PSL(2,Z) is arbitrary, such that
(80,82, 80, 82, 80, 52) and  (to, t2,t0, 2, o, t2)

cannot appear at the same time. By Lemma 2.3, the concatenation can be
transformed into such with a desired order by elementary transformations.
Besides, a pair of the form (z,27!) can be transformed into (z~!,x) by an
elementary transformation. Therefore, we handle each restoration carefully
and obtain

Mst Ma

(hi,... b)) ® (50,52)°™ @ (Lo, t2)>™ @ H(sl,tl)Xi o H(a,aQ)Yi

i=1 i=1
mp Ne
o [J(0.0)% o T [](a% a a)"
i=1 e=+1i=1

with meym; =0, X;,Y;, Z;, P, € PSL(2,Z), which is Hurwitz equivalent to
the initial tuple.
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The tuple (hi,...,hy,), called the exceptional part of the resulting tuple,
is a tuple of short elements. In fact, if p = ¢, |pa — ¢a| = 0 (mod 3) and
np is even in Theorem 2.16, the exceptional part does not exist anymore,
i.e. m = 0, thus we have already finished the computation. Otherwise, the

exceptional tuple (hy,...,h,,) contains a generating set; by Lemma 2.6, we
obtain
(hi,. .. hun) @ (50, 52)"" @ (to,12)>™ @ (51,81)""

o (a,a®)™ o (b,b)™ e (a,a,a)™ e (a* a* a®)"'.

With a slight adjustment using cyclic permutations, we may further assume
that nin_; = 0.

The length of the exceptional tuple is bounded by a constant. In fact,
we claim that the exceptional tuple (hq,...,hy,) satisfies m < 13 without
further discussion. The proof of Theorem 2.16 has revealed that a partial
normal form can be transformed into the desired normal form by cyclic
transformations and elementary transformations that keep each component
short. The whole computation ends with a brute-force search.

Time complexity. — The brute-force search is O(1) as the length of the
exceptional tuple is bounded by a constant. The time complexity of Step 4
is O(n'Y_,1(g9;) + n® + 1). Hence, the computation of Theorem 2.16 has the
time complezity O(n® 4+ n33",1(g:;) + n(>"; 1(9:))?)-
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