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Classification of torus fibrations over S2

up to fibre sum stabilisation (∗)

Yibo Zhang (1)

ABSTRACT. — We study torus fibrations over the 2-sphere and Hurwitz equiva-
lence of their monodromies. We show that, if two torus fibrations over S2 have the
same type of singularities, then their global monodromies are Hurwitz equivalent
after performing direct sums with a certain torus Lefschetz fibration. The additional
torus Lefschetz fibration is universal when the type of singularities is “simple”.

RÉSUMÉ. — Nous étudions les fibrations du tore sur la 2-sphère et l’équivalence de
Hurwitz de leurs monodromies. Nous démontrons que, si deux fibrations du tore sur
S2 ont le même type de singularités, alors leurs monodromies globales sont équiva-
lentes au sens de Hurwitz après avoir effectué des sommes directes avec une certaine
fibration de Lefschetz du tore. Cette fibration de Lefschetz du tore supplémentaire
est universelle lorsque le type de singularités est « simple ».

1. Introduction

A generalised torus fibration over the 2-sphere is a continuous map f :
M4 → S2 from a closed oriented 4-manifold M4 to the 2-sphere S2, for
which there exists some finite set B ⊂ S2, called the branch set, so that
the restriction of f to M4 \ f−1(B) is a locally trivial fibration over S2 \ B
with fibre a torus. In this paper, we will study torus fibrations over S2 and
provide an algebraic classification of their monodromies.
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Given a torus fibration f : M4 → S2, we suppose that the branch set
for f is B = {p1, . . . , pn} and choose a base point p ∈ S2 \ B. As in [27,
p. 176], [18] and [12], the locally trivial fibration f : M4 \ f−1(B)→ S2 \ B
determines a monodromy homomorphism

Φf,p : π1(S2 \ B, p) −→ Mod(T2),
by identifying f−1(p) with T2, where Mod(T2) = π0 Homeo+(T2) is the
mapping class group of torus and hence isomorphic to SL(2,Z).

Choose homotopy classes of loops γ1, . . . , γn ⊂ S2 based at p such that
each loop γj goes around some branch point pi exactly once clockwise and the
fundamental group π1(S2 \ B, p) is generated by γ1, . . . , γn with the relation
γ1 . . . γn = 1. Therefore, the group π1(S2 \ B, p) is isomorphic to Fn−1. The
monodromy ϕj = Φf,p(γj) ∈ SL(2,Z) is called the fibre monodromy around
the singular fibre f−1(pi). Note that ϕ1 . . . ϕn = 1.

The n-tuple (ϕ1, . . . , ϕn) is called a global monodromy of f and the ho-
momorphism Φf,p is uniquely determined by p, γ1, . . . , γn and (ϕ1, . . . , ϕn).

However, a different choice of the base point p amounts to changing
(ϕ1, . . . , ϕn) by a diagonal (or simultaneous) conjugacy. Also a different
choice of homotopy classes of γ1, . . . , γn may change (ϕ1, . . . , ϕn) by a se-
quence of elementary transformations (or Hurwitz moves; see Section 2.1 for
more details):

(. . . , ϕiϕi+1ϕ
−1
i , ϕi, . . .)←− (. . . , ϕi, ϕi+1, . . .)

Ri−→ (. . . , ϕi+1, ϕ
−1
i+1ϕiϕi+1, . . .)

for 1 ⩽ i ⩽ n− 1.

We will denote a multi-set by [x1, x2, x2, x3, x3, x3, . . . ] and denote the
conjugacy class of an element g in a group G by ClG(g) (or Cl(g) if we do
not specify G).

Definition. — Let f : M4 → S2 be a torus fibration over S2 with n
branch points and (ϕ1, . . . , ϕn) be a global monodromy of f . The type (of
singularities) of f is defined to be the multi-set

O(f) = [ClSL(2,Z)(ϕ1), . . . , ClSL(2,Z)(ϕn)],
which does not depend on the choice of its global monodromy.

There is a left action of Aut(Fn) on Hom(Fn,SL(2,Z)) by precomposition
with the inverse. Suppose that {α1, α2, . . . , αn} is a generating set of Fn.
Artin’s representation embeds the braid group Bn on n strands as a subgroup
of Aut(Fn). The subset Hom(Fn/⟨α1 . . . αn⟩,SL(2,Z)) of Hom(Fn,SL(2,Z))
is Bn-invariant and identified with Hom(π1(S2 \B),SL(2,Z)), which inherits
the action of Bn. We then consider the orbit space

Mn = Bn\Hom(Fn−1,SL(2,Z))/ SL(2,Z)

– 138 –



Classification of torus fibrations over S2 up to fibre sum stabilisation

where the action of SL(2,Z) on the right is by conjugation. Note that the
Bn action induces an action of the sphere braid group Bn(S2) on

Hom(Fn−1,SL(2,Z))/ SL(2,Z),
coming from the natural mapping class group action on this set. A torus
fibration with n branch points determines an element in Mn and therefore
the study of torus fibrations by means of their monodromy addresses two
independent questions.

Question 1.1. — How does an orbit in Mn limit the corresponding
torus fibration?

Question 1.2. — How to characterise or classify the elements in Mn?

A torus Lefschetz fibration f : M4 → S2 is the simplest torus fibration,
which is a smooth torus fibration and contains only one singularity in each
singular fibre, each singularity admitting complex local coordinates (z1, z2)
compatible with the orientation of M4 such that the fibration is locally given
by f(z1, z2) = z2

1 + z2
2 . The type of singularities then depends only on the

number of branch points, every ϕi being a positive Dehn twist around some
simple loop.

For torus Lefschetz fibrations, answers to both questions are given by
Moishezon and Livné. On the one hand, an orbit in Mn, if it does cor-
respond to a torus Lefschetz fibration, determines the unique one up to
fibre-preserving diffeomorphism (see [27, Part II, Lemma 7a]). On the other
hand, for torus Lefschetz fibrations with the same number of branch points,
the action of Bn on the set of their monodromy homomorphisms is transi-
tive (see [27, Part II, Lemma 8]). This result was generalized by Orevkov
(see [29]).

If one relaxes the requirement of the orientation for Lefschetz fibrations,
the fibrations are achiral Lefschetz fibrations. We say that the orientation
is still preserved for a type I+

1 singular fibre but not for a type I−1 singular
fibre. The global monodromy was first investigated by Matsumoto in [25]
(see also [15, Section 8.4]). An inspirational result in his study introduces
a representative of the global monodromy using elementary transformations
which is, however, not unique. In particular, one cannot readily classify those
achiral Lefschetz fibrations (or their corresponding elements in Mn) whose
singular fibres of type I+

1 and I−1 occur in pairs.

In general, it is extremely difficult to classify the orbits in Mn. An alge-
braic understanding of Mn is related the study of Wiegold (see [24]) who
conjectured that

|Out(Fn−1)\Epi(Fn−1, G)/Aut(G)| = 1
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for any finite simple group G and n ⩾ 4, where Epi(Fn−1, G) denotes the set
of epimorphisms Fn−1 → G. For the study of its extension to surface groups,
we refer to [13, Theorem 1.4].

As in [1, 6, 31], we discuss the stable equivalence of algebraic objects
by relating them to the direct sum construction. When the 2-sphere is re-
placed by an arbitrary surface, another notion of stabilisation corresponds
to pinching a hole (see [7, 14]). For more interesting problems on the orbit
space Mn and its variations, not related to the concept of stabilisation, we
refer to [2, 3].

Global monodromies with stabilisation

Suppose that f1 : M1 → S2 and f2 : M2 → S2 are two torus fibrations.
Choosing a pair of 2-disksD1, D2 ⊂ S2 that do not contain any branch points
of f1, f2 respectively, gluing M1 \f−1

1 (D1) and M2 \f−1
2 (D2) along some ori-

entation reversing fibrewise homeomorphism β : ∂f−1
1 (D1)→ ∂f−1

2 (D2), we
obtain a fibre-connected sum M1⊕β M2 between M1 and M2. The fibration
f of M1⊕β M2 piecing together f1 and f2 is again a torus fibration over S2,
called a direct sum between f1 and f2 and written as f = f1⊕f2 if we do not
specify β. In [1] Auroux introduced the direct sum between a fibration and
a fixed standard fibration, called stabilisation. He then proceeded to give a
classification of genus g ⩾ 2 Lefschetz fibrations, up to stabilisation.

Definition. — A conjugacy class of SL(2,Z) which either corresponds
to elements of trace 0,±1,±3 or else contains [ 1 1

0 1 ],
[ 1 −1

0 1
]
,
[−1 1

0 −1
]

or[−1 −1
0 −1

]
is called simple.

The following result is a rather general extension of Auroux’s stable clas-
sification in genus 1 but for arbitrary singularities:

Theorem A. — Let O be a multi-set of conjugacy classes of SL(2,Z).
There exists a torus Lefschetz fibration fL

O over S2 depending only on the
non-simple conjugacy classes occurring in O that has the following property:
for i = 1, 2,

• let fi be a torus fibration over S2 with O(fi) = O;
• let f̃i be a direct sum between fi and fL

O;
• let (g(i)

1 , . . . , g
(i)
n ) be a global monodromy of f̃i.

Then (g(1)
1 , . . . , g

(1)
n ) and (g(2)

1 , . . . , g
(2)
n ) are Hurwitz equivalent i.e. one can

transform (g(1)
1 , . . . , g

(1)
n ) into (g(2)

1 , . . . , g
(2)
n ) using a finite sequence of ele-

mentary transformations.
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In Theorem A, the choices of direct sums f̃1, f̃2, base points and loops for
the global monodromies are far from unique. As such, we adopt the following
convention: we will use the double plural to highlight the unlimited objects,
say all global monodromies of all direct sums.

Theorem A shows that, in particular, given a torus fibration f over S2,
all global monodromies of all direct sums f ⊕ fL

O(f) are pairwise Hurwitz
equivalent. The additional fibration fL

O in Theorem A can be replaced by a
torus fibration with fewer branch points but which is not a Lefschetz fibration
(see Theorem 2.12 for a more detailed reformulation). In both cases, the
number of branch points in the additional fibration depends on the number
of non-simple elements in O. In particular, we have the following results:

Theorem B. — There exists a torus Lefschetz fibration fL
12 over S2 with

12 branch points such that, for any multi-set O of simple conjugacy classes
of SL(2,Z) corresponding to elements of trace 0,±1 or ±2, all global mon-
odromies of all direct sums f⊕fL

12 with f a torus fibration over S2 satisfying
O(f) = O are pairwise Hurwitz equivalent.

Theorem C. — There exists a torus Lefschetz fibration fL
60 over S2 with

60 branch points such that, for any multi-set O of simple conjugacy classes
of SL(2,Z), all global monodromies of all direct sums f ⊕ fL

60 with f a torus
fibration over S2 satisfying O(f) = O are pairwise Hurwitz equivalent.

In Theorem B each of −2,−1, 0, 1 and 2 might occur as the trace of some
element in O. We emphasise that the “or” is always inclusive in this paper.
The fibration fL

12 in Theorem B can be replaced by a non-Lefschetz fibration
with only 6 branch points and the fibration fL

60 in Theorem C can be replaced
by a fibration with only 19 branch points.

The stated Hurwitz equivalence in Theorem A, Theorem B and Theo-
rem C is obtained with a specific normal form (see Theorem 2.12) which
satisfies a remarkable property, called swappability (see Section 3.1). The
normal form is computable: one can compute the finite sequence of elemen-
tary transformations with algorithms (see Appendix A).

The Hurwitz equivalence fails without stabilisation or with an unrea-
sonable stabilisation, see Section 5.1. The following theorem compares the
(unstable) Hurwitz equivalence and the stable equivalence between global
monodromies of torus achiral Lefschetz fibrations.

Theorem D. — For torus achiral Lefshetz fibrations with p singular fi-
bres of type I+

1 and q singular fibres of type I−1 , we have the following state-
ments:

(i) After performing direct sums with fL
12, all global monodromies are

Hurwitz equivalent.
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(ii) If p ̸= q, then all global monodromies are Hurwitz equivalent.
(iii) If p = q ⩾ 1, then the global monodromies have infinitely many

Hurwitz equivalent classes and there exists an explicit combinatorial
classification.

As a consequence of Theorem B, we partially extend Kas’ classification
of elliptic surfaces up to diffeomorphism [17] to a stable classification of their
global monodromies. Elliptic surfaces over CP1 are proper holomorphic maps
f : S → CP1 between a complex surface S and CP1 such that the generic
fibre is an elliptic curve. An elliptic surface is certainly a torus fibration whose
singular fibres were classified by Kodaira in [21, 22]; the fibre monodromies
are described in [26].

Corollary A. — Let f1 : S1 → CP1 and f2 : S2 → CP1 be elliptic
surfaces without multiple singular fibres, without singular fibres of type Iv

or I∗v , v ⩾ 2 in Kodaira’s classification. Suppose that O(f1) = O(f2). Then,
all global monodromies of all direct sums f1 ⊕ fL

12 and f2 ⊕ fL
12 are pairwise

Hurwitz equivalent.

Fibre-preserving homeomorphisms

An element in Mn does not provide all the data about the fibration. In
most cases, a torus fibration cannot be determined by its monodromy in any
way. Additional restrictions and data on the local models at singularities are
essential.

One remarkable encoding for the local model comes from King’s classifi-
cation in [19, 20] of isolated singularities and the local study of singularities
by Church and Timourian in [9, 10], using this we study the so-called singular
fibrations.

Roughly speaking by singular fibration we mean a smooth fibration with
only finitely many singularities each having a “nice” neighbourhood (see
Section 3.3 for a precise definition). Each singularity is then characterised by
a local Milnor fibre which is a sub-surface of the generic fibre, a binding link
K and an open book decomposition. Singular fibrations have been studied
in [11, 12, 23]. The local properties of their singularities are related to the
corresponding fibred knots (see e.g. [5]).

As an improvement of Proposition 2.1 in [12] as well as a consequence of
Theorem C and the swappability of the corresponding normal form, we have
the following stable classification of singular fibrations based on the type of
singularities up to fibre-preserving homeomorphism:
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Corollary B. — Let f1 : M1 → S2 and f2 : M2 → S2 be torus singular
fibrations with a single singularity in each singular fibre and with O(f1) =
O(f2). Suppose that each local Milnor fibre of singularities in f1 and f2 is
either

• a surface of genus 0 with ⩽ 2 boundary components, or
• a surface of genus 1 with only 1 boundary component.

Let f̃1 = f1 ⊕ fL
60 : M̃1 → S2 and f̃2 = f2 ⊕ fL

60 : M̃2 → S2 be direct sums.
Then (M̃1, f̃1) and (M̃2, f̃2) are fibre-preserving homeomorphic.

Throughout this paper, all fibrations which we consider will be over S2,
unless otherwise stated.
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2. Connected sums and Hurwitz equivalence

2.1. Elementary transformations

We first define the elementary transformations. Throughout this subsec-
tion, G is an arbitrary group and Z(G) is the center of G. An n-tuple in
G is a sequence (g1, . . . , gn) of elements in G, each gi is called a compo-
nent of the tuple. Let TG,n be the set of n-tuples (g1, . . . , gn) in G satisfying
g1 . . . gn ∈ Z(G).

Definition 2.1. — For 1 ⩽ i ⩽ n − 1, the elementary transformations
(or Hurwitz moves) Ri is a bijection on the set of n-tuples in G defined by:

Ri(g1, . . . , gn) = (g1, . . . , gi−1, gi+1, g
−1
i+1gigi+1, gi+2, . . . , gn).

Both Ri and its inverse R−1
i are elementary transformations. A pair of tuples

(g1, . . . , gn) and (h1, . . . , hn) which can be transformed into each other by a
finite sequence of elementary transformations are called Hurwitz equivalent,
written as:

(g1, . . . , gn) ∼ (h1, . . . , hn).
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We emphasise that the set of all n-tuples in G can also be interpreted as
Hom(Fn, G) and the subset TG,n is invariant under the elementary transfor-
mations.

Lemma 2.2. — For (g1, . . . , gn) ∈ TG,n and any 1 ⩽ k ⩽ n, the tuple
(g1, . . . , gn) is Hurwitz equivalent to (gk, gk+1, . . . , gn, g1, g2, . . . , gk−1).

Proof. — Applying Rn−1 ◦ · · · ◦ R1 on the n-tuple (g1, . . . , gn) we get
(g2, . . . , gn, g1). □

Let • denote the concatenation of tuples: (g1, . . . , gn) • (h1, . . . , hm) =
(g1, . . . , gn, h1, . . . , hm). The power of a tuple corresponds to a repeated con-
catenation with itself. The symbol

∏
represents the concatenation of a family

of tuples.

Lemma 2.3. — Let (g1, . . . , gn, h1, . . . , hm, gn+1, . . . , gn+n′) be an (n +
m + n′)-tuple in G satisfying hi . . . hm ∈ Z(G). For 0 ⩽ k ⩽ n + n′, this
(n+m+ n′)-tuple is Hurwitz equivalent to

(g1, . . . , gk, h1, . . . , hm, gk+1, . . . , gn+n′). (2.1)

In particular, let (g1,1, . . . , g1,n1), (g2,1, . . . , g2,n2), . . . , (gk,1, . . . , gk,nk
)

be tuples in G satisfying gj,1 . . . gj,nj
∈ Z(G) for each of j = 1, . . . , k. Then

their concatenations in any order are pairwise Hurwitz equivalent.

Proof. — Applying Rn+m−1 ◦ · · · ◦Rn if n′ > 0 and applying R−1
n+1 ◦ · · · ◦

R−1
n+m if n > 0 on the (n+m+ n′)-tuple we transform the tuple into

(g1, . . . , gn+1, h1, . . . , hm, gn+2, . . . , gn+n′)

and
(g1, . . . , gn−1, h1, . . . , hm, gn, . . . , gn+n′)

respectively. □

Lemma 2.4. — Let (g1, . . . , gn) be an n-tuple in G satisfying gi = gjh
with some 1 ⩽ i < j ⩽ n and h in Z(G). Then

(g1, . . . , gn) ∼ (g1, . . . , gi−1, gj , gi+1, . . . , gj−1, gi, gj+1, . . . , gn).

Proof. — Applying R−1
j−1 ◦ · · · ◦R

−1
i+1 ◦Ri · · · ◦Rj−1 on (g1, . . . , gn) we get

the tuple

(g1, . . . , gi−1, gj , gig
−1
j gi+1gjg

−1
i , . . . , gig

−1
j gj−1gjg

−1
i , gi, gj+1, . . . , gn),

which is equal to (g1, . . . , gi−1, gj , gi+1, . . . , gj−1, gi, gj+1, . . . , gn), as desired.
□

Definition 2.5. — An n-tuple in G is said to contain a generating set
if its components form a generating set of the group G.
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For instance, the modular group PSL(2,Z) = SL(2,Z)/{+I,−I} has the
presentation

PSL(2,Z) = ⟨a, b | a3 = b2 = 1⟩;
both (a2b, ba2, a2b, ba2, a2b, ba2) and (ba, ab, ba, ab, ba, ab) contain generating
sets.

Lemma 2.6. — Suppose that (g1, . . . , gn) and (h1, . . . , hm) are tuples in
G such that (h1, . . . , hm) contains a generating set. Let Q be an arbitrary
element in G. If there exists a sub-tuple of (g1, . . . , gn), say (gl, . . . , gr)
with 1 ⩽ l ⩽ r ⩽ n, such that

∏r
i=l gi ∈ Z(G), then the concatenation

(g1, . . . , gn) • (h1, . . . , hm) is Hurwitz equivalent to

(g1, . . . , gl−1, Q
−1glQ, . . . , Q

−1grQ, gr+1, . . . , gn) • (h1, . . . , hm).

Proof. — We express a given element Q in G as q1 . . . qu such that qi ∈
{h1, h

−1
1 , . . . , hm, h

−1
m }, i = 1, . . . , u. The lemma follows from Lemma 2.3

and the following substitutions via elementary transformations for each of
j = 1, . . . ,m:

(g1, . . . , gl, . . . , gr, . . . , gn) • (h1, . . . , hj , . . . , hm)
−→ (g1, . . . , gl−1, gr+1, . . . , gn, h1, . . . , hj−1, gl, . . . , gr, hj , . . . , hm)
−→ (g1, . . . , gl−1, gr+1, . . . , gn, h1, . . . , hj , h

−1
j glhj , . . . , h

−1
j grhj , hj+1, . . . )

−→ (g1, . . . , gl−1, h
−1
j glhj , . . . , h

−1
j grhj , gr+1, . . . , gn) • (h1, . . . , hj , . . . , hm);

(g1, . . . , gl, . . . , gr, . . . , gn) • (h1, . . . , hj , . . . )
−→ (g1, . . . , gl−1, gr+1, . . . , gn, h1, . . . , hj , gl, . . . , gr, hj+1, . . . , hm)
−→ (g1, . . . , gl−1, gr+1, . . . , gn, h1, . . . , hj−1, hjglh

−1
j , . . . , hjgrh

−1
j , hj , . . . )

−→ (g1, . . . , gl−1, hjglh
−1
j , . . . , hjgrh

−1
j , gr+1, . . . , gn) • (h1, . . . , hj , . . . , hm).

□

2.2. Contraction and restoration on tuple

In this subsection, we introduce the notions of contraction and restoration
on tuples. We move on to a procedure that involves a series of operations,
including contractions, restorations, and elementary transformations. The
procedure behaves like a self-consistent machine, maintaining data about the
given tuple and operations. Our study repeatedly utilises this procedure. To
make it clear and easy to visualise, thus we start with the following definition.

Definition 2.7. — An iterated tuple of height 0 in G is an element g ∈
G; for h ⩾ 1, an iterated tuple of height h in G is a tuple whose components
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are iterated tuples of height smaller than h such that at least one component
is of height h− 1.

Take g ∈ G and H = (H1, . . . ,Hn) an iterated tuple of height h ⩾ 1.
The evaluation on an iterated tuple is defined by ev(g) = g and ev(H) =∏n

i=1 ev(Hi). With v ∈ G, using the notation gv = v−1gv we define Hv as
Hv = (H1, . . . ,Hn)v = (Hv

1 , . . . ,H
v
n).

The elementary transformation Ri acts on the set of iterated tuples with
n ⩾ i + 1 components by taking the conjugation of each element in Hi with
ev(Hi+1) and swapping the positions, to wit

Ri(H1, . . . ,Hn) = (H1, . . . ,Hi−1, Hi+1, H
ev(Hi+1)
i , Hi+2, . . . ,Hn).

Given an n-tuple (g1, . . . , gn) in G, we keep hold of the following data:

• (h1, . . . , hm): an tuple in G;
• (H1, . . . ,Hm): an iterated tuple in G such that

(ev(H1), . . . , ev(Hm)) = (h1, . . . , hm);
• F : an ordered list such that each element is either

– a pair (µ, σ) with µ ∈ Z and σ an elementary transformation
on (iterated) µ-tuples, or

– a pair of integers (l, r) with 1 ⩽ l < r.

At the beginning, the tuples (h1, . . . , hm) and (H1, . . . ,Hm) are the same,
i.e., both are copies of (g1, . . . , gn) and the ordered list F is empty. We apply
the following operations successively on the data.

(i) Elementary transformation: Apply an elementary transformation,
say Rϵ

i with 1 ⩽ i ⩽ m− 1 and ϵ = ±1, on the m-tuple (h1, . . . , hm)
and the iterated m-tuple (H1, . . . ,Hm). Then append (m,Rϵ

i) to F .
(ii) Contraction: For a pair of integers 1 ⩽ l < r ⩽ n, we replace the

tuple (h1, . . . , hm) with
(h1, . . . , hl−1, hl . . . hr, hr+1, . . . , hm)

and replace the iterated tuple (H1, . . . ,Hm) with
(H1, . . . ,Hl−1, (Hl, . . . ,Hr), Hr+1, . . . ,Hm).

Append (l, r) to F .
(iii) Restoration: Take the last pair of the form (l, r) in F , still denoted

by (l, r). Let F ′ be the sub-list of F which consists of the elements
after (l, r). Remove (l, r) and all the elements after (l, r) from F . Set
k = l and m′ = m+ (r − l). We consider each pair (µ, σ) = (m,Rϵ

i)
in F ′ with the order.
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• If 1 ⩽ i ⩽ k − 2, then append (m′, Rϵ
i) to F .

• If k + 1 ⩽ i ⩽ m, then append (m′, Rϵ
i+(r−l)) to F .

• If σ = Rk−1, then append the pairs

(m′, Rk−1), . . . , (m′, Rk−1+(r−l))

to F and replace k with k − 1. In this case, the elementary
transformation σ acts on an iterated m-tuple of the form

(H1, . . . ,Hk−1, (H′1, . . . ,H′r−l+1),Hk+1, . . . ,Hm)

via

(. . . ,Hk−1, (H′1, . . . ,H′r−l+1), . . . )
Rk−1−−−→ (. . . , (H′1, . . . ,H′r−l+1),Hev(H′

1,...,H′
r−l+1)

k−1 , . . . ).

The new pairs (m′, Rk−1), . . . , (m′, Rk−1+(r−l)) in F act on an
iterated m′-tuple of the form

(H1, . . . ,Hk−1,H′1, . . . ,H′r−l+1,Hk+1, . . . ,Hm)

via

(. . . ,Hk−1,H′1, . . . ,H′r−l+1, . . . )
Rk−1−−−→ (. . . ,H′1,H

ev(H′
1)

k−1 ,H′2 . . . ,H′r−l+1, . . . )
Rk−−→ (. . . ,H′1,H′2,H

ev(H′
1)ev(H′

2)
k−1 ,H′3 . . . ,H′r−l+1, . . . )

−→ . . .

Rk−1+(r−k)−−−−−−−−→ (. . . ,H′1, . . . ,H′r−l+1,H
ev(H′

1)...ev(H′
r−l+1)

k−1 , . . . ).

• If σ = Rk, then append the pairs (m′, Rk+(r−l)), . . . , (m′, Rk)
to F and replace k with k + 1.

• If σ = R−1
k−1, then append the pairs

(m′, R−1
k−1), . . . , (m′, R−1

k−1+(r−l))

to F and replace k with k − 1.
• If σ = R−1

k , then append the pairs

(m′, R−1
k+(r−l)), . . . , (m

′, R−1
k )

to F and replace k with k + 1.
Finally, suppose that

Hk = (H ′1, . . . ,H ′r−l+1).

We replace (h1, . . . , hm) with

(h1, . . . , hk−1, ev(H ′1), . . . , ev(H ′r−l+1), hk+1, . . . , hm)
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and replace (H1, . . . ,Hm) with
(H1, . . . ,Hk−1, H

′
1, . . . ,H

′
r−l+1, Hk+1, . . . ,Hm).

Note that above operations can be applied in any order, possibly each
appears many times and different operations may alternate with each other.
However, we apply operations only finitely many times. The following lemma
shows the main property of these operations.

Lemma 2.8. — If m = n, then (h1, . . . , hm) coincides with the resulting
tuple of (g1, . . . , gn) after applying all elementary transformations σ occur-
ring in F with the order.

Proof. — Let (l, r) be the last pair of integers in F which indicates the
last contraction operation and replaces hl, . . . , hr with hl . . . hr. The product
exactly corresponds to the k-th component of the m-tuple after each of
the subsequent elementary transformations, where k is introduced in the
restoration operation. Therefore, the restoration cancels the contraction and
constructs the corresponding elementary transformations on the m′-tuple.
We conclude the lemma by induction. □

A direct application of the above operations requires us to maintain a
lot of data, which would be a massive and tedious project. To simplify the
application, our usage only focuses on the replacement

(h1, . . . , hm) 99K (h1, . . . , hl−1, hl . . . hr, hr+1, . . . , hm)
of the contraction; when applying the restoration, we enumerate all possible
patterns of the corresponding contraction instead. Therefore, the iterated
tuple (H1, . . . ,Hm) and the ordered list F never appear in the argument.

More delicate operations for tuples in the modular group and their prop-
erties will be introduced in Proposition 4.10 and Proposition 4.29. We need
the following definition in the sequel:

Definition 2.9. — Let (g1, . . . , gn) and (h1, . . . , hm) be tuples in G with
n ⩾ m. The tuple (g1, . . . , gn) is said to be an (h1, . . . , hm)-expansion (or an
expansion of (h1, . . . , hm)) if there exist integers 0 = i0 < i1 < i2 < · · · <
lm = n such that gij−1+1 . . . gij

= hj for each of j = 1, . . . ,m.

Suppose that (g1, . . . , gn) is an expansion of (h1, . . . , hm). Then the as-
sociated contraction operations consist of m contractions so that replace
(g1, . . . , gn) with (h1, . . . , hm).

2.3. Direct sums of fibrations and their global monodromies

Recall that the type O(f) of singularities of a torus fibration f is a multi-
set of fibre monodromies counted with multiplicity. Let f1 : M1 → S2,
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f2 : M2 → S2 be torus fibrations, possibly with different numbers of singular
fibres. Let f1 ⊕ f2 be a direct sum of f1 and f2. The global monodromy of
f1 ⊕ f2 depends on the fibre-connected sum M1 ⊕β M2, the base point p on
S2 and the set of generators for the fundamental group π1(S2 \ B). To be
precise, a global monodromy of f1⊕ f2 is a concatenation of two sub-tuples,
say

(ψ−1
1 ϕ1,1ψ1, . . . , ψ

−1
1 ϕ1,n1ψ1) • (ψ−1

2 ϕ2,1ψ2, . . . , ψ
−1
2 ϕ2,n2ψ2),

such that (ϕ1,1, . . . , ϕ1,n1) and (ϕ2,1, . . . , ϕ2,n2) are global monodromies of
f1 and f2 respectively, ψ1, ψ2 ∈ SL(2,Z) and at least one of ψ1, ψ2 is 1. In
general, global monodromies of different direct sums or of the same direct
sum but with different base points are not Hurwitz equivalent.

For any n-tuple (ϕ1, . . . , ϕn) in SL(2,Z) with ϕ1 . . . ϕn = 1, we use
f(ϕ1,...,ϕn) to denote a torus fibration that has a global monodromy equal
to (ϕ1, . . . , ϕn), if it exists. We use the notation fL

(ϕ1,...,ϕn) for such a fibra-
tion that is also a Lefschetz fibration. Lemma 2.10 will point out that we
can always work with such a Lefschetz fibration up to expansion. Let us first
recall some facts about SL(2,Z) and Lefschetz fibrations.

Set A =
[ 0 −1

1 1
]

and B =
[−1 −2

1 1
]
∈ SL(2,Z). Let L = −ABA = [ 1 0

1 1 ]
and R = −AB = [ 1 1

0 1 ]. The conjugacy classes of SL(2,Z) have been de-
scribed using the geometry of continued fractions (see [16, 28, 32]). They are
classified according to the trace, which is conjugacy invariant, as follows.

(0) For trace 0, there are 2 conjugacy classes represented by B and −B.

For nonzero trace, the conjugacy classes come in opposite pairs, represented
by a matrix M and its opposite −M with tr(M) > 0 and tr(−M) < 0.

(1) For trace 1, there are 2 conjugacy classes represented by A, −A2.
For trace −1, there are 2 conjugacy classes represented by −A, A2.

(2) For trace 2, there is a Z-indexed families of conjugacy classes rep-
resented by Lr with r ∈ Z.
For trace −2, there is a Z-indexed families of conjugacy classes rep-
resented by −Lr with r ∈ Z.

(3) For trace 3, there is only one conjugacy class represented by LR.
For trace −3, there is only one conjugacy class represented by −LR.

(⩾3) In general, for trace of absolute value ⩾ 3, the words of the form
±Rj1Lk1Rj2Lk2 . . . RjmLkm with m ⩾ 1, j1, . . . , jm, k1, . . . , km ⩾ 1
represent all conjugacy classes. Conversely, different words of this
form up to cyclic conjugacy belong to different conjugacy classes.

Recall that the fibre monodromies of torus Lefschetz fibrations are con-
jugates of L.
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For convenience, we set qL = −A2B and pL = −BA2, which are conjugates
of L.

Lemma 2.10. — Let (ϕ1, . . . , ϕn) be an n-tuple in SL(2,Z), ϕ1 . . . ϕn =
1. There exists a torus Lefschetz fibration fL, one of whose global monodromy
is an expansion of (ϕ1, . . . , ϕn).

Proof. — It suffices to show that the semigroup generated by qL and pL is
exactly SL(2,Z). It follows from that qLpL = A and qLpLqL = B whose inverses
are A5 and B3 respectively. □

Now we describe the following tuples with respect to a multi-set O of
fibre monodromies. Their induced fibrations fTO,0 , fTO,1 , fTO,2 and fTO will
stabilise torus fibrations.

Definition 2.11. — Suppose that O is a multi-set of conjugacy classes
of SL(2,Z).

(1) We define TO,0 as (qL, pL,A2, qL, pL,A2).
(2) We define TO,1 as an empty tuple if there does not exist a conjugacy

class of trace ±3 in O, otherwise
TO,1 = (B,B,B,B) • (−A2BAB,BA,−ABA)3.

(3) We define TO,2 as the concatenation of the following tuples.
(a) If the conjugacy class represented by ϵLr with r ⩾ 2 and ϵ ∈
{1,−1} occurs m ⩾ 1 times in O, take m copies of

(L, . . . , L, L−r)︸ ︷︷ ︸
r+1 components

.

(b) If the conjugacy class represented by ϵR2 with r ⩾ 2 and ϵ ∈
{1,−1} occurs m ⩾ 1 times in O, take m copies of

(R, . . . , R,R−r)︸ ︷︷ ︸
r+1 components

.

(c) Suppose that a conjugacy class of elements with |trace| ⩾ 4 is
represented by

ϵRj1Lk1Rj2Lk2 . . . RjmLkm

with ϵ = {1,−1}, m ⩾ 1, j1, . . . , jm, k1, . . . , km ⩾ 1. If the
conjugacy class occurs m ⩾ 1 times in O, take m copies of

(
R, . . . , R︸ ︷︷ ︸

j1 components

,

k1 components︷ ︸︸ ︷
L, . . . , L, . . . , R, . . . , R︸ ︷︷ ︸

jm components

,

km components︷ ︸︸ ︷
L, . . . , L, (Rj1 . . . Lkm)−1).

Eventually, we define TO as TO,0 • TO,1 • TO,2.
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2.4. Hurwitz equivalence of global monodromies

If two global monodromies of torus fibrations are Hurwitz equivalent,
then they must have the same number of branch points and the same type
of singularities. The following theorem shows that the global monodromies
of torus fibrations with the same type of singularities become Hurwitz equiv-
alent up to fibre sum stabilisations.

Theorem 2.12. — Given a torus fibration, let O be the type of singu-
larities. Suppose that f0 is one of the following:

(i) a torus fibration, one of whose global monodromy is (h1, . . . , hm) =
TO;

(ii) a torus Lefschetz fibration, one of whose global monodromy is a TO-
expansion, denoted by (h1, . . . , hm).

Then all global monodromies of all direct sums f⊕f0 are Hurwitz equivalent
for all torus fibrations f with O(f) = O. Moreover, these global monodromies
have a specific normal form determined by O and (h1, . . . , hm) as follows:

(g1, . . . , gl) •
∏

i

(ϕi,1, . . . , ϕi,ni
)

where g1 . . . gl = I, (g1, . . . , gl) is the sub-tuple of (h1, . . . , hm) either equal
to TO,0 or corresponding to TO,0, ϕi,1 . . . ϕi,ni

= ±I for each i and each
(ϕi,1, . . . , ϕi,ni

) is either

• a tuple of the form (X,Y ) with XY = ±I, or
• a tuple of ±A, ±A2, ±B, ±qL, ±L, ±pL, ±qL−1, ±L−1, ±pL−1, except

for at most 1 component.

Remark 2.13. — Theorem 2.12 and Lemma 2.10 imply the main result
Theorem A. Let H12 = (qL, pL)6 and

H60 = (qL, pL)6 • (qL, pL, qL)4 • (qL,L, qL, pL, qL, pL, qL, pL, qL, pL,L,L)3

be tuples in SL(2,Z). Theorem B and C again follow from Theorem 2.12,
where the torus Lefschetz fibrations fL

12 and fL
60 are fL

H12
and fL

H60
respec-

tively.

Remark 2.14. — The normal form given in Theorem 2.12, though its
precise form is not given, satisfies a remarkable property, called swappability.
We explain the swappability in Section 3.1 but as a consequence, we have
Proposition 2.15.

Let ι : SL(2,Z)→ PSL(2,Z) be the natural group homomorphism.
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Proposition 2.15. — For i = 1, 2, let
∏

j

(
ϕ

(i)
j,1, . . . , ϕ

(i)
j,nj

)
be a tuple in

SL(2,Z) such that
ϕ

(i)
j,1 . . . ϕ

(i)
j,nj

= ±I

for each j and each sub-tuple (ϕ(i)
j,1, . . . , ϕ

(i)
j,nj

) is either

• a tuple of the form (X,Y ) with XY = ±I, or
• a tuple of ±A, ±A2, ±B, ±qL, ±L, ±pL, ±qL−1, ±L−1, ±pL−1, except

for at most 1 component.

Let (g1, . . . , gl) be a tuple in SL(2,Z) that is either equal to TO,0 or a TO,0
expansion. Suppose that[

Cl(ϕ(1)
j,1), . . . , Cl

(
ϕ

(1)
j,nj

) ∣∣∣ j] =
[
Cl(ϕ(2)

j,1), . . . , Cl
(
ϕ

(2)
j,nj

) ∣∣∣ j]
and ∏

j

(
ι
(
ϕ

(1)
j,1
)
, . . . , ι

(
ϕ

(1)
j,nj

))
=
∏

j

(
ι
(
ϕ

(2)
j,1
)
, . . . , ι

(
ϕ

(2)
j,nj

))
.

Then,

(g1, . . . , gl) •
∏

j

(
ϕ

(1)
j,1 , . . . , ϕ

(1)
j,nj

)
∼ (g1, . . . , gl) •

∏
j

(
ϕ

(2)
j,1 , . . . , ϕ

(2)
j,nj

)
.

We need a deeper understanding of tuples in PSL(2,Z). Set a = ι(A),
b = ι(B). Recall that PSL(2,Z) is generated by a and b with the relation
a3 = b2 = 1. Some other elements are marked as follows:

s0 = a2b, s1 = aba, s2 = ba2, t0 = ba, t1 = a2ba2, t2 = ab.

Here ι(L) = s1, ι(R) = t2, ι(qL) = s0 and ι(pL) = s2. We further emphasise
that siti = 1 for i = 0, 1, 2. Elements s0, s1, s2 are conjugate to each other
and t0, t1, t2 are conjugate to each other.

Elements in S = {a, a2, b, s0, s1, s2, t0, t1, t2} are called “short” and ele-
ments in
S2 = S ∪ {bab, ba2b, a2ba, aba2, a2bab, ababa, baba2, ba2ba, a2ba2ba2, aba2b}

are called “almost short”.

The following improves and extends Theorem 3.6 in [25], which divides
the tuples of elements in PSL(2,Z) conjugate to a, a2, b, s0 or t0 into two
categories and, for tuples in the second category, presents the normal forms.

Theorem 2.16. — Let g1, . . . , gn ∈ PSL(2,Z) be conjugates of a, a2, b,
aba or a2ba2 satisfying g1 . . . gn = 1. Suppose that pa of them are conjugates
of a, qa of them are conjugates of a2, nb of them are conjugates of b, p of
them are conjugates of s0 and q of them are conjugates of t0 with pa, qa, nb,
p, q ⩾ 0 and pa + qa + nb + p+ q = n. Then,
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(1) if p = q, |pa − qa| ≡ 0 (mod 3) and nb is even, then the n-tuple
(g1, . . . , gn) is Hurwitz equivalenet to

(k1, k
−1
1 , . . . , kn′ , k−1

n′ , l1, l1, l1, . . . , ln′′ , ln′′ , ln′′)

with n′ + n′′ = n, ki, lj ∈ G and l3j = 1, i = 1, . . . , n′, j = 1, . . . , n′′;
(2) otherwise, the n-tuple (g1, . . . , gn) is Hurwitz equivalent to the con-

catenation of

(s0, s2)⌊max{p−q,0}/2⌋•(t0, t2)⌊max{q−p,0}/2⌋•

(s0, t0)min{p,q}•(a, a2)min{pa,qa} • (b, b)⌊nb/2⌋•

(a, a, a)⌊max{pa−qa,0}/3⌋•(a2, a2, a2)⌊max{qa−pa,0}/3⌋

and at most one of the following tuples:

(a2, s0, s2), (a, t2, t0), (a, s0, s0, s2, s0), (a2, t0, t2, t0, t0),
(b, s0, s2, s0), (b, t0, t2, t0), (a, b, s2), (a2, b, t0),
(a, t2, t0, b, t0, t2, t0), (a2, s0, s2, b, s0, s2, s0),
(a, a, s0, s2), (a2, a2, t2, t0), (a2, a2, s0, s0, s2, s0),
(a, a, t0, t2, t0, t0), (a2, a2, b, s2), (a, a, b, t0),
(a2, a2, t2, t0, b, t0, t2, t0), (a, a, s0, s2, b, s0, s2, s0).

The resulting n-tuple is called the normal form of (g1, . . . , gn).

As a supplement, we have Theorem 2.17 and its modification.

Theorem 2.17. — Let g1, . . . , gn ∈ PSL(2,Z) be conjugates of a, a2, b,
s0, t0 or ababa satisfying g1 . . . gn = 1. Suppose that m of them are conjugates
of ababa. Take

F13 = (b, b, b, b, a2bab, t0, s1, a
2bab, t0, s1, a

2bab, t0, s1).

Then (g1, . . . , gn) • F13 is Hurwitz equivalent to

(h1, . . . , hn−m−3−2µ) • (a2bab, ba2ba)(m+3−µ)/2 • (a2bab, t0, s1)µ

where

• each component of (h1, . . . , hn−m−3−2µ) is conjugate to one of a,
a2, b, s0, t0;
• µ = 3−m if m ⩽ 3 and µ = (m+ 1) mod 2 otherwise.

Theorem 2.18 (A modification of Theorem 2.17). — Let g1, . . . , gn ∈
PSL(2,Z) be conjugates of a, a2, b, s0, t0 or ababa satisfying g1 . . . gn = 1.
Suppose that m of them are conjugates of ababa. Take

F13 = (b, b, b, b, a2bab, t0, s1, a
2bab, t0, s1, a

2bab, t0, s1).
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Let FL be an F13-expansion of conjugates of s0, written as

(u1,1, . . . , u1,k1 , u2,1, . . . , u2,k2 , . . . , u13,1, . . . , u13,k13),

such that ui,1 . . . ui,ki
is equal to the i-th component of F13 for each of i =

1, . . . , 13. Then (g1, . . . , gn) • FL is Hurwitz equivalent to

(h1, . . . , hn′) • (a2bab, ba2ba)(m−3+µ)/2 •
3−µ∏
i=1

(u3i+2,1, . . . , u3i+2,k3i+2 , ba
2ba)

•
3∏

i=3−µ+1

3i+4∏
j=3i+2

(uj,1, . . . , uj,kj )

where:

• each component of (h1, . . . , hn′) is conjugate to one of a, a2, b, s0, t0;
• µ = 3−m if m ⩽ 3 and µ = (m+ 1) mod 2 otherwise.

The proof of Theorem 2.12 relies on Theorem 2.16, Theorem 2.17 and
the above modification of Theorem 2.17. We will prove Theorem 2.16, 2.17
and 2.18 in Section 4.

Proof of Theorem 2.12. — Suppose that (h1, . . . , hm) = TO if f0 is as
in (i), or (h1, . . . , hm) is a TO-expansion if f0 is as in (ii), which is a global
monodromy of f0. We write it as a concatenation either

• of all the following tuples, or
• of the following tuples labelled (1), (2) and (4).

The list of tuples is as follows.

(1) The tuple (h1,1, . . . , h1,m1) is either (qL, pL,A2) or else a (qL, pL,A2)-
expansion of conjugates of L.

(2) The tuple (h2,1, . . . , h2,m2) is either (qL, pL,A2) or else a (qL, pL,A2)-
expansion of conjugates of L, which may be different from the tuple
(h1,1, . . . , h1,m1).

(3) The tuple (h3,1, . . . , h3,m3) is either TO,1 or a TO,1-expansion of
conjugates of L.

(4) The tuple (h4,1, . . . , h4,m4) is either TO,2 or a TO,2-expansion of
conjugates of L.

Step 1. — We first show that any global monodromy of a direct sum
f ⊕ f0 can be transformed into

(ϕ1, . . . , ϕn) • (h1, . . . , hm)

where (ϕ1, . . . , ϕn) is a global monodromy of f .
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Given a base point p of f ⊕ f0, a global monodromy of the direct sum
with respect to p is the concatenation

(ψ−1
1 ϕ1ψ1, . . . , ψ

−1
1 ϕnψ1) •

∏
i∈I

(ψ−1
2 hi,1ψ2, . . . , ψ

−1
2 hi,miψ2)

with the tuple (ϕ1, . . . , ϕn) a global monodromy of f , elements ψ1, ψ2 ∈
SL(2,Z) and the index set I either {1, 2, 3, 4} or {1, 2, 4}. Each tuple in
the concatenation has the product of components equal to ±I and both of
the tuples (ψ−1

2 h1,1ψ2, . . . , ψ
−1
2 h1,m1ψ2) and (ψ−1

2 h2,1ψ2, . . . , ψ
−1
2 h2,m2ψ2)

contain generating sets. By Lemma 2.6, we can eliminate all the ψ1, ψ2 in the
global monodromy using elementary transformations. Rewrite the resulting
tuple as

(ϕ1, . . . , ϕn) • (g1, . . . , gl) • (h3,1, . . . , h3,m3)[3∈I] • (h4,1, . . . , h4,m4)
where [3 ∈ I] = 1 if 3 ∈ I and [3 ∈ I] = 0 if 3 ̸∈ I, such that (g1, . . . , gl) is
either TO,0 or a TO,0-expansion of conjugates of L.

Step 2. — We show that the above resulting tuple is Hurwitz equiva-
lent to

(φ1, . . . , φn′) • (g1, . . . , gl) • (h3,1, . . . , h3,m3)[3∈I] • (h′4,1, . . . , h
′
4,m4

)
such that

• (φ1, . . . , φn′) is a tuple of elements in simple conjugacy classes such
that φ1 . . . φn′ = ±I;

• (h′4,1, . . . , h
′
4,m4

) depends only on (h4,1, . . . , h4,m4) and components
of (ϕ1, . . . , ϕn) in non-simple conjugacy classes.

If (h4,1, . . . , h4,m4) is a TO,2-expansion then, as in Section 2.2, using con-
tractions on (h4,1, . . . , h4,m4) we replace (h4,1, . . . , h4,m4) with TO,2. The
definition of TO,2 states that it is the concatenation of several sub-tuples.
These sub-tuples are in one-to-one correspondence with the singular fibres of
f whose fibre monodromies belong to non-simple conjugacy classes and they
are further in one-to-one correspondence with the components of (ϕ1, . . . , ϕn)
excluding those of trace 0, ±1, ±3 or conjugate to ±L, ±R.

Suppose that there exists an (r+1)-sub-tuple of the form (L, . . . , L, L−r)
in TO,2 with r ⩾ 2. We take the corresponding component, say ϕi, which is
equal to ϵh−1Lrh with ϵ = ±1 and h ∈ SL(2,Z). Since (g1, . . . , gl) contains
a generating set, by Lemma 2.6, we replace the (r + 1)-sub-tuple with

(h−1Lh, . . . , h−1Lh, h−1L−rh).
By Lemma 2.3, we further replace ϕi with (h−1Lh, . . . , h−1Lh) and replace
the above (r+1)-sub-tuple with (ϵh−1Lrh, h−1L−rh). Again by Lemma 2.6,
the pair (ϵh−1Lrh, h−1L−rh) can be transformed into (ϵLr, Lr).
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We have similar arguments for sub-tuples of the form (R, . . . , R,R−r) or
of the form

(R, . . . , R, L, . . . , L, . . . , (their product)−1)
as in Definition 2.11. For the restoration, according to each component in
TO,2, we rewrite the corresponding component as a sub-tuple. Notice that if
such a component belongs to some simple conjugacy class, then it is replaced
by a sub-tuple of conjugates of L. Hence the resulting tuple is as desired.

We will not modify (h′4,1, . . . , h
′
4,m4

) anymore.

Step 3. — Suppose that n+ components of (φ1, . . . , φn′) are of trace 3
and n− components of (φ1, . . . , φn′) are of trace−3. If n++n− = 0, then take
(φ′1, . . . , φ′n′′) = (φ1, . . . , φn′) and skip the step. Otherwise, [3 ∈ I] = 1. We
further show that, by elementary transformations, (φ1, . . . , φn′)•(g1, . . . , gl)•
(h3,1, . . . , h3,m3) can be transformed into

(φ′1, . . . , φ′n′′) • (g1, . . . , gl) • (h̄1, . . . , h̄m̄)
such that

• (φ′1, . . . , φ′n′′) is a tuple of elements either of trace 0,±1 or conjugate
to ±L or ±R,

• (h̄1, . . . , h̄m̄) depends only on n+, n− and (h3,1, . . . , h3,m3).

If (h3,1, . . . , h3,m3) is an expansion of TO,1 then, as in Section 2.2, using
contractions on (h3,1, . . . , h3,m3) we replace it with TO,1. By applying The-
orem 2.17 to (ι(φ1), . . . , ι(φn′)) • F13, the tuple is transformed into

(φ′1, . . . , φ′n′′) • (g1, . . . , gl) •
k∏

i=1
(ψi,0, ψi,1) • (−A2BAB,BA,−ABA)µ

such that each of ι(φ′i), i = 1, . . . , n′′ is conjugate to a, a2, b, s0 or t0,
ι(ψi,0) = a2bab, ι(ψi,1) = ba2ba and µ ⩽ 3. The number µ is determined by
n+ + n−, which further separates the cases.

Then, the restoration operations apply on the tuple. Some components
of (φ′1, . . . , φ′n′′) are replaced by sub-tuples of elements conjugate to L, while
keeping each component conjugate to some preimage of a, a2, b, s0 or t0.
The remaining components that might be modified by the restoration are
exactly the components of the last µ sub-triples and the last 3−µ components
denoted by ψi,0. By Theorem 2.18 they are replaced by certain sub-tuples
of (h3,1, . . . , h3,m3).

The remaining components of
∏k

i=1(ψi,0, ψi,1) are of trace ±3 and they
are either ±A2BAB or ±BA2BA. To restrict their dependencies only on
n+ and n−, we have to show that their signs can be rearranged to certain
positions, but this follows from Proposition 2.15.
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Step 4. — We conclude the proof of Theorem 2.12 by showing that

(φ′1, . . . , φ′n′′) • (g1, . . . , gl)

is Hurwitz equivalent to

(φ′′1 , . . . , φ′′n′′) • (g1, . . . , gl)

such that (φ′′1 , . . . , φ′′n′′) depends only on the multi-set O.

Applying Theorem 2.16 to (ι(φ′1), . . . , ι(φ′n′′)), we transform the tuple
(φ′1, . . . , φ′n′′) into a new tuple, denoted by (φ′′1 , . . . , φ′′n′′). For the first case in
Theorem 2.16, as (g1, . . . , gl) contains a generating set, applying Lemma 2.6
we further transform the concatenation into a resulting tuple, denoted by
(φ′′1 , . . . , φ′′n′′) • (g1, . . . , gl), satisfying

(ι(φ′′1), . . . , ι(φ′′n′′)) = (s0, t0)µ1 • (a, a2)µ2 • (b, b)µ3 • (a, a, a)µ4 • (a2, a2, a2)µ5

with µ1, . . . , µ5 determined by O. The theorem then follows from Prop-
osition 2.15. □

Remark 2.19. — Alternatively, instead of using Proposition 2.15, one
may apply the substitutions

(ϵ1A2BAB, ϵ2BA
2BA) • (g1, . . . , gl)

−→ (ϵ1BA2BA, ϵ2B
2A2BAB−1) • (g1, . . . , gl)

= (ϵ1BA2BA, ϵ2A
2BAB) • (g1, . . . , gl)

−→ (ϵ2A2BAB, ϵ1BA
2BA) • (g1, . . . , gl)

at the end of Step 3 and

(τ1A
2B, τ2BA

2, τ3A
2B) −→ (τ2BA

2, τ1ABA, τ3A
2B)

−→ (τ2BA
2, τ3A

2B, τ1BA
2)

at the end of Step 4, where ϵ1, ϵ2, τ1, τ2, τ3 ∈ {−I,+I} are arbitrary. They
appeared in an earlier version of this paper.

We end with the proof of Corollary A.

Proof of Corollary A. — The fibre monodromy of a singular fibre dis-
tinguishes the type in the Kodaira classification. The corollary follows from
Theorem B. □
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3. Swappability and local models

3.1. Swappability of the normal form

In this subsection, we introduce the notion of swappability for a tuple in
SL(2,Z) with a stabilisation.

Definition 3.1. — Let (ϕ1, . . . , ϕn), (g1, . . . , gl) be tuples in SL(2,Z).
Suppose that, for any abelian group G and tuples (ϵ1, . . . , ϵn), (ϵ′1, . . . , ϵ′n),
(σ1, . . . , σl) in G such that the following multi-sets of conjugacy classes in
G× SL(2,Z) coincide:

[Cl
(
(ϵ1, ϕ1)

)
, . . . , Cl

(
(ϵn, ϕn)

)
] = [Cl

(
(ϵ′1, ϕ1)

)
, . . . , Cl

(
(ϵ′n, ϕn)

)
],

we have (
(σ1, g1), . . . , (σl, gl)

)
•
(
(ϵ1, ϕi), . . . , (ϵn, ϕn)

)
∼
(
(σ1, g1), . . . , (σl, gl)

)
•
(
(ϵ′1, ϕi), . . . , (ϵ′n, ϕn)

)
.

In this case, we say that (ϕ1, . . . , ϕn) is (g1, . . . , gl)-stabilised swappable.

Remark 3.2. — The normal form given in Theorem 2.12 is an example
of swappable tuples, which is guaranteed by Proposition 3.3.

Proposition 3.3. — Let
∏

i(ϕi,1, . . . , ϕi,ni
) be a tuple in SL(2,Z) such

that ϕi,1 . . . ϕi,ni = ±I for each i and each (ϕi,1, . . . , ϕi,ni) is either

• a tuple of the form (X,Y ) with XY = ±I, or
• a tuple of ±A, ±A2, ±B, ±qL, ±L, ±pL, ±qL−1, ±L−1, ±pL−1, except

for at most 1 component.

Let (g1, . . . , gl) be a tuple in SL(2,Z) either equal to TO,0 or a TO,0 expansion.
Then the tuple

∏
i(ϕi,1, . . . , ϕi,ni

) is (g1, . . . , gl)-stabilised swappable.

Proof. — We need only prove the proposition for the case (g1, . . . , gl) =
TO,0.

Set (ϕ1, . . . , ϕn) =
∏

i(ϕi,1, . . . , ϕi,ni) and consider the tuple(
(σ1, g1), . . . , (σl, gl)

)
•
(
(ϵ1, ϕi), . . . , (ϵn, ϕn)

)
in G×SL(2,Z). It suffices to show that, for any two components (ϵi, ϕi) and
(ϵj , ϕj) such that ϕi is conjugate to ϕj , one can interchange ϵi and ϵj using
elementary transformations.

When ϕi = ϕj , the swapping follows from Lemma 2.4.

When ϕi ̸= ϕj but ϕi, ϕj belong to different sub-tuples, using Lemma 2.6
for the sub-tuple containing (ϵi, ϕi), we transform the component (ϵi, ϕi) into
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(ϵi, ϕj). After swapping (ϵi, ϕj) and (ϵj , ϕj), we apply Lemma 2.6 again to
make other components unchanged.

When ϕ1 ̸= ϕj and ϕi, ϕj belong to a sub-tuple not of the form (X,Y )
with XY = ±I, we must have ϕi conjugate to one of L, −L, L−1 and −L−1.
Recall TO,0 = (qL, pL,A2) • (qL, pL,A2) and notice that the (first) (qL, pL,A2)
contains generating sets. If ϕi and ϕj are conjugate to ±L, then take Qi and
Qj be such that Q−1

i ϕiQi = ±L and Q−1
j ϕjQj = ±L, therefore

QjQ
−1
i ϕiQiQ

−1
j = ϕj and QiQ

−1
j ϕjQjQ

−1
i = ϕi.

Using Lemma 2.6 and Lemma 2.4, we have the following substitutions

(. . . , (ϵi, ϕi), . . . , (ϵj , ϕj), . . . ) • ((δ1, qL), (δ2, pL), . . . , (δ6, A
2))

−→ (. . . , (ϵi, Q−1
i ϕiQi), . . . , (ϵj , Q−1

i ϕjQi), . . . )

• ((δ1, qL), (δ2, pL), . . . , (δ6, A
2))

−→ (. . . , (δ1, qL), . . . , (ϵj , Q−1
i ϕjQi), . . . )

• ((ϵi, Q−1
i ϕiQi), (δ2, pL), . . . , (δ6, A

2))

−→ (. . . , (δ1, Qi
qLQ−1

i ), . . . , (ϵj , ϕj), . . . )

• ((ϵi, Q−1
i ϕiQi), (δ2, pL), . . . , (δ6, A

2))

−→ (. . . , (δ1, Q
−1
j Qi

qLQ−1
i Qj), . . . , (ϵj , Q−1

j ϕjQj), . . . )

• ((ϵi, Q−1
i ϕiQi), (δ2, pL), . . . , (δ6, A

2))

−→ (. . . , (δ1, Q
−1
j Qi

qLQ−1
i Qj), . . . , (ϵi, Q−1

i ϕiQi), . . . )

• ((ϵj , Q−1
j ϕjQj), (δ2, pL), . . . , (δ6, A

2))

−→ (. . . , (δ1, Qi
qLQ−1

i ), . . . , (ϵi, QjQ
−1
i ϕiQiQ

−1
j ), . . . )

• ((ϵj , Q−1
j ϕjQj), (δ2, pL), . . . , (δ6, A

2))

−→ (. . . , (δ1, qL), . . . , (ϵi, Q−1
i QjQ

−1
i ϕiQiQ

−1
j Qi), . . . )

• ((ϵj , Q−1
j ϕjQj), (δ2, pL), . . . , (δ6, A

2))
−→ (. . . , (ϵj , Q−1

j ϕjQj), . . . , (ϵi, Q−1
i QjQ

−1
i ϕiQiQ

−1
j Qi), . . . )

• ((δ1, qL), (δ2, pL), . . . , (δ6, A
2))

−→ (. . . , (ϵj , QiQ
−1
j ϕjQjQ

−1
i ), . . . , (ϵi, QjQ

−1
i ϕiQiQ

−1
j ), . . . )

• ((δ1, qL), (δ2, pL), . . . , (δ6, A
2))

= (. . . , (ϵj , ϕi), . . . , (ϵi, ϕj), . . . ) • ((δ1, qL), (δ2, pL), . . . , (δ6, A
2)).
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If ϕi and ϕj are conjugate to ±L−1, then using the contraction on the
iterated tuple ((δ2, pL), (δ3, A

2)) we have a similar sequence of substitutions.

When ϕi ̸= ϕj and ϕi, ϕj form a sub-tuple of the form (X,Y ) with
XY = ±I, there exists Q ∈ SL(2,Z) such that Q−1ϕiQ = ϕj and there-
fore Q−1ϕjQ = ϕi. By Lemma 2.6, the sub-tuple ((ϵi, ϕi), (ϵj , ϕj)) can be
transformed into ((ϵi, Q−1ϕiQ), (ϵj , Q−1ϕjQ)). □

As a consequence, we prove Proposition 2.15.

Proof of Proposition 2.15. — Let G = {1,−1} be the group under mul-
tiplication. We define

SL(2,Z) ∋ ϕ 7−→ ♯(ϕ) = (ϵ, ψ) ∈ G× SL(2,Z)
such that trace(ψ) ⩾ 0, ϵ = sgn(trace(ϕ)) if trace(ϕ) ̸= 0 and ϵ = 1 otherwise.
This map is well-defined, injective and conjugacy-preserving, but not a group
homomorphism.

Consider the tuple∏
j

((ϵ(1)
j,1 , ψ

(1)
j,1 ), . . . , (ϵ(1)

j,nj
, ψ

(1)
j,nj

)) =
∏

j

(♯(ϕ(1)
j,1), . . . , ♯(ϕ(1)

j,nj
))

and the tuple∏
j

((ϵ(2)
j,1 , ψ

(2)
j,1 ), . . . , (ϵ(2)

j,nj
, ψ

(2)
j,nj

)) =
∏

j

(♯(ϕ(2)
j,1), . . . , ♯(ϕ(2)

j,nj
))

in ×SL(2,Z). Their components present the same conjugacy classes counted
with multiplicity and ψ

(1)
j,k = ψ

(2)
j,k for all j and k. Besides, each sub-tuple of∏

j(ψ(1)
j,1 , . . . , ψ

(1)
j,nj

) is either a tuple of the form (X,Y ) with XY = ±I or a
tuple of A, −A2, ±B, qL, L, pL, qL−1, L−1 and pL−1. This proposition follows
from Proposition 3.3. □

3.2. Fibre-preserving homeomorphisms: from local to global

This subsection investigates fibre-preserving homeomorphisms between
torus fibrations. We start with the following definitions.

Definition 3.4. — Suppose that f : M → S2 is a torus fibration and
pj ∈ S2 is a branch point. The singular fibre f−1(pj) may be locally symmet-
ric in the following sense. Let U ⊂ S2 be any sufficiently small neighbourhood
of pj and p ∈ ∂U be an arbitrary point. Identifying f−1(p) with T2, we use
ϕj ∈ Mod(T2) to denote the monodromy along ∂U at p. Let ψ ∈ Mod(T2) be
an arbitrary mapping class such that ψϕj = ϕjψ. We suppose that there exists
a (self-)homeomorphism ΨM : f−1(U)→ f−1(U) such that f ◦ΨM = f and
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ΨM |f−1(p) represents ψ. In this case, we say that the singular fibre f−1(p)
is locally symmetric.

In particular, all singular fibres of a torus Lefschetz fibration are locally
symmetric.

Definition 3.5. — Suppose that f1 : M1 → S2 and f2 : M2 → S2 are
torus fibrations with branch sets B1 = {p(1)

j } and B2 = {p(2)
j }. We say that

the singular fibres f−1
1 (p(1)

j ) and f−1
2 (p(2)

j ) are locally fibre-preserving home-
omorphic if, for any sufficiently small neighbourhood U (1)

j of p(1)
j , there exist

homeomorphisms ΨS,j : U (1)
j → S2 and ΨM,j : f−1

1 (U (1)
j )→ f−1

2 (ΨS,j(U (1)
j ))

such that f2◦ΨM,j = ΨS,j ◦f1. We further say that (M1, f1) and (M2, f2) are
fibre-preserving homeomorphic if there exist homeomorphisms ΨS : S2 → S2

and ΨM : M1 →M2 such that f2 ◦ΨM = ΨS ◦ f1.

Definition 3.6. — We say that a locally fibre-preserving homeomor-
phism (ΨS,j ,ΨM,j), as defined above, is compatible with given global mon-
odromies (ϕ(1)

1 , . . . , ϕ
(1)
n ) of f1 and (ϕ(2)

1 , . . . , ϕ
(2)
n ) of f2, in the following

sense. Recall that the global monodromy is determined by a base point p(i)

and a collection of loops γ(i)
1 , . . . , γ

(i)
n based at p(i) such that γ(i)

j is exactly
the boundary of a neighbourhood of p(i)

j , say γ(i)
j = ∂D

(i)
j , for i = 1, 2. With-

out loss of generality, assume that U (1)
j ⊂ D

(1)
j and ΨS,j(U (1)

j ) ⊂ D
(2)
j . Let

β
(i)
j be an arbitrary path in D

(i)
j joining p(i) to some point on ∂D

(i)
j , for

i = 1, 2. The locally fibre-preserving homeomorphism (ΨM,j ,ΨS,j) is pushed
forward to a homeomorphism ψ ∈ Homeo(T2) between the generic fibres at
base points. We say that (ΨM,j ,ΨS,j) is compatible with the global mon-
odromies if [ψ]ϕ(1)

j = ϕ
(2)
j [ψ].

The compatibility does not depend on the choice of β(i)
j , for i = 1, 2.

Indeed, for a different choice of (β(1)
j , β

(2)
j ), then [ψ] is replaced by

(ϕ(2)
j )k2 [ψ](ϕ(1)

j )k1

for some k1, k2 ∈ Z. It is easy to check that(
(ϕ(2)

j )k2 [ψ](ϕ(1)
j )k1

)
ϕ

(1)
j = ϕ

(2)
j

(
(ϕ(2)

j )k2 [ψ](ϕ(1)
j )k1

)
.

Besides, the compatibility does not depend on the choice of global mon-
odromies. Indeed, a different pair of global monodromies replaces ϕ(1)

j and
ϕ

(2)
j with Q−1

1 ϕ
(1)
j Q1 and Q−1

2 ϕ
(2)
j Q2, respectively. The set of all possibilities
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for [ψ] is {(
Q−1

2 ϕ
(2)
j Q2

)k2
Q−1

2 [ψ]Q1

(
Q−1

1 ϕ
(1)
j Q1

)k1
∣∣∣∣ k1, k2 ∈ Z

}
.

It is easy to check that((
Q−1

2 ϕ
(2)
j Q2

)k2
Q−1

2 [ψ]Q1
(
Q−1

1 ϕ
(1)
j Q1

)k1
)
Q−1

1 ϕ
(1)
j Q1

= Q−1
2 ϕ

(2)
j Q2

((
Q−1

2 ϕ
(2)
j Q2

)k2
Q−1

2 [ψ]Q1
(
Q−1

1 ϕ
(1)
j Q1

)k1
)
.

Theorem 3.7. — Let f1 : M1 → S2 and f2 : M2 → S2 be torus fibra-
tions with branch sets B1 = {p(1)

j } and B2 = {p(2)
j }, |B1| = n = |B2|, with

global monodromies (ϕ(1)
1 , . . . , ϕ

(1)
n ) and (ϕ(2)

1 , . . . , ϕ
(2)
n ) such that each singu-

lar fibre is locally symmetric. Suppose that, for each j, there exists a locally
fibre-preserving homeomorphism between f−1

1 (p(1)
j ) and f−1

2 (p(2)
j ) compatible

with the given global monodromies. Let f̃1 = f1 ⊕ fL
O(f1) : M̃1 → S2 and

f̃2 = f2⊕fL
O(f2) : M̃2 → S2 be direct sums. Then (M̃1, f̃1) and (M̃2, f̃2) are

fibre-preserving homeomorphic.

Remark 3.8. — The one-to-one correspondence between singular fibres
via locally fibre-preserving homeomorphisms in the hypothesis of
Theorem 3.7 implies that O(f1) = O(f2).

The following definition first appeared in Part II, Definition 4 in [27].

Definition 3.9. — Suppose that f : M → S2 is a torus fibration with
branch set B = {pj}. Let α : S1 → Homeo0(T2) be a closed curve in the
group of homeomorphisms of T2 isotopic to the identity. Let D ⊂ S2 \ B
be a disc. Identify ∂D with S1 and f−1(D) with D × T2, then α defines a
canonical homeomorphism

α̃ : f−1(∂D) −→ ∂(D × T2).

Denote MD,α = M \ f−1(D) ∪α̃ (D × T2) and let fD,α : MD,α → S2 be the
map which is equal to f on M \ f−1(D) and equal to the projection D×T2 →
D on D × T2. Thus the map fD,α is a torus fibration, called the α-twisting
of M at D.

Lemma 3.10. — Let f : M → S2 be a torus fibration and fD,α be an
α-twisting of f for some α : S1 → Homeo0(T2) and disc D ⊂ S2. Suppose
that f has surjective monodromy homomorphisms. Then f and fD,α are
fibre-preserving homeomorphic.

Proof. — See Proposition 2.1 in [12]. □
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Proof of Theorem 3.7. — By Theorem 2.12, we suppose that (M̃1, f̃1)
and (M̃2, f̃2) have the same branch set B = {p1, . . . , pl+m}. Taking the base
point p ∈ S2 \ B and loops γ1, . . . , γl+m based at p, we further suppose
that the global monodromies of (M̃1, f̃1) and (M̃2, f̃2) determined by p,
γ1, . . . , γl+m coincide, say

(g1, . . . , gl) • (ϕ1, . . . , ϕm).

Since the compatibility of a locally fibre-preserving homeomorphism does
not depend on the global monodromy, we may assume that there exists the
permutation σ ∈ Sm such that

• f̃−1
1 (pj) and f̃−1

2 (pj) are locally fibre-preserving homeomorphic com-
patible with the global monodromies, for j = 1, . . . , l;
• f̃−1

1 (pj) and f̃−1
2 (pl+σ(j−l)) are locally fibre-preserving homeomor-

phic compatible with the global monodromies, for j = l+1, . . . , l+m.

Let G = Zϵ1 + · · ·+Zϵl+m be the free group of rank l+m. Consider the
tuples (

(ϵ1, g1), . . . , (ϵl, gl), (ϵl+1, ϕ1), . . . , (ϵl+m, ϕm)
)
,(

(ϵ1, g1), . . . , (ϵl, gl), (ϵl+σ(1), ϕ1), . . . , (ϵl+σ(m), ϕm)
)

in G × SL(2,Z). The swappability of the global monodromy implies that
one tuple can be transformed into the other by elementary transformations.
Thus, using a fibre-preserving homeomorphism, we may suppose that σ is
the identical permutation.

Consider the locally fibre-preserving homeomorphisms ΨS,j : U (1)
j →

U
(2)
j , ΨM,j : f̃−1

1 (U (1)
j ) → f̃−1

2 (U (2)
j ) with sufficiently small neighbour-

hoods U (i)
j of pj , for j = 1, . . . , l + m and i = 1, 2. They extend to lo-

cally fibre-preserving homeomorphisms Ψ′S,j : U (1)
j ∪ β(1)

j → U
(2)
j ∪ β(2)

j ,
Ψ′M,j : f̃−1

1 (U (1)
j ∪ β(1)

j )→ f̃−1
2 (U (2)

j ∪ β(2)
j ) where, for i = 1, 2, β(i)

j is a path
joining p to some point d(i)

j ∈ ∂U
(i)
j such that β(i)

1 , . . . , β
(i)
l+m, U (i)

1 , . . . , U
(i)
l+m

are disjoint away from p and d
(i)
1 , . . . , d

(i)
l+m.

The mapping class represented by φj = Ψ′M,j |f̃−1
1 (p) satisfies [φj ]gj =

gj [φj ] if j = 1, . . . , l or [φj ]ϕj−l = ϕj−l[φj ] otherwise. All singular fibres are
locally symmetric. Set Γi =

⋃
j U

(i)
j ∩β

(i)
j for i = 1, 2. Therefore we obtain a

fibre-preserving homeomorphism ΨS : Γ1 → Γ2, ΨM : f̃−1
1 (Γ1) → f̃−1

2 (Γ2).
One may further assume that Γ1 = Γ = Γ2 without loss of generality.
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It remains to prove that f̃1 |Γ and f̃2 |Γ extend to the unique torus
fibration over the complementary disc of Γ within S2, up to fibre-preserving
homeomorphism, but this follows from Lemma 3.10. □

3.3. Singular fibrations and singularities

This subsection introduces singular fibrations and illustrates Corollary B.

Let f : M4 → S2 be a smooth map between a connected closed oriented
4-manifold M4 and the 2-sphere with finitely many critical points, with
generic fibre F 2. Church and Timourian proved that each singularity p of f
is cone-like, i.e. the singularity p admits a cone neighbourhood in the singular
fibre V = f−1(f(p)); see [10, Lemma 2.1 and (Lemma) 2.4] and also see [11,
p. 835-836].

Isolated singularities are separated. In fact, there exist arbitrarily small
adapted neighbourhoods of cone-like singularities, as introduced by King
in [19, p. 396]. An adapted neighbourhood around a singularity p ∈ M4 is a
compact neighbourhood Z4 ⊂M4 satisfying the following:

(1) The restriction f |Z4 : Z4 → D2 is a proper map onto a disk D2 ⊂
S2.

(2) The fibre f−1(x) is transversal to ∂Z4 for each x ∈ int(D2) and
E = f−1(S1) ∩ Z4 ⊂ ∂Z4.

(3) Set V = f−1(f(p)) and K = V ∩ ∂Z4. Then N(K) = f−1(D2
0) ∩

∂Z4 is a tubular neighbourhood of K within ∂Z4 endowed with a
trivialization θ : N(K)→ K ×D2

0 induced by f , where D2
0 ⊂ D2 is

a sufficiently small disk containing f(p).
(4) The composition fK = r ◦ f : ∂Z4 \ K → D2 → S1 is a locally

trivial fibration over S1, where r is the radical projection.
(5) The data (∂Z4,K, fK , θ) is an open book decomposition.

It is equivalent to the date (fZ ,Φ) satisfying the following:

(1) The map fZ : Z4 → D2 is proper and induced by f . Set V =
f−1

Z (fZ(p)), K = V ∩ ∂Z4 and E3 = f−1
Z (S1) ⊂ ∂Z4. Then the

restriction fZ : E3 → S1 is a fibration with fibre F 2
p .

(2) The flow Φ on Z4 is continuous along directions parallel to D2 such
that
(a) f(Φ(z, d)) = f(z) + d for z ∈ Z4 and d ∈ D2 when both sides

are within Z4;
(b) the mapping (x, t) 7→ Φ(x,−tfZ(x)) is a homeomorphism from

E3 × [0, 1) to Z4 \ V ;
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(c) there exists a vanishing compact subset A ⊂ E3 such that
x 7→ Φ(x,−fZ(x)) induces a homeomorphism from E3 \ A to
V \ p and sends A to p.

King proved that, for the fibration of a manifold Mm in dimension
m ̸= 4, 5, one can always find adapted neighbourhoods for singularities dif-
feomorphic to the m-disk. In dimension 4, however, adapted neighbourhoods
can only be supposed to be contractible. We call a singularity regular if it
admits an arbitrarily small adapted neighbourhood which is diffeomorphic
to the 4-disk.

Definition 3.11. — A smooth map f : M4 → S2 between a connected
closed oriented 4-manifold and the 2-sphere is a singular fibration if it has
only finitely many critical points, all of them being regular.

The binding K ⊂ ∂Z4 of an open book decomposition is a fibered link.
Each fibre of fK is a surface that has the boundary K and is homotopic
to the local Milnor fibre F 2

p . It is proved in [19, Theorem 1] that the lo-
cal mapping torus E3 and the vanishing compact subset A ⊂ E3 up to
isotopy form a complete invariant of the adapted neighbourhood up to fibre-
preserving homeomorphism. In particular, if a singular fibre contains only
one singularity and the fibre monodromy is given, then the singular fibre is
determined by the isotopy class of local Milnor fibre, up to fibre-preserving
homeomorphism.

In general, there could be many singularities in a singular fibre, say
p1, . . . , pn. The horizontal homeomorphisms given by disjoint adapted neigh-
bourhoods reveal that the local Milnor fibres F 2

p1
, . . . , F 2

pn
are disjoint com-

pact subsurfaces embedded in the generic fibre F 2 of the fibration. The fibre
monodromy around the singular fibre is a mapping class of the generic fibre
F 2, denoted by ϕf−1(f(pi)). The inclusions ιi : F 2

pi
↪→ F induce the homo-

morphisms Mod(F 2
pi

)→ Mod(F 2) which send the local monodromies ϕF 2
pi

of
the mapping tori E3 → S1 to mapping classes of the generic fibre. Therefore

ϕf−1(f(pi)) = ι1,∗(ϕF 2
p1

) ◦ · · · ◦ ιn,∗(ϕF 2
pn

), (3.1)
which does not depend on the order. Furthermore, the following should be
well-known.

Lemma 3.12. — In a singular fibration f : M4 → S2, each local Milnor
fibre of an adapted neighbourhood diffeomorphic to the 4-disk is connected
with a non-empty boundary.

Proof. — Suppose that p is a singularity of the singular fibration f :
M4 → S2. If we assume that the binding link K of a singularity is vacuous,
the adapted neighbourhood implies a locally trivial fibre bundle S3 → S1,
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which is a contradiction. Since the completion of the local Milnor fibre has a
non-empty boundary, the reduced cohomology group H̃2(F 2

p ) is trivial. We
use Alexander duality and obtain that H̃0(S3 \ F 2

p ) is trivial. Hence F 2
p is

connected. □

Definition 3.13. — A continuous map g1 : X1 → Y1 is locally topolog-
ically equivalent at x1 ∈ X1 to a continuous map g2 : X2 → Y2 at x2 ∈ X2
if there exist sufficiently small open neighbourhoods U1 of x1, U2 of x2, V1
of g1(x1), V2 of g2(x2) and homeomorphisms α : U1 → U2, β : V1 → V2 such
that β ◦ g1 |U1= g2 ◦ α |U1 .

A point at which f fails to be locally topologically equivalent to the pro-
jection R4 → R2 is called a branch point, which is necessarily a singularity.
Church and Lamotke have shown that a local Milnor fibre is diffeomorphic
to the 2-disk if and only if the associated singularity is not a branch point;
see [8, Proposition p. 151]. We conclude that, up to fibre-preserving home-
omorphism, one may assume that a torus singular fibration has no local
Milnor fibre of genus 0 with only 1 boundary component.

3.3.1. Local Milnor fibre of genus zero

When the local Milnor fibre F 2
p is a genus zero surface with r ⩾ 2 bound-

ary components, then E3 ∼= ∂Z4 \K is the mapping torus of some mapping
class ϕF 2

p
that is identical on boundary, denoted by MϕF 2

p
. The group of

mapping classes identical on the boundary, denoted by Mod∗(F 2
p ), is gener-

ated by Dehn twists along the following loops; see [33].

• Loops δi,j , 2 ⩽ i < j ⩽ r, that each separates two boundary com-
ponents from the others.

• Peripheral loops α2, . . . , αr, that are parallel to the latter r − 1
boundary components.

The peripheral loops are mutually disjoint and they keep away from the
loops δi,j . Therefore, ϕF 2

p
is the composition of the product of (positive

and negative) Dehn twists along peripheral loops and a mapping class φF 2
p

generated by the Dehn twists along the rest loops, denoted by

ϕF 2
p

=
(

r∏
i=2

Tui
αi

)
φF 2

p

with u2, . . . , ur ∈ Z. The following shows a necessary property for local
Milnor fibres of genus zero in a fibration f : M4 → S2.
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Lemma 3.14. — Let f : M4 → S2 be a smooth map between a connected
closed oriented 4-manifold M4 and the 2-sphere. Let p ∈ M4 be an isolated
singularity. Given a contractible adapted neighbourhood of p, if the local Mil-
nor fibre F 2

p is a genus zero surface with r ⩾ 2 boundary components and
the local monodromy is given by ϕF 2

p
=
∏r

i=2 T
ui
αi

with u2, . . . , ur ∈ Z, then
ui = ±1, i = 2, . . . , r.

Proof. — The first homology group of F 2
p is isomorphic to Zr−1 and

generated by the cycles around boundary components, but excluding the
first component. Therefore, ϕF 2

p ,∗ = idH1(F 2
p ,Z) and the homology group

H1(MϕF 2
p
,Z) = H1(F 2

p ,Z) ⋊ϕF 2
p

,∗ ⟨[γ]⟩ is isomorphic to Zr, where γ is the
closed curve in the mapping torus induced by a fixed point on the first
boundary component of F 2

p .

Write H1(MϕF 2
p
,Z) = ⟨a2, . . . , ar, t⟩. The boundary ∂Z4 of the adapted

neighbourhood is the union of the mapping torus MϕF 2
p

and r more solid
tori, which is a homology 3-sphere. The inclusion mapping the connected
components of the intersection to the mapping torus derives from (positive
or negative) powers of the Dehn twist along peripheral loops, which are
denoted by Tu1

α1
, . . . , Tur

αr
respectively. By Mayer-Vietoris we have

−→ H2(∂Z4,Z) −→

−→ H1(T2,Z)r τ−−→ H1(MϕF 2
p
,Z)⊕H1(S1 ×D1)r −→ H1(∂Z4,Z) −→

where τ is an isomorphism. After the choice of the natural basis, the corre-
sponding (2r)× (2r)-matrix is given by

A =



−1 0 1 u2
−1 0 1 u3
−1 0 1 u4
· ·
· ·
· ·
−1 0 · · · 1 ur

0 1 0 1 0 1 0 1 · · · 0 1
1 0

1 0
1 0

1 0
·
·
·

1 0


Note that det(A) = ±1. It follows that u2 . . . ur = ±1. □
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In particular, we have the following consequence.

Corollary 3.15. — Let f : M4 → S2 be a smooth map between a
connected closed oriented 4-manifold and the 2-sphere. Given a contractible
adapted neighbourhood of a singularity, if the local Milnor fibre is a genus
zero surface with exactly two boundary components, the local monodromy is
either a positive or a negative Dehn twist.

Proof. — In this case, the local Milnor fibre F 2
p is an annulus whose map-

ping class group is generated by the Dehn twist along the unique peripheral
loop. By Lemma 3.14 we have u2 = ±1. Hence ϕF 2

p
is either the positive or

the negative Dehn twist. □

3.3.2. Local Milnor fibre of genus one

We consider the case when the local Milnor fibre for a contractible adapted
neighbourhood of a cone-like singularity in f : M4 → S2 is a torus with r ⩾ 1
disks removed, say F 2

p = T2 \ (D1 ⊔ · · · ⊔Dr). Again, let ϕF 2
p
∈ Mod(F 2

p ) be
the local monodromy. By the Mayer-Vietoris sequence on ∂Z4 we have

−→ H2(∂Z4,Z) −→
−→ H1(T2,Z)r −→ H1(MϕF 2

p
,Z)⊕H1(S1 ×D1,Z)r −→ H1(∂Z4,Z) −→ .

Since the boundary ∂Z4 is a homology 3-sphere, H1(MϕF 2
p
,Z) is isomorphic

to Zr.

Now we compute the homology group H1(MϕF 2
p
,Z) of the mapping torus.

Write MϕF 2
p

as the union of A = F 2
p × I1 and B = F 2

p × I2 and take the
inclusion maps i : A ∩ B ↪→ A, j : A ∩ B ↪→ B, k : A ↪→ MϕF 2

p
and

l : B ↪→MϕF 2
p

. By Mayer-Vietoris we have

−→H1(A ∩B,Z) (i∗,j∗)−−−−→ H1(A,Z)⊕H1(B,Z) k∗−l∗−−−−→ H1(MϕF 2
p
,Z) ∂∗−→

H0(A ∩B,Z) (i∗,j∗)−−−−→ H0(A,Z)⊕H0(B,Z) k∗−l∗−−−−→ H0(MϕF 2
p
,Z) −→ 0.

Notice that im ∂∗ is isomorphic to ker(H0(A ∩ B,Z) (i∗,j∗)−−−−→ H0(A,Z) ⊕
H0(B,Z)) ≃ Z. To ensure that H1(MϕF 2

p
,Z) is isomorphic to Zr, we require

that ker ∂∗ ≃ Zr−1 and therefore

im(H1(A ∩B,Z) (i∗,j∗)−−−−→ H1(A,Z)⊕H1(B,Z)) ≃ Z3+r.
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Lemma 3.16. — Let f : M4 → S2 be a smooth map between a connected
closed oriented 4-manifold M4 and the 2-sphere. Let p be a singularity of f
with a contractible adapted neighbourhood. Suppose that the local Milnor fibre
F 2

p is a torus with a disk removed and consider the inclusion ι : F 2
p ↪→ T2.

Then the binding link K ⊂ ∂Z4 ∼= S3 is either the trefoil knot or the figure-
eight knot. Furthermore, the local monodromy ϕF 2

p
induces a mapping class

of the torus ι∗(ϕF 2
p
) ∈ Mod(T2) ≃ SL(2,Z) which is conjugate to one of[

0 −1
1 1

]
,

[
1 1
−1 0

]
,

[
2 1
1 1

]
.

Proof. — We only prove the assertion of the local monodromy and a
complete proof has been introduced by Burde and Zieschang (see Proposi-
tion 5.14 in [5]).

The mapping class group of F 2
p is generated by the Dehn twists along

two intersecting loops α, β and the Dehn twist along the peripheral loop δ.
With a careful arrangement, the peripheral loop is away from the others
and therefore the local monodromy is the composition ϕF 2

p
= Tu

δ ◦φF 2
p

with
u ∈ Z and φF 2

p
generated by the Dehn twists along α, β. Thus, along the

inclusion ι : F 2
p ↪→ T2, the pushforward ι∗(ϕF 2

p
) is equal to the pushforward

ι∗(φF 2
p
). Fix the isomorphism between Mod(T2) and SL(2,Z) such that the

induced homomorphism Mod(F 2
p )→ SL(2,Z) sends Tα (resp. Tβ) to[

1 0
1 1

] (
resp.

[
1 −1
0 1

])
.

Suppose that ι∗(ϕF 2
p
) ∈ Mod(T2) is expressed by A =

[
a b
c d

]
∈ SL(2,Z)

We take the basis of the homology group H1(F 2
p ) consisting of the cy-

cles which are parallel with α and β, which further determines the bases of
H1(A,Z), H1(B,Z) and H1(A∩B,Z). The pushforward ϕF 2

p ,∗ : H1(F 2
p ,Z)→

H1(F 2
p ,Z) is again expressed by A. The homomorphism H1(A∩B,Z) (i∗,j∗)−−−−→

H1(A,Z)⊕H1(B,Z) is an isomorphism whose corresponding 4×4-matrix is
given by [

I A
I I

]
.

satisfying det(I −A) = ±1. Hence a+ d = 1 or 3. □

Conversely, we do have a connected closed oriented 4-manifold M4 with a
singular fibration f : M4 → S2 that has the singularities as desired. Both the
trefoil knot and the figure-eight knot are defined by the links of polynomial
maps R4 → R2 with an isolated critical point at 0. An explicit realisation of
the trefoil knot was first given by Brauner (see [4]) who constructs a complex
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polynomial

(fBrauner : C2 −→ C) : (u, v) 7−→ u2 − v3.

Perron found the first realisation of the figure-eight knot in [30].

We end with the proof of Corollary B.

Proof of Corollary B. — Without loss of generality, we assume that
there does not exist any local Milnor fibre of genus 0 with only 1 boundary
components. By Corollary 3.15 and Lemma 3.16, the type of singularities
O(f1) = O(f2) consists of simple conjugacy classes of SL(2,Z).

All singular fibres are locally symmetric. If the local Milnor fibre is an
annulus, then a mapping class that commutes with the fibre monodromy
preserves this annulus up to isotopy. If the local Milnor fibre is a torus with
a disc removed, then no mapping class changes the local Milnor fibre up to
isotopy.

Any pair of singular fibres with conjugate fibre monodromies has local
Milnor fibres compatible with their fibre monodromies, so they have the
same local Milnor fibre up to isotopy. Therefore, there exists a local fibre-
preserving homeomorphism compatible with their fibre monodromies.

The corollary follows from Theorem C and Theorem 3.7. □

4. Theorem of R. Livné, complement and extension

In this section, G is the modular group PSL(2,Z) ≃ Z/2Z ∗Z/3Z, which
we represent as ⟨a, b | a3 = b2 = 1⟩. Each element in G has the unique reduced
form as a word in {a, a2, b} where b’s and powers of a appear alternatively.
The length of an element g ∈ G is defined as the length of its reduced form,
denoted by l(g).

Recall that elements in

S = {a, a2, b, s0 = a2b, s1 = aba, s2 = ba2, t0 = ba, t1 = a2ba2, t2 = ab} ⊂ G

are “short”; the rest conjugates of short elements in G are called “long”,
which are expressed by Q−1aϵQ, Q−1bQ or Q−1aϵbaϵQ with ϵ = 1, 2 and
l(Q) ⩾ 1. The following diagram shows all conjugates of short elements and

– 170 –



Classification of torus fibrations over S2 up to fibre sum stabilisation

their conjugates with a, a2 and b.

a a2 b a2b aba ba2 ba a2ba2 ab

a

Q−1aQ

b

a

Q−1a2Q

b

b

Q−1bQ

a

a a

a

b

Q−1abaQ

b

a a

a

b

Q−1a2ba2Q

b

Note that there are nice circuits along s0, s1, s2 and t0, t1, t2. In fact, we
will see a lot of symmetric properties on them. For convenience, the sub-
scripts are regarded as elements in Z/3Z and represented by 0, 1, 2 without
further explanations.

Recall that elements in
S2 = S ∪ {bab, ba2b, a2ba, aba2, a2bab, ababa, baba2, ba2ba, a2ba2ba2, aba2b}

are “almost short”; the rest conjugates of almost short elements in G are
called “almost long”, which are expressed by

Q−1baϵbQ,Q−1aϵbaϵQ,Q−1aϵba−ϵQ or Q−1aϵbaϵbaϵQ

with ϵ = 1, 2 and l(Q) ⩾ 1. The almost short elements correspond to six
conjugacy classes of G, five of which have been illustrated and the following
is the last one.

a2bab ababa baba2

ba2ba a2ba2ba2 aba2b

Q−1ababaQ

Q−1a2ba2ba2Q

a a

a

a a

a
b b

b

b

Recall that elementary transformations Ri, 1 ⩽ i ⩽ n− 1 on n-tuples in
G send (g1, . . . gn) to

(g1, . . . , gi−1, gi+1, g
−1
i+1gigi+1, gi+2, . . . , gn),

respectively. The inverse of Ri is given by R−1
i sending (g1, . . . , gn) to

(g1, . . . , gi−1, gigi+1g
−1
i , gi, gi+2, . . . , gn).

Both Ri and R−1
i are called elementary transformations. Especially, we will

neither apply Ri if gi = 1 nor apply R−1
i if gi+1 = 1, but use R−1

i and Ri

instead respectively to avoid troubles.
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Elementary transformations introduce several elegant substitutions for
pairs of short elements. Here we list some substitutions in the following
graphs for readers unfamiliar with them.

(s0, s2)

(s1, s0)

(s2, s1) (si, a) (a, si+1)
(si, a

2) (a2, si−1)

(s0, b) (b, s2)
(s2, b) (b, s0)

(ti, a) (a, ti+1)
(ti, a2) (a2, ti−1)

(t0, b) (b, t2)
(t2, b) (b, t0)

(t2, t0)

(t0, t1)

(t1, t2)(si, ti+1) (ti+1, si−1)
(si, ti−1) (ti+1, si)

Definition 4.1. — An n-tuple (g1, . . . , gn) in G is said to be inverse-free
if, applying any finite sequence of elementary transformations, the resulting
n-tuple satisfies the following requirements:

(1) it contains no adjacent elements which are mutually inverse;
(2) it contains no sub-triple of the form (h, h, h) with h3 = 1.

For instance, (s1, t1), (a, a2), (b, b), (a, a, a) and their concatenations are
not inverse-free.

Theorem 4.2 (Livné). — Let g1, . . . , gn be conjugates of s1 such that
g1 . . . gn = 1. Then, the n-tuple (g1, . . . , gn) is Hurwitz equivalent to an n-
tuple (h1, . . . , hn) with each hi short (i.e. the component hi is equal to one
of s0, s1 and s2).

Moishezon showed a proof of Theorem 4.2 and introduced the following
complement in [27].

Theorem 4.3 (Moishezon). — Let h1, . . . , hn be such that each of hi, i =
1, . . . , n, is equal to one of s0, s1 and s2 satisfying h1 . . . hn = 1. Then, n ≡ 0
(mod 6) and the n-tuple (h1, . . . , hn) is Hurwitz equivalent to (s0, s2)n/2.

In this section, We first extend the above theorems for (g1, . . . , gn) with
each gi conjugate to some short element, then we show a similar result for
(g1, . . . , gn) when each gi is conjugate to some almost short element.

4.1. Tuples of short elements

Recall the set of short elements is S = {a, a2, b, s0, s1, s2, t0, t1, t2}. We
first show that an inverse-free tuple of short elements cannot contain both
si and tj for any (i, j) ∈ (Z/3Z)2.
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Proposition 4.4. — Let g1, . . . , gn be short satisfying at most one of
them is equal to one of a, a2, b and g1 . . . gn = 1. Suppose that (g1, . . . , gn)
is inverse-free. Then, either each of gi, i = 1, . . . , n is equal to one of
a, a2, b, s0, s1, s2 or each of gi, i = 1, . . . , n is equal to one of a, a2, b, t0, t1, t2.

Proof. — Assume that at least one of g1, . . . , gn is conjugate to s0 and
at least one of g1, . . . , gn is conjugate to t0. The substitution of (sk, tk+1),
(tk+1, sk−1) and the substitution of (sk, tk−1), (tk+1, sk) imply that the
tuple (g1, . . . , gn) can be transformed by elementary transformations into
(h1, . . . , hn) with p, q ⩾ 1, p+q ∈ {n−1, n} such that h1 ∈ {a, a2, b, s0, s1, s2},
hi ∈ {s0, s1, s2} for i = 2, . . . , n−q and hi ∈ {t0, t1, t2} for i = n−q+1, . . . , n.
Let A be the set of elements in {h1, . . . , hn}, As = A ∩ {s0, s1, s2} and
At = A ∩ {t0, t1, t2}. The inverse-freeness requires that sj and tj cannot
appear together in A.

Assume that |As| = 1 = |At|. Then the product h1 . . . hn is expressed by
h̃su

j t
v
k with h̃ ∈ {1, a, a2, b}, u, v ⩾ 1 and j ̸= k. To ensure that (g1, . . . , gn)

is inverse-free, the product must be one of the following forms with u, v ⩾ 1.

h̃ = 1 =⇒ su
0 t

v
1 = (a2b)u(a2ba2)v,

su
0 t

v
2 = (a2b)u(ab)v,

su
1 t

v
0 = (aba)u(ba)v,

su
1 t

v
2 = (aba)u(ab)v,

su
2 t

v
0 = (ba2)u(ba)v,

su
2 t

v
1 = (ba2)u(a2ba2)v.

h̃ = a =⇒ asu
0 t

v
1 = a(a2b)u(a2ba2)v = b(a2b)u−1(a2ba2)v,

asu
1 t

v
2 = a(aba)u(ab)v,

asu
2 t

v
0 = a(baa)u(ba)v.

h̃ = a2 =⇒ a2su
0 t

v
2 = a2(a2b)u(ab)v,

a2su
1 t

v
0 = a2(aba)u(ba)v = ba(aba)u−1(ba)v,

a2su
2 t

v
1 = a2(ba2)u(a2ba2)v.

h̃ = b =⇒ bsu
0 t

v
1 = b(a2b)u(a2ba2b)v,

bsu
1 t

v
0 = b(aba)u(ba)v,

bsu
1 t

v
2 = b(aba)u(ab)v,

bsu
2 t

v
1 = b(ba2)u(a2ba2)v = a2(ba2)u−1(a2ba2)v.

However, each of them cannot express 1, which contradicts the fact that
h1 . . . hn = g1 . . . gn = 1.
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Assume that |As| = 1 and |At| = 2. Pairs of the form (tj , tj+1) never
appear since the substitutions of (t0, t1), (t1, t2) and (t2, t0) imply a con-
tradiction with the inverse-freeness. If h̃ ̸= 1, then the tuple (h1, . . . , hn) is
expressed by (h̃)• (sj)u • (tj−1)v • (tj+1)w with h̃ ∈ {a, a2, b}, u, v, w ⩾ 1 and
some j. The substitution of (a, sk), (sk−1, a) and the substitution of (a2, sk),
(sk+1, a

2) reveal that h̃ = b. However, the substitution of (b, s0), (s2, b), the
substitution of (b, s2), (s0, b) and the following substitutions

(b) • (s1)u • (t0)v • (t2)w −→ (b) • (t0)w • (s1)u • (t0)v

−→ (b) • (t2)v • (t0)w • (s1)u

further conclude that h̃ = 1. Thus, g1 . . . gn = h1 . . . hn is expressed by
su

0 t
v
2t

w
1 , su

1 t
v
0t

w
2 or su

2 t
v
1t

w
0 each of which cannot express 1, which is a contra-

diction.

We have a similar argument for the case where |As| = 2 and |At| = 1.
Hence either none of g1, . . . , gn is conjugate to s0 or none of g1, . . . , gn is
conjugate to t0. We finish the prove of the proposition. □

As an immediate consequence, we have Lemma 4.5.

Lemma 4.5. — Let g1, . . . , gn be equal to s0, s1, s2, t0, t1 or t2 satisfying
g1 . . . gn = 1. Suppose that (g1, . . . , gn) is inverse-free. Then

n ≡ 0 (mod 6)

and the n-tuple (g1, . . . , gn) is Hurwitz equivalent to either (s0, s2)n/2 or
(t0, t2)n/2.

Proof. — By Proposition 4.4, either each gi is equal to one of s0, s1, s2,
or each gi is equal to one of t0, t1, t2. By Theorem 4.3, the n-tuple can be
transformed by elementary transformations into either

(s0, s2, s0, s2, s0, s2)n/6 or (t0, t2, t0, t2, t0, t2)n/6. □

Note that s0s2s0s2s0s2 = t0t2t0t2t0t2 = 1 and in fact sextuples with al-
ternative si’s and sj ’s (resp. ti’s and tj ’s) can be transformed into each other
by elementary transformations. In general, we will show the reduced form of
the product for a tuple with alternative powers of s0 and s2 (resp. powers of
t0 and t2). We will only prove Proposition 4.6 but omit the proof of Propo-
sition 4.7, which is quite similar. The idea comes from Moishezon (see [27,
p. 181–187]) but with a slight modification and a more subtle analysis.
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Proposition 4.6. — Let (g1, . . . , gn) be a tuple of s0, s2 with n ⩾ 1 and
take µ, ν ⩾ 1. Let T be the set of tuples of s0, s2 obtained from (g1, . . . , gn)
by elementary transformations. Suppose that each tuple in T satisfies the
following requirements:

(i) it starts with at least µ s2;
(ii) it ends with at least ν s0;
(iii) it contains no consecutive sub-tuples of the form (s0, s2)3.

Then, the reduced form of g1 . . . gn is given by (ba2)µ−1bRb(a2b)ν−1 with
some R ∈ G.

Proposition 4.7. — Let (g1, . . . , gn) be a tuple of t0, t2 with n ⩾ 1 and
take µ, ν ⩾ 1. Let T be the set of tuples of t0, t2 obtained from (g1, . . . , gn)
by elementary transformations. Suppose that each tuple in T satisfies the
following requirements:

(i) it starts with at least µ t0;
(ii) it ends with at least ν t2;
(iii) it contains no consecutive sub-tuples of the form (t0, t2)3.

Then, the reduced form of g1 . . . gn is given by (ba)µ−1bRb(ab)ν−1 with some
R ∈ G.

Proof of Proposition 4.6. — Using elementary transformations on the
tuple (g1, . . . , gn) we can get different resulting tuples in {s0, s2}, which form
the set T . Suppose that (h1, . . . , hn) is the maximal among them according
to the lexicographical order given by s0 < s2. We write (h1, . . . , hn) in the
following form

(h1, . . . , hn) =
N∏

i=1
(s2)ui • (s0)vi

with
∑N

i=1(ui + vi) = n, where u1 ⩾ µ, vN ⩾ ν and ui > 0, vi > 0 for all
i = 1, . . . , N .

Claim 1. — ui ⩾ 2, i = 2, 3, . . . , N .

Claim 2. — v1 ⩾ 2.

Claim 3. — For i ∈ {1, 2, . . . , N − 2}, if vi = 1 then vi+1 > 1.

Claim 4. — For i ∈ {2, 3, . . . , N − 1}, if vi = 1 then ui ⩾ 3 and ui+1 ⩾ 3.

Claim 1 relies on the maximality of (h1, . . . , hn). Claim 2 uses the first
hypothesis. The third hypothesis guarantees both Claim 3 and 4. Now, set
Yi = (s0)vi • (s2)ui+1 for i = 1, . . . , N − 1, say it to be of the second type if
vi ⩾ 2, the first type if vi = 1. Claim 2 shows that Y1 is of the second type
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and Claim 3 reveals that there is no adjacent pair in the first type. Hence,
we are able to find sub-tuples Z1, . . . , ZM of (h1, . . . , hn) such that each Zj ,
j = 1, . . . ,M , is either

• equal to some Yi of the second type with i ∈ {1, . . . , N − 1}, or
• the concatenation Yi •Yi+1 with i ∈ {1, . . . , N − 2} where Yi+1 is of

the first type.

We can write (h1, . . . , hn) in the form

(h1, . . . , hn) = (s2)u1 •
M∏

j=1
Zj • svN

0 .

For j = 1, . . . ,M , if Zj is equal to some Yi of the second type, then
the product of components of Zj has the reduced form a2Rja

2 with some
Rj ∈ G. Indeed, Zj = (s0)vi • (s2)ui+1 with vi ⩾ 2 and ui+1 ⩾ 2, the product
of whose components is equal to (a2b)vi−1a(ba2)ui+1−1. If Zj = Yi • Yi+1,
i ∈ {1, . . . , N − 2}, then the product of its components is given by

svi
0 s

ui+1
2 s

vi+1
0 s

ui+2
2 = (a2b)vi−1a(ba2)ui+1−2a2(ba2)ui+2−2

with vi+1 = 1, ui+1 ⩾ 3, ui+2 ⩾ 3 and vi ⩾ 2, which also has the reduced
form a2Rja

2 with some Rj ∈ G. Hence, g1 . . . gn = h1 . . . hn has the form

(ba2)u1

M∏
j=1

(a2Rja
2)(a2b)vN

with Rj ∈ G, j = 1, . . . ,M where each of a2Rja
2 is reduced. □

4.2. Conjugates of short elements and tuples

Suppose that (g1, . . . , gn) is an n-tuple with each gi conjugate to some
short element (i.e. the component gi is conjugate to a, a2, b or s1, t1). In
this subsection we show that, in the vast majority of cases, by successive
application of elementary transformations the n-tuple can be transformed
into an n-tuple of short elements.

Lemma 4.8. — Let g1, g2, h, Q′ ∈ G be such that h = g1g2. Then both

(Q′−1h−1g1hQ
′, Q′−1h−1g2hQ

′) and (Q′−1hg1h
−1Q′, Q′−1hg2h

−1Q′)

are Hurwitz equivalent to (Q′−1g1Q
′, Q′−1g2Q

′).
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Proof. — Using R−2
1 , we transform

(Q′−1h−1g1hQ
′, Q′−1h−1g2hQ

′)

into (Q′−1g1Q
′, Q′−1g−1

1 hQ′). The result is equal to (Q′−1g1Q
′, Q′−1g2Q

′)
as g−1

1 h = g2. Similarly

(Q′−1hg1h
−1Q′, Q′−1hg2h

−1Q′)
can be transformed into (Q′−1g1Q

′, Q′−1g2Q
′) by applying R2

1. □

Lemma 4.9. — Let ϵ = ±1 and suppose that (τ1, τ2) is equal to one of
{(aϵbaϵ, a−ϵ), (a−ϵ, aϵbaϵ), (ba−ϵ, a−ϵ), (a−ϵ, a−ϵb), (aϵ, baϵ), (aϵb, aϵ)}.

Let (g1, g2) = (Q−1τ1Q,Q
−1τ2Q) be a pair in G with Q ∈ G and suppose

that Q−1τ1τ2Q is short. Then (g1, g2) is Hurwitz equivalent to a pair of short
elements.

Proof. — When τ1τ2 = aϵb, since Q−1aϵbQ is short, Q is either (aϵb)kaζ

or (ba−ϵ)laζ with k, l ⩾ 0 and ζ = 0, 1, 2. If Q = aζ , then both Q−1τ1Q and
Q−1τ2Q are short. The result follows from Lemma 4.8. When τ1τ2 = baϵ or
τ1τ2 = aϵbaϵ, the proof is similar. □

We introduce the following operations and their restorations on an n-
tuple (g1, . . . , gn) of elements in G conjugate to some short elements.

Operation 1. — For i ∈ {1, . . . , n−1}, suppose that the reduced forms of
gi and gi+1 are expressed by Q−1

i τiQi and Q−1
i+1τi+1Qi+1 with τi, τi+1 ∈ S,

Qi, Qi+1 ∈ G such that Qi = Qi+1, (τi, τi+1) is listed in Table 4.1 and either
Qi = 1 or τiτi+1 = 1 or both τi, τi+1 are powers of a. Then, the operation is
a contraction as in Section 2.2 that replaces (gi, gi+1) with gigi+1.

Operation 2. — For i ∈ {1, . . . , n}, suppose that gi = 1. The operation
moves the identical component to the rightmost position via elementary
transformations, removes it and reduces (g1, . . . , gn) to an (n− 1)-tuple.

Operation 1 is a contraction, whose restoration is introduced in Sec-
tion 2.1. The restoration of Operation 2 will simply add an identical element
on the right side of the tuple. The following proposition shows that, if we
use the technique introduced in Section 2.1 carefully, the resulting tuple is
under control.

Proposition 4.10. — Let (g1, . . . , gn) be an inverse-free n-tuple of ele-
ments in G conjugate to some short elements such that g1 . . . gn = 1. Suppose
that we first apply the following operations successively on (g1, . . . , gn):

(i) the elementary transformation Ri, but avoiding that gi is short and
g−1

i−1gigi+1 is long;
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Table 4.1. Some pairs (gi, gi+1) of short elements and the products gigi+1.

gi

gi · gi+1 gi+1
a a2 b a2b aba ba2 ba a2ba2 ab

a a2 1 b aba ba2 a2b
a2 1 a ab ba a2ba2 b
b 1 a2 a
a2b a2ba2 a2 a 1
aba ab a 1
ba2 b ba a 1
ba ba2 b 1 a2

a2ba2 a2b 1 a2

ab aba a 1 a2

(ii) the elementary transformation R−1
i , but avoiding that gi+1 is short

and gigi+1g
−1
i is long;

(iii) Operation 1;
(iv) Operation 2;

then apply restorations of Operation 1 and 2 in the reverse order. If all
components in the resulting tuple before restorations are short, then the initial
tuple is Hurwitz equivalent to the resulting tuple after restorations and further
Hurwitz equivalent to a tuple of short elements.

Proof. — Lemma 2.8 shows that the initial tuple is Hurwitz equivalent
to the resulting tuple after all operations and restorations. We suppose that
each component is short in the tuple before restorations.

Operation 1 may combine Q−1τiQ and Q−1τjQ into Q−1τiτjQ with Q ∈
G and τi, τj ∈ S. By elementary transformations, the product is sent to a
conjugate of the form P−1Q−1τiτjQP with some P ∈ G. To restore the
operation, it is further rewritten as a pair

(P−1Q−1τiQP,P
−1Q−1τjQP ).

Suppose that P−1Q−1τiτjQP is short and (τi, τj) is listed in Table 4.1.

When τiτj ∈ {a, a2}, the element QP must be a power of a. It is not
true that both P−1Q−1τiQP and P−1Q−1τjQP are short in general, as
a conjugate of b with a power of a may be long. We list all exceptional
possibilities of (P−1Q−1τiQP,P

−1Q−1τjQP ) as below.

(ba2, aba2), (aba, a2ba), (ba, a2ba), (a2ba2, aba2),
(a2ba, a2b), (aba2, aba), (aba2, ab), (a2ba, a2ba2).
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However, each of them can be transformed into a pair of short elements by
at most two elementary transformations.

When τiτj = b, the element QP must be a power of b. A conjugate
of a or a2 with a power of b may be long. The exceptional possibilities of
(P−1Q−1τiQP,P

−1Q−1τjQP ) that one of the components is long are listed
as below.

(bab, ba2), (ba2b, ba), (a2b, bab), (ab, ba2b).

Again, each of them can be transformed into a pair of short elements by an
elementary transformation.

When τiτj = 1, we get P = 1. Assume that one of Q−1τiQ and Q−1τjQ
is long, the inverse-freeness of (g1, . . . , gn) implies that τi and τj are powers
of a and Q is not a power of a. Due to the hypothesis that elementary trans-
formations never make short elements long, after all restorations, Q−1τiτjQ
(as an additional identical element) will become a sub-tuple (h1, . . . , hm)
with m ⩾ 2 such that h1, . . . , hm are conjugate to the powers of a simulta-
neously. It contradicts the inverse-freeness. Thus, both Q−1τiQ and Q−1τjQ
are short.

The remaining cases shown in Table 4.1 are covered by Lemma 4.9. Hence,
by successive application of elementary transformations, each of the compo-
nents of the resulting tuple is short. □

Definition 4.11. — The S-complexity of an element g ∈ G conjugate
to some element in S is defined as f(g) such that

f(g) =
{
l(Q) if g = Q−1wQ is long, w ∈ {aϵ, b, aϵbaϵ|ϵ = 1, 2}, Q ∈ G;
0 if g is short.

Definition 4.12. — Let (g1, . . . , gn) be an n-tuple in G such that each of
gi, i = 1, . . . , n, is conjugate to some element in S. A sequence of elementary
transformations (Rϵ1

i1
, . . . , Rϵm

im
), ϵ1, . . . , ϵm ∈ {1,−1}, is said to make the

sum of S-complexities of (g1, . . . , gn) strictly-smaller if, for each m′ < m,
the composition R

ϵm′
im′ ◦ · · · ◦R

ϵ1
i1

transforms (g1, . . . , gn) into a tuple with the
same sum of S-complexities but Rϵm

im
◦ · · · ◦Rϵ1

i1
transforms (g1, . . . , gn) into

a tuple with a smaller sum of S-complexities.

A sequence of elementary transformations that makes the sum of S-
complexities strictly-smaller never makes short elements long, as described
in Proposition 4.10(i) and (ii).

Let (g1, . . . , gn) be an n-tuple in G. For i = 1, . . . , n−1, suppose that the
reduced forms of gi and gi+1 are expressed by t(i)

ki
. . . t

(i)
1 and t̃(i)

1 . . . t̃
(i)
li

with
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ki = l(gi), li = l(gi+1), t(i)
j ∈ {a, a2, b}, j = 1, . . . , ki and t̃

(i)
j ∈ {a, a2, b},

j = 1, . . . , li. The reduced form of gigi+1 is then either

t
(i)
ki
. . . t

(i)
mi+1rit̃

(i)
mi+1 . . . t̃

(i)
li

or t
(i)
ki
. . . t

(i)
mi+1ri or rit̃

(i)
mi+1 . . . t̃

(i)
li
,

where ri ∈ G, l(ri) ⩽ 1 and 0 ⩽ mi ⩽ ki, li.
Lemma 4.13. — Let (g1, . . . , gn) be an n-tuple in G such that each of

gi, i = 1, . . . , n, is conjugate to some element in S and g1 . . . gn = 1. Let mi

be the same as above and set m0 = mn = 0 for convenience. Suppose that

(1) there is no pair of adjacent components gi, gi+1 of the reduced forms
Q−1τiQ, Q−1τi+1Q with Q ∈ G and (τi, τi+1) in Table 4.1 such that
either Qi = 1 or τiτi+1 = 1 or both τi, τi+1 are powers of a;

(2) there is no sequence of elementary transformations that makes the
sum of S-complexities

∑
i f(gi) strictly-smaller.

Then m0, . . . ,mn have the following properties.

(a) For i = 1, . . . , n− 1, mi ⩽
l(gi)+1

2 and mi ⩽
l(gi+1)+1

2 .
(b) For i = 1, . . . , n, mi−1 +mi ⩾ l(gi) only if the reduced form of gi is

Q−1
i aϵiQi with ϵi = 1, 2, Qi ∈ G and l(Qi) ⩾ 0.

(c) If mi−1 +mi ⩽ l(gi) for each of i = 1, . . . , n, then n = 0.
Proof. —

(a). — When both gi and gi+1 are short, since (gi, gi+1) does not figure
in Table 4.1, we check all possibilities and get that

mi ⩽
l(gi) + 1

2 and mi ⩽
l(gi+1) + 1

2 .

When gi ∈ S but gi+1 ̸∈ S, say
gi+1 = Q−1

i aϵiQi or Q−1
i bQi or Q−1

i aϵibaϵiQi

with ϵi = 1, 2 and l(Qi) ⩾ 1, therefore l(gi) ⩽ 3 ⩽ l(gi+1). Assume that
mi >

l(gi)+1
2 , then mi = l(gi) and l(gi) ⩾ 2. If l(gi) = mi = 2, as gi+1

is long, then l(gigi+1g
−1
i ) ⩽ l(gi+1) − 2, contradicting the hypothesis (2).

If l(gi) = mi = l(gi+1) = 3, then the pair (gi, gi+1) is either (s1, a
2ba) or

(t1, aba2), which can be transformed into a pair of short elements by R2
1,

contradicting the hypothesis (2). If l(gi) = mi = 3 but l(gi+1) ⩾ 5, then
again l(gigi+1g

−1
i ) ⩽ l(gi+1) − 2, a contradiction. Hence mi ⩽ l(gi)+1

2 ⩽
l(gi+1)+1

2 .

When gi ̸∈ S but gi+1 ∈ S, there is a similar argument.

When both gi and gi+1 are long, suppose that their reduced forms are
Q−1

i wiQi and Q−1
i+1wi+1Qi+1
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with wi, wi+1 ∈ {a, a2, b, aba, a2ba2}. Assume that l(Qi) ⩽ l(Qi+1) without
loss of generality. Assume that mi > min{ l(gi)+1

2 , l(gi+1)+1
2 }. Therefore Qi+1

ends with Qi. Write

Qi+1 = Q̃Qi+1 and (gi, gi+1) = (Q−1
i wiQi, Q

−1
i Q̃−1wi+1Q̃Qi).

Suppose that l(Q̃) = 0. We further assume that l(wi) ⩽ l(wi+1) without
loss of generality. Since mi > l(Qi)+ l(wi)+1

2 , wiwi+1 ̸= 1 and one of wi, wi+1
is not a power of a, the pair (wi, wi+1) must be either (a, a2ba2) or (a2, aba).
Therefore, l(gigi+1g

−1
i ) ⩽ l(gi+1)− 2, contradicting the hypothesis (2).

Suppose that the element Q̃ is of length at least 1. Therefore l(wi) ⩽
3 ⩽ l(Q̃−1wi+1Q̃) and mi >

l(gi)+1
2 . If l(wi) = 1, then mi > l(Qi) + 1 and

l(gigi+1g
−1
i ) ⩽ l(gi+1) − 2, contradicting the hypothesis (2). If l(wi) = 3

and l(Q̃−1wi+1Q̃) = 3, then (wi, Q̃
−1wi+1Q̃) is either (s1, a

2ba) or (t1, aba2)
and therefore (gi, gi+1) can be transformed into either (Q−1

i a2bQi, Q
−1
i bQi)

or (Q−1
i abQi, Q

−1
i bQi) by R2

1, contradicting the hypothesis (2). If l(wi) = 3
and l(Q̃−1wi+1Q̃) ⩾ 5, then mi ⩾ l(Qi) + 3 and l(gigi+1g

−1
i ) ⩽ l(gi+1)− 2,

contradicting the hypothesis (2).

(b). — Suppose that mi−1 +mi ⩾ l(gi) for some i = 1, . . . , n− 1.

Suppose that gi ∈ S. If gi is of length 2 (i.e. the element gi is one of
s0, s2, t0 and t2), then mi−1 = mi = 1. Therefore, one of gi−1, gi+1 is
equal to b, contradicting Table 4.1. If gi = b, then one of gi−1 and gi+1 is
long starting and ending with b. Therefore, either l(g−1

i gi−1gi) < l(gi−1) or
l(gigi+1g

−1
i ) < l(gi+1), contradicting the hypothesis (2). If gi = aϵibaϵi with

ϵi = 1, 2, then one of mi−1 and mi is equal to 2 and thus one of gi−1, gi+1
is long. It is impossible as long elements are of length at least 3.

Suppose that gi is long. If gi = Q−1
i bQi, then either gi−1 = bQi or gi+1 =

Q−1
i b, but thus either gi−1gig

−1
i−1 = bQi(Q−1

i bQi)Q−1
i b = b or g−1

i+1gigi+1 =
bQi(Q−1

i bQi)Q−1
i b = b. If gi = Q−1

i aϵibaϵiQi with ϵi = 1, 2, then either
mi−1 = l(Q−1

i aϵib) or mi = l(baϵiQi). It implies that either gi−1 = ba−ϵiQi

or gi+1 = Q−1
i a−ϵib, thus either gi−1gig

−1
i−1 = a2ϵib or g−1

i+1gigi+1 = ba2ϵi .
Both cases contradict the hypothesis (2).

We conclude that either gi = aϵi or gi = Q−1
i aϵiQi.

(c). — Assume that n ⩾ 1.

By (2), when mi−1 +mi = l(gi), then gi = Q−1
i aϵiQi with ϵi = 1, 2 and

l(Qi) ⩾ 0. If gi = aϵi is short and assume that mi−1 = 0, mi = 1 without loss
of generality, then gi+1 is either aϵibaϵi or a long element starting with aϵi . If
gi = Q−1

i aϵiQi is long and mi−1 = l(Qi), to avoid l(gi−1gig
−1
i−1) < l(gi) then
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gi−1 must be longer than Q−1
i , contradicting the hypothesis that mi−1 =

l(Qi). Therefore, neither mi−1 nor mi is equal to l(Qi) and in particular,
mi−1 +mi < l(gi).

The proof of (2) and the above observation show that there is no possi-
bility to fully reduce gi or gi+1 in the product gigi+1 and mi−1 +mi < l(gi)
if gi ̸= aϵi . They imply a contradiction that g1 . . . gn ̸= 1. □

Now we introduce the main result in this subsection.

Theorem 4.14. — Let g1, . . . , gn be such that each of them is conjugate
to some element in S and g1 . . . gn = 1. Then, the n-tuple (g1, . . . , gn) is
Hurwitz equivalent to either

• (h1, . . . , hµ)•(s0, t0)mst•(a, a2)ma•(b, b)mb•(a, a, a)n0•(a2, a2, a2)n1

with µ > 0, mst, ma, mb, n0, n1 ⩾ 0, µ + 2(mst + ma + mb) +
3(n0 + n1) = n such that (h1, . . . , hµ) is an inverse-free µ-tuple of
short elements, or
• (k1, k

−1
1 , . . . , ks, k

−1
s , l1, l1, l1, . . . , lt, lt, lt) with s, t ⩾ 0, 2s+ 3t = n,

k1, . . . , ks ∈ G, l1, . . . , lt ∈ G and l3j = 1 for each j = 1, . . . , t.

Proof. — We first attempt to make the tuple inverse-free. Applying any
finite sequence of elementary transformations to (g1, . . . , gn), if we get a pair
of mutually inverse elements or a triple of the form (l, l, l) with l ∈ G and
l3 = 1, then we move it to the rightmost position via elementary transfor-
mations and the resulting tuple is the concatenation of a shorter tuple and
either a pair or a triple. By induction on the length, we suppose that the n-
tuple (g1, . . . , gn) is transformed into the concatenation of (h1, . . . , hµ) and
(k1, k

−1
1 , . . . , ks, k

−1
s , l1, l1, l1, . . . , lt, lt, lt) with µ, s, t ⩾ 0, µ + 2s + 3t = n

such that l3j = 1 for each j = 1, . . . , t where (h1, . . . , hµ) is inverse-free.

We will always use the notation mi to indicate the length of the reduced
part in hihi+1 for i = 1, . . . , µ− 1 and set m0 = mµ = 0 as before.

To prove the theorem for (h1, . . . , hµ), we use induction on(
µ,

µ∑
i=1

f(hi), l(h1), . . . , l(hµ)
)

and apply the following operations on (h1, . . . , hµ). If there exists a pair of
adjacent components which has the reduced form (Q−1τiQ,Q

−1τjQ) with
Q ∈ G, (τi, τj) in Table 4.1 such that either Q = 1 or τiτj = 1 or both
τi, τj are powers of a, then we replace them with their product and reduce
(h1, . . . , hµ) to a (µ− 1)-tuple. If there exists an identical component, then
we move it to the rightmost position and remove it. If there exists a proper
sequence of elementary transformations that can make

∑
i f(hi) strictly-

smaller, then we apply it.
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When each of the above operations fails, the resulting tuple, still denoted
by (h1, . . . , hµ), satisfies all hypotheses in Lemma 4.13. Suppose that µ ⩾ 1
and there exists some i = 2, . . . , µ−1 such that hi = Q−1

i aϵiQ with ϵi = 1, 2,
l(Qi) ⩾ 0 and mi−1 = mi = l(Qi) + 1. Then, either

• (hi−1, hi) = (aϵibaϵi , aϵi), or
• the previous component hi−1 is long and l(hi−1) ⩾ l(hi).

In the second case, we first assume that l(hi−1) = l(hi). Then hi−1 =
Q−1

i aϵiQi = hi, which is a contradiction. Hence, l(hi−1) > l(hi) and, to
avoid l(h−1

i hi−1hi) < l(hi−1), we claim that hi−1 must end with aϵiQi and
start with Q−1

i a−ϵi . In both cases, l(h−1
i hi−1hi) ⩽ l(hi−1) and we are able

to reduce (h1, . . . , hµ) to an n-tuple, say (h̃1, . . . , h̃µ), such that
∑

j f(hj) =∑
j f(h̃j), l(hj) = l(h̃j) for 1 ⩽ j < i − 1 but l(h̃i−1) = l(hi) < l(hi−1) via

the elementary transformation Ri−1.

The induction does not stop unless µ is equal to 0. Due to Proposi-
tion 4.10, by restoring the operations and applying more elementary trans-
formations, we get a resulting µ-tuple of short elements that can be obtained
from the original (h1, . . . , hµ) via elementary transformations directly. Hence,
the n-tuple (g1, . . . , gn) can be transformed into

(h′1, . . . , h′µ, k1, k
−1
1 , . . . , ks, k

−1
s , l1, l1, l1, . . . , lt, lt, lt)

with µ, s, t ⩾ 0, µ+ 2s+ 3t = n, l3j = 1 for each j = 1, . . . , t such that each
of h′i, i = 1, . . . , µ is short and (h′1, . . . , h′µ) is inverse-free.

Suppose that µ > 0. There is always a pair (h′i, h′j) of components with
1 ⩽ i ̸= j ⩽ µ that is a generating set of G. By Lemma 2.6, each pair of the
form (k, k−1) = (Q−1wQ,Q−1w−1Q) with Q ∈ G, w,w−1 ∈ {a, a2, b, s0}
in the resulting tuple can be transformed into (w,w−1). There is a similar
argument for each triple (l, l, l) with l3 = 1. Hence, by elementary transfor-
mations, the n-tuple can be transformed into a tuple of short elements. □

Theorem 4.14 is surprising. In fact, there are infinitely many pairs (gs, gt)
in G up to Hurwitz equivalence such that gsgt = 1 and gs, gt are conjugates
of s0 and t0 respectively. However, all triples (ga, gb, gs) that gagbgs = 1
and ga, gb, gs are conjugates of a, b, s0 respectively, are mutually Hurwitz
equivalent. In particular, for any Q ∈ G, we have

(Q−1aQ,Q−1aba2Q,Q−1abaQ) ∼ (a, b, s2).

4.3. Classification of tuples up to Hurwitz equivalence

Given g1, . . . , gn and h1, . . . , hn ∈ G conjugate to elements in S such
that g1 . . . gn = h1 . . . hn = 1, suppose that the n-tuples (g1, . . . , gn) and
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(h1, . . . , hn) have the same number of components in each conjugacy class.
In this subsection, we show that the tuple (g1, . . . , gn) is Hurwitz equivalent
to (h1, . . . , hn) in most cases. In particular, we introduce a normal form for
tuples of elements conjugate to some short elements that only depends on
the numbers of components in every conjugacy classes.

The following theorem is a partial result, which interprets the projective
global monodromy of an achiral Lefschetz fibration. Matsumoto presented a
slightly different theorem in [25, Theorem 3.6].

Theorem 4.15. — Let g1, . . . , gn ∈ G be such that p of them are con-
jugates of s0, q = n − p of them are conjugates of t0 and g1 . . . gn = 1.
Then,

(1) if p > q, then p − q ≡ 0 (mod 6) and the n-tuple (g1, . . . , gn) is
Hurwitz equivalent to (s0, s2)(p−q)/2 • (s0, t0)q;

(2) if p < q, then q − p ≡ 0 (mod 6) and the n-tuple (g1, . . . , gn) is
Hurwitz equivalent to (t0, t2)(q−p)/2 • (s0, t0)p;

(3) if p = q, then the n-tuple (g1, . . . , gn) is Hurwitz equivalent to
(k1, k

−1
1 , . . . , kp, k

−1
p ) where each of kj, j = 1, . . . , p, is conjugate

to s0.

Proof. — Theorem 4.14 reveals that, by elementary transformations, the
n-tuple can be transformed into either (k1, k

−1
1 , . . . , ks, k

−1
s ) with s = p = q

or (h1, . . . , hµ) • (s0, t0)mst with µ > 0, mst ⩾ 0, µ + 2mst = n such that
(h1, . . . , hµ) is an inverse-free µ-tuple of short elements. On the latter, by
Lemma 4.5, we get µ ≡ 0 (mod 6) and (h1, . . . , hµ) can be transformed
into either (s0, s2)µ/2 or (t0, t2)µ/2 by elementary transformations. Hence,
mst = min{p, q} and µ = |p− q|. □

In general, we have Theorem 2.16, whose proof will be given at the end.

Lemma 4.16. — Let g1, . . . , gn be a2, s0, s1 or s2 such that only one of
them is equal to a2 and g1 . . . gn = 1. Then, n ≡ 3 (mod 6) and the n-tuple
(g1, . . . , gn) is Hurwitz equivalent to

(a2, s0, s2) • (s0, s2)(n−3)/2.

Proof. — Since a cyclic permutation of an n-tuple in G can be obtained
by a finite sequence of elementary transformations as in Lemma 2.2, we may
assume that g1 = a2 without loss of generality. Since g1 . . . gn = 1, then
n ⩾ 3. If n = 3, then the pair (g1g2, g3) must be equal to (tj , sj) with some
j and therefore (g1, g2, g3) is given by (a2, sj+1, sj) as atj = sj+1. Other-
wise, n ⩾ 4. We replace g1 and g2 with their product, which is one of t0,
t1 and t2. The n-tuple (g1, . . . , gn) is replaced by an (n − 1)-tuple whose
first component belongs to {t0, t1, t2} and the rest components are s0, s1
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or s2. By Theorem 4.15, (n − 1) − 2 ≡ 0 (mod 6) and the (n − 1)-tuple
can be transformed into (s0, s2)(n−3)/2 • (s0, t0) by successive application of
elementary transformations. We note that the original n-tuple (g1, . . . , gn)
must be inverse-free and, after combining s0 and t0 into 1 and removing
it, we make the result an inverse-free tuple of short elements. By Proposi-
tion 4.10, it implies a sequence of elementary transformations sending the
n-tuple (g1, . . . , gn) into (s0, a

2, s1) • (s0, s2)(n−3)/2. In any case, the substi-
tutions of (s0, s2), (s1, s0) and (s2, s1) transform the n-tuple (g1, . . . , gn) into
(a2, s0, s2) • (s0, s2)(n−3)/2. □

The following lemma can be proved similarly and we omit the details.

Lemma 4.17. — Let g1, . . . , gn be a, t0, t1 or t2 such that only one of
them is equal to a and g1 . . . gn = 1. Then, n ≡ 3 (mod 6) and the n-tuple
(g1, . . . , gn) is Hurwitz equivalent to

(a, t2, t0) • (t0, t2)(n−3)/2.

Lemma 4.18. — Let g1, . . . , gn be b, s0, s1 or s2 such that only one of
them is equal to b and g1 . . . gn = 1. Then, n ≡ 4 (mod 6) and the n-tuple
(g1, . . . , gn) is Hurwitz equivalent to

(b, s0, s2, s0) • (s0, s2)(n−4)/2.

Proof. — Without loss of generality, we assume that all the n-tuple in
{b, s0, s1, s2} resulting from the successive application of elementary trans-
formations on (g1, . . . , gn) contain no consecutive sub-tuples of the form
(s0, s2)3.

Take the n-tuple in {b, s0, s1, s2} that starts with b and contains the
minimal number of components equal to s1 among all resulting tuples that
we can get using elementary transformations on (g1, . . . , gn), still denoted
by (g1, . . . , gn). We write it as

(b) •

 n0∏
j=1

(s2)u0,j • (s0)v0,j

 •
 µ∏

i=1
(s1)λi •

 ni∏
j=1

(s2)ui,j • (s0)vi,j


with µ ⩾ 0, λ1, . . . , λµ ⩾ 1, n0, nµ ⩾ 0, n1, . . . , nµ−1 ⩾ 1 and ui,j , vi,j ⩾ 0
for i = 0, . . . , µ, j = 1, . . . , ni where ui,j ⩾ 1 for j > 1 and vi,j ⩾ 1 for
j < ni. The minimality further requires that ui,1 ⩾ 1 for i = 1, . . . , µ and
vi,ni ⩾ 1 for i = 0, . . . , µ− 1.

Assume that (g1, . . . , gn) does not start with (b, s2) or (b) • (s0)v0,1 •
(s2, s0), nor end with s0 or (s2, s0)• (s2)uµ,nµ . Then, u0,1 = vµ,nµ = 0, either
n0 ⩽ 1 or u0,2 ⩾ 2 and either nµ ⩽ 1 or vµ,nµ−1 ⩾ 2. Applying Propo-
sition 4.6 with the above restrictions, we obtain that the reduced form of
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g1 . . . gn is not equal to 1, which is a contradiction. Hence, using the sub-
stitution of (s0, s2, s0) and (s2, s0, s2) and a cyclic permutation if necessary,
the n-tuple is transformed into an n-tuple in {b, s0, s1, s2}, still denoted by
(g1, . . . , gn), such that (g1, g2) is equal to either (b, s2) or (s0, b). We com-
bine g1 and g2 into their product and replace (g1, . . . , gn) with an (n − 1)-
tuple in {a2, s0, s1, s2} starting with a2. By Lemma 4.16 we get n − 1 ≡ 3
(mod 6) and, by successive application of elementary transformations, the
(n−1)-tuple can be transformed into (a2, s0, s2)•(s0, s2)(n−4)/2. By Proposi-
tion 4.10, we obtain an n-tuple of the form either (b, s2, s0, s2)•(s0, s2)(n−4)/2

or (s0, b, s0, s2) • (s0, s2)(n−4)/2 from (g1, . . . , gn) using elementary trans-
formations. The substitution of (s0, s2, s0) and (s2, s0, s2) completes the
proof. □

Again, the following lemma is similar and we omit the proof.

Lemma 4.19. — Let g1, . . . , gn be b, t0, t1 or t2 such that only one of
them is equal to b and g1 . . . gn = 1. Then, n ≡ 4 (mod 6) and the n-tuple
(g1, . . . , gn) is Hurwitz equivalent to

(b, t0, t2, t0) • (t0, t2)(n−4)/2.

Lemma 4.20. — Let g1, . . . , gn be a, s0, s1 or s2 such that only one of
them is equal to a and g1 . . . gn = 1. Then, n ≡ 5 (mod 6) and the n-tuple
(g1, . . . , gn) is Hurwitz equivalent to

(a, s0, s0, s2, s0) • (s0, s2)(n−5)/2.

Proof. — Without loss of generality, we assume that each n-tuple in
{a, s0, s1, s2} that results from the successive application of elementary trans-
formations on (g1, . . . , gn) contains no consecutive sub-tuples of the form
(s0, s2)3.

Take the n-tuple in {a, s0, s1, s2} that starts with a and contains the
minimal number of components equal to s1 among all resulting tuples that
we can get using elementary transformations on (g1, . . . , gn), still denoted
by (g1, . . . , gn). Assume that

(g1, g2) ̸= (a, s0), (gn, g1) ̸= (s2, a) and (gn, g1, g2) ̸= (s1, a, s1).
Then, the n-tuple (g1, . . . , gn) is written as

(a) •

 n0∏
j=1

(s2)u0,j • (s0)v0,j

 •
 µ∏

i=1
(s1)λi •

 ni∏
j=1

(s2)ui,j • (s0)vi,j


with µ ⩾ 0, λ1, . . . , λµ ⩾ 1, n0, nµ ⩾ 0 but n0 + nµ ⩾ 1, n1, . . . , nµ−1 ⩾ 1
and ui,j , vi,j ⩾ 1 for i = 0, . . . , µ, j = 1, . . . , ni. Applying Proposition 4.6,
we notice that the reduced form of g1 . . . gn is not equal to 1, which is a
contradiction. Hence, one of the above requirements cannot be fulfilled.
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If either (g1, g2) = (a, s0) or (gn, g1) = (s2, a), using a cyclic permutation
if necessary, then the pair (g1, g2) is equal to either (a, s0) or (s2, a). We com-
bine g1 and g2 into a single b and replace (g1, . . . , gn) with an (n− 1)-tuple
in {b, s0, s1, s2} starting with the only b. By Lemma 4.18, we get n− 1 ≡ 4
(mod 6) and there exists a finite sequence of elementary transformations
that transforms the (n− 1)-tuple into (b, s0, s2, s0) • (s0, s2)(n−5)/2. Proposi-
tion 4.10 implies that (g1, . . . , gn) can be transformed by elementary trans-
formations into either

(a, s0, s0, s2, s0) • (s0, s2)(n−5)/2 or (s2, a, s0, s2, s0) • (s0, s2)(n−5)/2.

If (gn, g1, g2) = (s1, a, s1), by a cyclic permutation and an elementary trans-
formation, then the n-tuple can be transformed into (s1, s0, a, g3, . . . , gn−1).
We combine s1 and s0 into a, further combine a and a into a single a2

and replace the n-tuple with an (n− 2)-tuple in {a2, s0, s1, s2} starting with
the only a2. By Lemma 4.16, we get n − 2 ≡ 3 (mod 6) and the (n − 2)-
tuple can be transformed by elementary transformations into (a2, s0, s2) •
(s0, s2)(n−5)/2. By Proposition 4.10, the n-tuple (g1, . . . , gn) can be trans-
formed into (sj+1, sj , a, s0, s2)•(s0, s2)(n−5)/2 with some j. The substitutions
of (s0, s2), (s1, s0), (s2, s1) and the substitution of (s0, s2, s0), (s2, s0, s2) con-
clude the lemma. □

Once again, the following lemma is similar and we omit the proof.

Lemma 4.21. — Let g1, . . . , gn be a2, t0, t1 or t2 such that only one of
them is equal to a2 and g1 . . . gn = 1. Then, n ≡ 5 (mod 6) and the n-tuple
(g1, . . . , gn) is Hurwitz equivalent to

(a2, t0, t2, t0, t0) • (t0, t2)(n−5)/2.

Proof of Theorem 2.16. — By Theorem 4.14, we are able to transform
(g1, . . . , gn) into either

(k1, k
−1
1 , . . . , ks, k

−1
s , l1, l1, l1, . . . , lt, lt, lt)

with s, t ⩾ 0, 2s+ 3t = n and l3j = 1 for each j = 1, . . . , t, or

(h1, . . . , hµ) • (s0, t0)mst • (a, a2)ma • (b, b)mb • (a, a, a)n0 • (a2, a2, a2)n1

with µ > 0, mst, ma, mb, n0, n1 ⩾ 0, µ+ 2(mst +ma +mb) + 3(n0 + n1) =
n such that (h1, . . . , hµ) is an inverse-free µ-tuple of short elements. The
former case just so happens to be the first case of Theorem 2.16, therefore
we consider only the latter and suppose that µ > 0. As (h1, . . . , hµ) is inverse-
free, it contains at most two a’s, at most two a2’s, at most one b and it does
not contain both a and a2. Let A be the set of elements in (h1, . . . , hµ). Let
Ia and Ib be the numbers of components conjugate to some power of a and
b respectively. Take As = A ∩ {s0, s1, s2} and At = A ∩ {t0, t1, t2}.
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Step 1. — Suppose that Ia + Ib ⩽ 1. Proposition 4.4 shows that ei-
ther As or At is empty. Thus, by Lemma 4.5, 4.20, 4.17, 4.16, 4.21, 4.18
and 4.19, by elementary transformations the inverse-free tuple (h1, . . . , hµ)
can be transformed into one of the following partial normal forms.

(1) (s0, s2, s0, s2, s0, s2)µ/6, (t0, t2, t0, t2, t0, t2)µ/6 where µ ≡ 0 (mod 6);
(2) (a2, s0, s2)•(s0, s2)(µ−3)/2 and (a, t2, t0)•(t0, t2)(µ−3)/2, where µ ≡ 3

(mod 6);
(3) (b, s0, s2, s0) • (s0, s2)(µ−4)/2 and (b, t0, t2, t0) • (t0, t2)(µ−4)/2, where

µ ≡ 4 (mod 6);
(4) (a, s0, s0, s2, s0)• (s0, s2)(µ−5)/2 and (a2, t0, t2, t0, t0)• (t0, t2)(µ−5)/2,

where µ ≡ 5 (mod 6).

Step 2. — Suppose that Ia = 1 = Ib and aϵ ∈ A with ϵ = ±1. It is clear
that µ ⩾ 3.

If there exists an element h′ ∈ A equal to one of baϵ, aϵb, a−ϵba−ϵ then,
using elementary transformations, we place aϵ and h′ in adjacent positions
that form a pair (aϵ, h′). The pair is further replaced by the product aϵh′

and we replace (h1, . . . , hµ) with a (µ− 1)-tuple, say (y1, . . . , yµ−1). Each of
y1, . . . , yµ−1 is short, one of them is equal to b and each of the rest is neither
a power of a nor b. By Theorem 4.14, Proposition 4.4 and Lemma 4.18, 4.19,
the (µ− 1)-tuple (y1, . . . , yµ−1) can be transformed into either

(b, s0, s2, s0) • (s0, s2, s0, s2, s0, s2)u • (s0, t0)v

or

(b, t0, t2, t0) • (t0, t2, t0, t2, t0, t2)u • (s0, t0)v

with u, v ⩾ 0 and 5 + 6u+ 2v = µ. Proposition 4.10 shows that (h1, . . . , hµ)
can be transformed into one of them with exactly one of the following ad-
justments: replace an s0 (resp. s2, t0, t2) with (a, t2) (resp. (a, t1), (a2, s1),
(a2, s0)). The substitutions

(b, a, t2, s2, s0) −→ (b, t2, s2, a, s0) −→ (b, a, t0, s0, s0)
−→ (b, a, s0) • (t0, s0) −→ (a, b, s2) • (s0, t0),

(b, s0, a, t1, s0) −→ (b, s0, t0, a, s0) −→ (b, a, s0) • (s0, t0)
−→ (a, b, s2) • (s0, t0),

(b, s0, s2, a, t2) −→ (b, s2, s1, a, t2) −→ (b, s2, s1, t1, a)
−→ (b, s2, s0, t0, a) −→ (a, b, s2) • (s0, t0),
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(b, s0, s2, s0)•(a, t2, s2, s0, s2, s0, s2)−→ (b, s0, s2, a, t2)•(s0, s2, s0, s2, s0, s2),
(b, s0, s2, s0)•(s0, a, t1, s0, s2, s0, s2)−→ (s0, b, s0, a, t1)•(s0, s2, s0, s2, s0, s2),

(b, s0, s2, s0) • (a, t2, t0)−→ (b, s0, s2, s0) • (t0, a, t2)
−→ (b, s0, s2, a, t2) • (s0, t0)

and their symmetrical manners further transform the resulting µ-tuple into
one of the following partial normal forms.

(1) (a, b, s2) • (s0, s2, s0, s2, s0, s2)u • (s0, t0)v+1 with u, v ⩾ 0;
(2) (a, t2, t0) • (b, t0, t2, t0) • (t0, t2, t0, t2, t0, t2)u • (s0, t0)v−1 with u ⩾ 0

and v ⩾ 1;
(3) (a2, b, t0) • (t0, t2, t0, t2, t0, t2)u • (s0, t0)v+1 with u, v ⩾ 0;
(4) (a2, s0, s2) • (b, s0, s2, s0) • (s0, s2, s0, s2, s0, s2)u • (s0, t0)v−1 with

u ⩾ 0 and v ⩾ 1.

Otherwise, one of As and At is empty. If there exists an element h′ ∈
A equal to either ba−ϵ or a−ϵb then, using elementary transformations,
we place aϵ and h′ in adjacent positions such that their product is equal
to b. The pair is further replaced by a single b. Therefore, the resulting
(µ − 1)-tuple has exactly two different components conjugate to b and the
rest are either conjugates of s0 or conjugates of t0. Applying Theorem 4.14,
we have shown in Step 1 that such an (µ − 1)-tuple can be transformed by
elementary transformations into either (s0, s2, s0, s2, s0, s2)(µ−3)/6 • (b, b) or
(t0, t2, t0, t2, t0, t2)(µ−3)/6 • (b, b). Proposition 4.10 implies that (h1, . . . , hµ)
can be transformed into a concatenation of either

(s0, s2)(µ−3)/2 or (t0, t2)(µ−3)/2

and one of the following triples, which can be further transformed into a
result consistent with the previous case.

(a, s0, b), (a2, t2, b), (s2, a, b), (t0, a2, b), (b, a, s0), (b, a2, t2), (b, s2, a), (b, t0, a2).

Step 3. — We consider the last case left in Step 2 whereA = {aϵ, b, aϵbaϵ}
and Ia = 1.

In fact, we have µ ⩾ 4. By elementary transformations we place aϵ and
two different aϵbaϵ’s in adjacent positions that form a triple of the form
(aϵbaϵ, aϵ, aϵbaϵ). The triple can be further transformed into (aϵbaϵ, a−ϵb, aϵ).
We combine the first two components into aϵ and then rewrite the triple as
a single a−ϵ. The resulting (µ − 2)-tuple is composed of a−ϵ, b and several
aϵbaϵ. Step 2 has shown that such a tuple can be transformed by elementary
transformations into either

(a, t2, t0) • (b, t0, t2, t0) • (t0, t2, t0, t2, t0, t2)u
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or
(a2, s0, s2) • (b, s0, s2, s0) • (s0, s2, s0, s2, s0, s2)u

with u ⩾ 0. By Proposition 4.10, elementary transformations can transform
(h1, . . . , hµ) into either

(tj , tj+1, a
2, t2, t0) • (b, t0, t2, t0) • (t0, t2, t0, t2, t0, t2)u

or
(sj , sj−1, a, s0, s2) • (b, s0, s2, s0) • (s0, s2, s0, s2, s0, s2)u

that can be further transformed into the result in Step 2 using
(tj , tj+1, a

2, t2, t0) • (b, t0, t2, t0) −→ (a2, t2, t0, t2, t0) • (t0, t2, t0, b)
−→ (a2, b, t0) • (t0, t2, t0, t2, t0, t2),

(sj , sj−1, a, s0, s2) • (b, s0, s2, s0) −→ (a, s0, s2, s0, s2) • (s0, s2, s0, b)
−→ (a, b, s2) • (s0, s2, s0, s2, s0, s2).

Step 4. — Suppose that Ia = 2.

We place the powers of a in adjacent positions and replace them with
their product. The resulting (µ − 1)-tuple contains exactly one power of a
and can be transformed by elementary transformation into one of the eight
partial normal forms introduced in Step 1 and 2. By Proposition 4.10, one can
simply rewrite the powers of a as pairs of powers of a and obtain eight more
partial normal forms. Replacing the inverse-free tuple (h1, . . . , hµ) of short
elements by a partial normal form in the resulting tuple of the elementary
transformations on (g1, . . . , gn), we finish the proof of the theorem. □

4.4. Conjugates of almost short elements and tuples

Suppose that (g1, . . . , gn) is an n-tuple with each gi conjugate to some
almost short element (i.e. the component gi is conjugate to either a, a2, b, s1,
t1 or ababa). In this subsection, we first show that by successive application
of elementary transformations the n-tuple can be transformed into

m∏
i=1

(Q−1
i τi,1Qi, . . . , Q

−1
i τi,ni

Qi)

with m ⩾ 1,
∑m

i=1 ni = n, Qi ∈ G, τi,j ∈ S2 such that τi,1 . . . τi,ni
= 1 for

i = 1, . . . ,m and j = 1, . . . , ni. For the concatenation of (g1, . . . , gn) and a
fixed tuple, we further show a result extremely similar to Theorem 2.16.
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Table 4.2. Some pairs (gi, gi+1) of almost short elements and the prod-
ucts gigi+1.

gi

gi+1 a a2 b a2b aba ba2 ba a2ba2 ab bab

a a2 1 ab b a2ba aba2 aba ba2 a2b
a2 1 a a2b ab ba a2ba2 a2ba aba2 b
b ba ba2 1 ba2b a2 a bab ab
a2b a2ba a2ba2 a2 a 1 b
aba aba2 ab a 1 aba2b
ba2 b ba ba2b bab a baba2 1
ba ba2 b bab 1 ba2ba a2 ba2b

a2ba2 a2b a2ba a2bab 1 a2

ab aba aba2 a 1 a2 a2b
bab ba b ba2 ba2b
ba2b ba2 ba b 1
a2ba a2ba2 a2b a2 a
aba2 ab aba a2 a
a2bab a2ba a2b a2ba2

ababa aba ab
baba2 bab ba2 ba
ba2ba ba2b ba2 ba

a2ba2ba2 a2b a2ba2

aba2b aba2 aba ab a

gi

gi+1 ba2b a2ba aba2 a2bab ababa baba2 ba2ba a2ba2ba2 aba2b

a ba a2ba2 bab
a2 aba ba2 ba2b
b a2b aba2 a2ba
a2b ab ba2 aba
aba a2 a2b ba2

ba2 a2 aba a2b
ba a ab a2ba2

a2ba2 a ba ab
ab b a2ba2 ba
bab 1 a
ba2b bab a2

a2ba 1 a2ba2ba2 b aba2

aba2 ababa 1 a2ba b
a2bab a2 a2ba2ba2 1
ababa aba2 aba2b 1
baba2 b ba2ba 1
ba2ba b 1 baba2

a2ba2ba2 a2ba 1 a2bab
aba2b 1 ababa
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The first part of this subsection follows a similar line as in Section 4.2.
Proposition 4.29 is an analog to Proposition 4.10. Lemmata 4.22, 4.23, 4.24,
4.25, 4.26, 4.27 and 4.28, which have technicalities referring to Lemma 4.9,
will be used to prove Proposition 4.29.

We introduce some pairs of almost short elements in Table 4.2 as in Sec-
tion 4.2. Broadly speaking, each pair of almost short elements in Table 4.2
behaves well under the contraction operation introduced in Section 2.2,
which is explained in lemmata 4.23, 4.24, 4.25, 4.26, 4.27 and 4.28. Besides,
each pair of almost short elements not in Table 4.2 satisfies the inequality
mi ⩽ min

{ l(gi)+1
2 , l(gi+1)+1

2
}

which is the first step for Lemma 4.32(a). (See
Lemma 4.13 for the precise definition of mi.) Furthermore, Table 4.2 has to
fulfil some irregular requirements which appear in the proofs of Lemma 4.32
and Theorem 4.33. Unfortunately, we do not have high conviction in sift-
ing out the pairs of almost short elements. What is worse, Theorem 4.33
needs a patch based on Lemma 4.22 which considers a triple of almost short
elements.

Lemma 4.22. — Let (τ1, τ2, τ2) be a triple of the form

(a−ϵbaϵb, baϵb, baϵba−ϵ) or (ba−ϵbaϵ, aϵ, aϵba−ϵb)

with ϵ = ±1. Set (g1, g2, g3) = (Q−1τ1Q,Q
−1τ2Q,Q

−1τ3Q) with Q ∈ G and
suppose that Q−1τ1τ2τ3Q ∈ S2. Then (g1, g2, g3) is Hurwitz equivalent to a
triple of almost short elements.

Proof. — We only consider (τ1, τ2, τ2) = (a−ϵbaϵb, baϵb, baϵba−ϵ).

Since Q−1τ1τ2τ3Q = Q−1aϵQ is almost short, Q is one of 1, a±ϵ, b and
a±ϵb. In the case that Q = b, the triple (g1, g2, g3) = (ba−ϵbaϵ, aϵ, aϵba−ϵb) is
already of almost short elements. In the cases that Q = aϵ or aϵb, the lemma
follows from the following substitutions:

(a−ϵτ1a
ϵ, a−ϵτ2a

ϵ, a−ϵτ3a
ϵ) = (aϵbaϵbaϵ, a−ϵbaϵbaϵ, a−ϵbaϵb)

R1−−→ (a−ϵbaϵbaϵ, a−ϵba−ϵba−ϵba−ϵbaϵ, a−ϵbaϵb)
R2−−→ (a−ϵbaϵbaϵ, a−ϵbaϵb, baϵba−ϵ) R1−−→ (a−ϵbaϵb, baϵb, baϵba−ϵ).

(ba−ϵτ1a
ϵb, ba−ϵτ2a

ϵb, ba−ϵτ3a
ϵb) = (baϵbaϵbaϵb, ba−ϵbaϵbaϵb, ba−ϵbaϵ)

R2−−→ (baϵbaϵbaϵb, ba−ϵbaϵ, aϵ)
R1−−→ (ba−ϵbaϵ, a−ϵba−ϵba−ϵ, aϵ) R2−−→ (ba−ϵbaϵ, aϵ, aϵba−ϵb).

For the rest two cases, the approach is similar. □
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Lemma 4.23. — Let (τ1, τ2) be a pair of almost short elements in Ta-
ble 4.2 such that τ1τ2 is a power of a. Set (g1, g2) = (Q−1τ1Q,Q

−1τ2Q) with
Q ∈ G and suppose that Q−1τ1τ2Q is almost short. Then (g1, g2) is Hurwitz
equivalent to a pair of almost short elements.

Proof. — The pair (τ1, τ2) must be one of
(a−ϵ, a−ϵ), (b, baϵ), (aϵb, b),
(a−ϵba−ϵ, aϵba−ϵ), (a−ϵbaϵ, a−ϵba−ϵ), (baϵ, a−ϵbaϵ), (aϵba−ϵ, aϵb),
(a−ϵb, ba−ϵ), (aϵbaϵ, a−ϵb), (ba−ϵ, aϵbaϵ),
(aϵba−ϵb, baϵb), (baϵb, ba−ϵbaϵ)

and Q ∈ {1, aϵ, a−ϵ, b, aϵb, a−ϵb} with ϵ = ±1. Now we fix ϵ = ±1.

When (τ1, τ2) = (a−ϵ, a−ϵ), the pair (g1, g2) is a pair of almost short
elements. When one of g1, g2 is conjugate to b and the other one is con-
jugate to aϵb, either (g1, g2) is a pair of almost short elements or (g1, g2)
is equal to one of (aϵb, ba−ϵbaϵb), (baϵba−ϵb, baϵ), (ba−ϵbaϵb, ba−ϵba−ϵb) and
(ba−ϵba−ϵb, baϵba−ϵb). In this case, the substitutions given by the follow-
ing graph show that (g1, g2) can be transformed into a pair of almost short
elements via elementary transformations.

(b, aϵb) (aϵb, ba−ϵbaϵb) (ba−ϵbaϵb, ba−ϵba−ϵb)

(baϵ, b) (baϵba−ϵb, baϵ) (ba−ϵba−ϵb, baϵba−ϵb)

R1 R1

R1

R1R1

R1

When both of g1, g2 are conjugate to a−ϵb, either (g1, g2) is a pair of almost
short elements or (g1, g2) is one of (baϵbaϵb, ba−ϵ), (a−ϵb, baϵbaϵb) which can
be transformed into (ba−ϵ, a−ϵb) via R1, R−1

1 respectively. When one of g1,
g2 is conjugate to aϵ and the other one is conjugate to a−ϵba−ϵba−ϵ, either
(g1, g2) is a pair of almost short elements or (g1, g2) is one of

(ba−ϵbaϵ, a−ϵbaϵbaϵ), (aϵbaϵba−ϵ, aϵba−ϵb),
(a−ϵbaϵbaϵ, a−ϵba−ϵba−ϵ), (a−ϵba−ϵba−ϵ, aϵbaϵba−ϵ),
(baϵbaϵba−ϵb, baϵba−ϵ), (a−ϵbaϵb, ba−ϵbaϵbaϵb),
(ba−ϵba−ϵba−ϵb, baϵbaϵba−ϵb), (ba−ϵbaϵbaϵb, ba−ϵba−ϵba−ϵb).

In this case, the following graphs show that (g1, g2) can be transformed into
a pair of almost short elements via elementary transformations.

(baϵb, ba−ϵbaϵ)

(aϵba−ϵb, baϵb)

(ba−ϵbaϵ, a−ϵbaϵbaϵ) (a−ϵbaϵbaϵ, a−ϵba−ϵba−ϵ)

(aϵbaϵba−ϵ, aϵba−ϵb) (a−ϵba−ϵba−ϵ, aϵbaϵba−ϵ)

R1 R1

R1

R1R1

R1
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(baϵba−ϵ, aϵ)

(aϵ, a−ϵbaϵb)

(baϵbaϵba−ϵb, baϵba−ϵ) (ba−ϵba−ϵba−ϵb, baϵbaϵba−ϵb)

(a−ϵbaϵb, ba−ϵbaϵbaϵb) (ba−ϵbaϵbaϵb, ba−ϵba−ϵba−ϵb)

R1 R1

R1

R1R1

R1

□

Lemma 4.24. — Let (τ1, τ2) be a pair of almost short elements in Ta-
ble 4.2 such that τ1τ2 = b. Set (g1, g2) = (Q−1τ1Q,Q

−1τ2Q) with Q ∈ G and
suppose that Q−1τ1τ2Q is almost short. Then (g1, g2) is Hurwitz equivalent
to a pair of almost short elements.

Proof. — The pair (τ1, τ2) must be one of
(aϵ, a−ϵb), (ba−ϵ, aϵ), (a−ϵb, baϵb),
(baϵb, ba−ϵ), (baϵba−ϵ, aϵba−ϵ), (a−ϵbaϵ, a−ϵbaϵb)

with ϵ = ±1 and Q ∈ {1, a, a2, b, ba, ba2}. The lemma follows from the fol-
lowing graphs with ϵ = ±1.

(a−ϵb, aϵ)

(aϵ, aϵbaϵ) (aϵbaϵ, a−ϵbaϵbaϵ)

(a−ϵbaϵbaϵ, a−ϵb)

R1

R1

R1

R1

(aϵbaϵbaϵ, a−ϵbaϵ)

(a−ϵbaϵ, a−ϵba−ϵba−ϵ) (a−ϵba−ϵba−ϵ, aϵbaϵba−ϵba−ϵ)

(aϵbaϵba−ϵba−ϵ, aϵbaϵbaϵ)

R1

R1

R1

R1

(b, baϵba−ϵ)

(aϵba−ϵb, b)

(baϵba−ϵ, aϵba−ϵbaϵba−ϵ)

(aϵba−ϵbaϵba−ϵ, aϵba−ϵb)

R1

R1

R1

R1

(ba−ϵbaϵ, a−ϵbaϵ)

(a−ϵbaϵ, a−ϵbaϵb) (a−ϵbaϵb, a−ϵbaϵb)

(ba−ϵbaϵb, ba−ϵbaϵ)

R1

R1

R1

R1

□

Lemma 4.25. — Let (τ1, τ2) be a pair of almost short elements in Ta-
ble 4.2 such that τ1τ2 = baϵb with ϵ = ±1. Set (g1, g2) = (Q−1τ1Q,Q

−1τ2Q)
with Q ∈ G and suppose that Q−1τ1τ2Q is almost short. Then (g1, g2) is
Hurwitz equivalent to a pair of almost short elements.

Proof. — The pair (τ1, τ2) must be one of
(aϵ, a−ϵbaϵb), (baϵba−ϵ, aϵ), (b, aϵb), (baϵ, b), (ba−ϵ, a−ϵb), (ba−ϵb, ba−ϵb)

with ϵ = ±1 and Q ∈ {1, b, baϵ, ba−ϵ, baϵb, ba−ϵb}. The lemma follows from
the following graphs.

(baϵb, ba−ϵbaϵ) (ba−ϵbaϵ, a−ϵbaϵbaϵ) (a−ϵbaϵbaϵ, a−ϵba−ϵba−ϵ)

(aϵba−ϵb, baϵb) (aϵbaϵba−ϵ, aϵba−ϵb) (a−ϵba−ϵba−ϵ, aϵbaϵba−ϵ)

R1 R1

R1

R1R1

R1

(aϵ, a−ϵbaϵb) (a−ϵbaϵb, ba−ϵbaϵbaϵb) (ba−ϵbaϵbaϵb, ba−ϵba−ϵba−ϵb)

(baϵba−ϵ, aϵ) (baϵbaϵba−ϵb, baϵba−ϵ) (ba−ϵba−ϵba−ϵb, baϵbaϵba−ϵb)

R1 R1

R1

R1R1

R1
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(b, aϵb) (aϵb, ba−ϵbaϵb) (ba−ϵbaϵb, ba−ϵba−ϵb)

(baϵ, b) (baϵba−ϵb, baϵ) (ba−ϵba−ϵb, baϵba−ϵb)

R1 R1

R1

R1R1

R1

(ba−ϵ, a−ϵb) (a−ϵb, baϵbaϵb)

(baϵbaϵb, ba−ϵ)

R1

R1R1

□

Lemma 4.26. — Let (τ1, τ2) be a pair of almost short elements in Ta-
ble 4.2 such that τ1τ2 = a−ϵbaϵ with ϵ=±1. Set (g1, g2) = (Q−1τ1Q,Q

−1τ2Q)
with Q ∈ G and suppose that Q−1τ1τ2Q is almost short. Then (g1, g2) is
Hurwitz equivalent to a pair of almost short elements.

Proof. — The pair (τ1, τ2) must be one of
(aϵ, aϵbaϵ), (a−ϵ, baϵ), (a−ϵba−ϵ, a−ϵ), (a−ϵb, aϵ)
(b, ba−ϵbaϵ), (a−ϵbaϵb, b), (a−ϵba−ϵba−ϵ, aϵba−ϵ), (aϵba−ϵ, aϵbaϵbaϵ)

with ϵ = ±1 and Q ∈ {1, aϵ, a−ϵ, a−ϵb, a−ϵbaϵ, a−ϵba−ϵ}. The lemma follows
from the following graphs.

(aϵ, aϵbaϵ) (aϵbaϵ, a−ϵbaϵbaϵ)

(a−ϵb, aϵ) (a−ϵbaϵbaϵ, a−ϵb)

R1

R1

R1

R1

(aϵ, ba−ϵ) (ba−ϵ, aϵbaϵba−ϵ)

(aϵbaϵ, aϵ) (aϵbaϵba−ϵ, aϵbaϵ)

R1

R1

R1

R1

(aϵba−ϵ, aϵba−ϵb) (aϵba−ϵb, baϵba−ϵb)

(baϵba−ϵ, aϵba−ϵ) (baϵba−ϵb, baϵba−ϵ)

R1

R1

R1

R1

(b, ba−ϵbaϵ) (ba−ϵbaϵ, a−ϵbaϵba−ϵbaϵ)

(a−ϵbaϵb, b) (a−ϵbaϵba−ϵbaϵ, a−ϵbaϵb)

R1

R1

R1

R1

(a−ϵbaϵ, a−ϵba−ϵba−ϵ) (a−ϵba−ϵba−ϵ, aϵbaϵba−ϵba−ϵ)

(aϵbaϵbaϵ, a−ϵbaϵ) (aϵbaϵba−ϵba−ϵ, aϵbaϵbaϵ)

R1

R1

R1

R1

□

Lemma 4.27. — Let (τ1, τ2) be a pair of almost short elements in Ta-
ble 4.2 such that τ1τ2 is one of aϵb, baϵ and a−ϵba−ϵ with ϵ = ±1. Set
(g1, g2) = (Q−1τ1Q,Q

−1τ2Q) with Q ∈ G and suppose that Q−1τ1τ2Q is
almost short. Then (g1, g2) is Hurwitz equivalent to a pair of almost short
elements.

Proof. — SinceQ−1τ1τ2Q is almost short, the elementQ is equal to either
(τ1τ2)kaζ or (τ1τ2)−laζ with k, l ⩾ 0 and ζ = 0, 1, 2. When Q = aζ , the only
exceptional cases that at least one of Q−1τ1Q, Q−1τ2Q is not almost short
is that (τ1, τ2) is equal to one of

(b, baϵb), (baϵb, b), (a−ϵb, ba−ϵb), (ba−ϵb, ba−ϵ)
with ϵ = ±1, where both (a−ϵτ1a

ϵ, a−ϵτ2a
ϵ) and (aϵτ1a

−ϵ, aϵτ2a
−ϵ) can be

transformed into pairs of almost short elements by applying either R1 or
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R−1
1 . In general, Lemma 4.8 shows that (g1, g2) can be transformed into a

pair of almost short elements. □

Lemma 4.28. — Let (τ1, τ2) be a pair of almost short elements in Ta-
ble 4.2 such that τ1τ2 is almost short and conjugate to ababa. Set (g1, g2) =
(Q−1τ1Q,Q

−1τ2Q) with Q ∈ G and suppose that Q−1τ1τ2Q is almost short.
Then (g1, g2) is Hurwitz equivalent to a pair of almost short elements.

Proof. — Since τ1τ2 is almost short and conjugate to ababa, it must be
one of a−ϵbaϵb, ba−ϵbaϵ and aϵbaϵbaϵ with ϵ = ±1. When τ1τ2 = a−ϵbaϵb,
since Q−1τ1τ2Q is almost short, the element Q is either (a−ϵbaϵb)kaζ or
(a−ϵbaϵb)k(aϵb)aζ with k ∈ Z and ζ = 0, 1, 2. Lemma 4.8 induces that it
suffices to suppose that

Q ∈ {1, aϵ, a−ϵ, a−ϵb, a−ϵbaϵ, a−ϵba−ϵ}.
Besides, (τ1, τ2) is one of

(a−ϵba−ϵ, a−ϵb), (a−ϵba−ϵba−ϵ, aϵba−ϵb).
Each possible (g1, g2) is either a pair of almost short elements or transformed
into a pair of almost short elements by R±1

1 . When τ1τ2 = ba−ϵbaϵ or aϵbaϵbaϵ

we have similar arguments. □

We introduce the following operations and their restorations on an n-
tuple (g1, . . . , gn) of elements in G that are conjugate to some almost short
element.

Operation 1. — For i ∈ {1, . . . , n − 1}, suppose that gi = Q−1τiQ and
gi+1 = Q−1τi+1Q with Q ∈ G and (τi, τi+1) listed in Table 4.2. Then,
the operation is a contraction as in Section 2.2 that replaces (gi, gi+1) with
gigi+1.

Operation 1′. — For i ∈ {1, . . . , n−2}, suppose that gi = Q−1τiQ, gi+1 =
Q−1τi+1Q and gi+2 = Q−1τi+2Q with Q ∈ G and the triple (τi, τi+1, τi+2)
is equal to either

(a2bab, bab, baba2) or (aba2b, ba2b, ba2ba).
Then, the operation is a contraction as in Section 2.2 that replaces
(gi, gi+1, gi+2) with gigi+1gi+2.

Operation 2. — For i ∈ {1, . . . , n}, suppose that gi = 1. The operation
moves the identical component to the rightmost position via elementary
transformations, removes it and reduces (g1, . . . , gn) to an (n− 1)-tuple.

Operations 1 and 1′ are contractions, whose restorations are introduced
in Section 2.1. The restoration of Operation 2 will simply add an identical
element on the right side of the tuple.
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Proposition 4.29. — Let (g1, . . . , gn) be an n-tuple of elements in G
which are conjugate to some almost short element such that g1 . . . gn = 1.
Suppose that we apply the following operations successively on (g1, . . . , gn):

(i) elementary transformations;
(ii) Operation 1;
(iii) Operation 1′;
(iv) Operation 2;

then apply the restorations of Operations 1, 1′ and 2 in the reverse order. If
each component in the resulting tuple before restorations are almost short,
then the initial tuple is Hurwitz equivalent to the following tuples:

(a) the resulting tuple after restorations;
(b) the concatenation of some tuples of the form

(Q−1τ1Q,Q
−1τ2Q, . . . , Q

−1τmQ)

with m ⩾ 1, Q ∈ G and τ1, . . . , τm ∈ S2 such that τ1 . . . τm = 1.

We emphasise that Proposition 4.29 does not require an inverse-free tuple
(g1, . . . , gn) in G as in Proposition 4.10. Besides, an elementary transforma-
tion is allowed to transform a pair into such that has a bigger sum of S2-
complexities. That is why we cannot transform it into a tuple of almost short
elements but get a concatenation of several tuples of almost short elements
each with a diagonal conjugacy.

Proof. — Lemma 2.8 shows that the initial tuple is Hurwitz equivalent
to the resulting tuple after all operations and restorations. We suppose that
each component is almost short in the tuple before restorations.

We revisit the introduced operations. Operation 1 may combine Q−1τiQ
and Q−1τjQ into Q−1τiτjQ with Q ∈ G and τi, τj ∈ S2. By elementary trans-
formations, the product becomes a conjugate of the form P−1Q−1τiτjQP
with some P ∈ G. To restore the operation, we further rewrite it as

(P−1Q−1τiQP,P
−1Q−1τjQP ).

Operation 1′ is similar.

If Operation 2 has never been used, the proposition follows from lem-
mata 4.23, 4.24, 4.25, 4.26, 4.27, 4.28 and 4.22. In general, suppose that
P−1Q−1τiτjQP = 1. Then P = 1 and the restoration replaces the identical
element with (Q−1τiQ,Q

−1τjQ). We consider the remaining restorations on
(τi, τj) instead. □
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Definition 4.30. — The S2-complexity of an element g conjugate to
some element in S2 is defined as f2(g) such that

f2(g) =


l(Q) if g = Q−1wQ is almost long

with Q ∈ G, w ∈ {baϵb, aϵba−ϵ, aϵbaϵ, aϵbaϵbaϵ|ϵ = 1, 2};
1/2 if g ∈ {ababa, a2ba2ba2};
0 otherwise.

Definition 4.31. — Let (g1, . . . , gn) be an n-tuple in G such that each of
gi, i = 1, . . . , n, is conjugate to some element in S2. A sequence of elementary
transformations (Rϵ1

i1
, . . . , Rϵm

im
), ϵ1, . . . , ϵm ∈ {1,−1}, is said to make the

sum of S2-complexities of (g1, . . . , gn) smaller if Rϵm
im
◦ · · · ◦ Rϵ1

i1
transforms

(g1, . . . , gn) into a tuple with a smaller sum of S2-complexities.

Lemma 4.32. — Let (g1, . . . , gn) be an n-tuple in G such that each of gi,
i = 1, . . . , n, is conjugate to some element in S2 and g1 . . . gn = 1. Let mi be
the same as in Lemma 4.13 and set m0 = mn = 0 for convenience. Suppose
that

(1) there is no pair of adjacent components gi, gi+1 of the reduced forms
Q−1τiQ, Q−1τi+1Q with Q ∈ G and (τi, τi+1) in Table 4.2;

(2) there is no sequence of elementary transformations that makes the
sum

∑
i f2(gi) smaller.

Then mi, i = 0, . . . , n have the following properties.

(a) For i = 1, . . . , n− 1, mi ⩽
l(gi)+1

2 and mi ⩽
l(gi+1)+1

2 .
(b) For i = 1, . . . , n, mi−1 + mi ⩾ l(gi) only if the reduced form of gi

is either Q−1
i aϵiQi or Q−1

i aϵibaϵibaϵiQi with ϵi = 1, 2, Qi ∈ G and
l(Qi) ⩾ 0.

(c) If mi−1 +mi ⩽ l(gi) for each of i = 1, . . . , n, then n = 0.

Proof. —

(a). — When both gi and gi+1 are almost short, since (gi, gi+1) does
not figure in Table 4.2, we check all possibilities and get that mi ⩽

l(gi)+1
2 ,

l(gi+1)+1
2 .

When gi ∈ S2 but gi+1 ̸∈ S2, we have concluded that gi+1 = Q−1wQ with
w ∈ {baϵb, aϵba−ϵ, aϵbaϵ, aϵbaϵbaϵ | ϵ = 1, 2} and Q ∈ G such that l(Q) ⩾ 1.
In particular, l(gi+1) ⩾ 5 ⩾ l(gi). Assume that mi >

l(gi)+1
2 . Suppose that

l(gi) = 2. Then mi = 2 and the symmetry of gi+1 implies the contradic-
tion l(gigi+1g

−1
i ) ⩽ l(gi+1) − 2. Suppose that l(gi) = 3. Then mi = 3.

The symmetry of gi+1 and the fact that l(w) ⩾ 3 imply the contradiction
l(gigi+1g

−1
i ) ⩽ l(gi+1) − 2. Suppose that l(gi) = 4. Then gi = aϵiba−ϵib
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or baϵiba−ϵi with ϵi ∈ {1, 2}. Therefore mi = 3 or 4. If l(Q) = 1 and
gi = aϵiba−ϵb, then mi = 4 and l(gigi+1g

−1
i ) ⩽ l(gi+1)− 2, contradicting the

hypothesis (2). If l(Q) = 1 and gi = baϵiba−ϵi , then gi+1 = aϵibaϵi+1ba−ϵi

with ϵi+1 ∈ {1, 2} and l(gigi+1g
−1
i ) ⩽ l(gi+1)− 2, contradicting the hypoth-

esis (2). If l(Q) ⩾ 2, then we again get l(gigi+1g
−1
i ) < l(gi+1), contradict-

ing the hypothesis (2). Suppose that l(gi) = 5 and then mi = 4 or 5. As
gi = aϵibaϵibaϵi , mi must be 5. Therefore, if l(Q) ⩾ 2 then we get the con-
tradiction l(gigi+1g

−1
i ) < l(gi+1). If l(Q) = 1 then gi+1 must be a−ϵba−ϵbaϵ

but the following substitution makes the sum of S2-complexities smaller and
induces a contradiction.

(gi, gi+1) = (aϵibaϵibaϵi , a−ϵba−ϵbaϵ)
−→ (a−ϵba−ϵbaϵ, a−ϵbaϵb) −→ (a−ϵbaϵb, ba−ϵb).

We have a similar argument when gi+1 is almost short but gi not.

When both gi and gi+1 are almost long, suppose that their reduced forms
are Q−1

i wiQi and Q−1
i+1wi+1Qi+1 and assume that without loss of generality

l(Qi) ⩽ l(Qi+1). Assume that mi > min{ l(gi)+1
2 , l(gi+1)+1

2 }. Therefore Qi+1
must end with Qi. Write

Qi+1 = Q̃Qi and (gi, gi+1) = (Q−1
i wiQi, Q

−1
i Q̃−1wi+1Q̃Q̃i).

Suppose that l(Q̃) = 0. The assumption onmi contradicts Table 4.2. Suppose
that l(Q̃) ⩾ 1. Therefore l(wi) ⩽ 5 ⩽ l(Q̃−1wi+1Q̃) and mi >

l(gi)+1
2 . If

l(wi) = 3 then mi > l(Qi) + 3 and l(gigi+1g
−1
i ) ⩽ l(gi+1)− 2, contradicting

the hypothesis (2). If l(wi) = 5 and l(Q̃−1wi+1Q̃) = 5, then

(gi, gi+1) = (Q−1
i wiQi, Q

−1
i Q̃−1wi+1Q̃Qi)

= (Q−1
i aϵibaϵibaϵiQi, Q

−1
i a−ϵiba−ϵibaϵiQi)

whose sum of S2-complexities can be smaller using elementary transforma-
tions. If l(wi) = 5 and l(Q̃−1wi+1Q̃) ⩾ 7, then l(gigi+1g

−1
i ) ⩽ l(gi+1) − 2,

contradicting the hypothesis (2).

(b). — Suppose that mi−1 +mi ⩾ l(gi) for some i = 1, . . . , n− 1.

Suppose that gi ∈ S2. If gi = b then either mi−1 = 0, mi = 1 or mi−1 = 1,
mi = 0. Therefore either gi−1 ends with b or gi+1 starts with b. Table 4.2
shows that either gi−1 or gi+1 is almost long, starts and ends with b. Hence
it implies the contradiction either l(gigi+1g

−1
i ) < l(gi+1) or l(g−1

i gi−1gi) <
l(gi−1). If l(gi) = 2, then one of gi−1, gi+1 must be b, which is impossible
based on Table 4.2. If l(gi) = 4, then either gi−1 = aϵi−1b or gi+1 = baϵi+1

with ϵi−1, ϵi+1 ∈ {1, 2}, which is impossible based on Table 4.2. If l(gi) = 3
and gi = aϵibaϵi with ϵi ∈ {1, 2}, then either gi−1 = ba−ϵi or gi+1 = a−ϵib.
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If l(gi) = 3 and gi = aϵiba−ϵi with ϵi ∈ {1, 2}, then either gi−1 = ba−ϵi or
gi+1 = aϵib. Both are impossible again based on Table 4.2. There are only
two possibilities left: either gi is conjugate to a power of a or gi = aϵibaϵibaϵi .

When gi is almost long, gi is one of

Q−1baϵibQ,Q−1aϵiba−ϵiQ,Q−1aϵibaϵiQ,Q−1aϵibaϵibaϵiQ

with ϵi ∈ {1, 2}, Q ∈ G and l(Q) ⩾ 1. If gi = Q−1aϵibaϵiQ or gi =
Q−1aϵiba−ϵiQ then either gi+1 = Q−1a−ϵib or gi+1 = Q−1aϵib. Therefore
g−1

i+1gigi+1 ∈ {Q−1ba2ϵiQ,Q−1bQ} which is a contradiction.

We conclude that gi is either Q−1
i aϵiQi or Q−1

i aϵibaϵibaϵiQi with ϵi = 1, 2
and l(Qi) ⩾ 0.

(c). — We assume that n ⩾ 1 and suppose that mi−1 + mi = l(gi) for
some 2 ⩽ i ⩽ n− 1. By (2), gi is either Q−1

i aϵiQi or Q−1
i aϵibaϵibaϵiQi with

ϵi = 1, 2 and l(Qi) ⩾ 0.

If gi = aϵi and suppose that mi−1 = 0, mi = 1, then gi+1 is either one of
aϵibaϵibaϵi , aϵiba−ϵib, a−ϵiba−ϵiba−ϵi or an almost long element starting with
aϵi and ending with a−ϵi . However, gi+1 cannot be a−ϵiba−ϵiba−ϵi since the
elementary transformation R−1

i makes the sum of S2-complexities smaller.

If gi = Q−1
i aϵiQi with l(Qi) ⩾ 1, then either gi−1 = Qi or gi+1 = Q−1

i ,
which implies the contradiction either gi−1gig

−1
i−1 = aϵi or g−1

i+1gigi+1 = aϵi .

If gi = Q−1aϵibaϵibaϵiQ with l(Q) ⩾ 0, then either gi−1 = ba−ϵiQ or
gi+1 = Q−1a−ϵib. Therefore Table 4.2 denies the case of Q = 1 and, when
Q ̸= 1, either gi−1gig

−1
i−1 = aϵiba2ϵib or g−1

i+1gigi+1 = ba2ϵibaϵi , which is a
contradiction.

The assertion (b) and the above observation show that mi−1 +mi < l(gi)
if gi ̸= aϵi . They further imply a contradiction that g1 . . . gn ̸= 1. □

Now we state the main result in this subsection.

Theorem 4.33. — Let g1, . . . , gn be such that each of them is conjugate
to some element in S2 and g1 . . . gn = 1. Then, the n-tuple (g1, . . . , gn) is
Hurwitz equivalent to

m∏
i=1

(Q−1
i τi,1Qi, . . . , Q

−1
i τi,ni

Qi)

with m ⩾ 1,
∑m

i=1 ni = n, Qi ∈ G and τi,j ∈ S2 such that τi,1 . . . τi,ni
= 1

for i = 1, . . . ,m and j = 1, . . . , ni.

Proof. — We will always use the notation mi to indicate the length of
the reduced part in hihi+1 for i = 1, . . . , µ − 1 and set m0 = mµ = 0 as
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before. To prove the theorem for (g1, . . . , gn), we use the induction on(
n,

n∑
i=1

f2(gi), l(g1), . . . , l(gn)
)
.

and apply the following operations: If there exists a pair of adjacent compo-
nents of the form (Q−1τ1Q,Q

−1τ2Q) with Q ∈ G and (τ1, τ2) in Table 4.2,
then we replace it with the product Q−1τ1τ2Q and reduce (g1, . . . , gn) to an
(n− 1)-tuple. If there exists a triple of consecutive components of the form

(Q−1a−ϵbaϵbQ,Q−1baϵbQ,Q−1baϵba−ϵQ)

with Q ∈ G, ϵ = ±1 as introduced in Operation 1′, then we replace it with
Q−1aϵQ and reduce (g1, . . . , gn) to an (n−2)-tuple. If there exists an identical
component, then we move it to the rightmost position and remove it. If
there exists a sequence of elementary transformations that makes

∑
i f2(hi)

smaller, then we apply it.

When each of the above operations fails, the resulting tuple, still denoted
by (g1, . . . , gn), satisfies all hypotheses in Lemma 4.32. Suppose that n ⩾ 1
and there exists some i = 2, . . . , n− 1 such that mi−1 +mi > l(gi).

When gi = aϵi with ϵi = 1, 2, Table 4.2 reveals that either gi−1 is one
of ba−ϵibaϵi , a−ϵiba−ϵiba−ϵi , aϵibaϵibaϵi , or gi−1 is an almost long element
starting with a−ϵi and ending with aϵi . Meanwhile, either gi+1 is one of
aϵiba−ϵib, a−ϵiba−ϵiba−ϵi , aϵibaϵibaϵi , or gi+1 is an almost long element
starting with aϵi and ending with a−ϵi . The triple (gi−1, gi, gi+1) cannot
be (ba−ϵibaϵi , aϵi , aϵiba−ϵib) due to Operation 1′. Therefore, either (gi−1, gi)
can be transformed into (g̃i−1, g̃i) = (aϵi , a−ϵigi−1a

ϵ) with f2(gi−1) ⩾ f2(g̃i)
but l(g̃i−1) < l(gi−1).

When gi = baϵib with ϵi = 1, 2, Table 4.2 reveals that either gi−1 =
a−ϵibaϵib or gi−1 is almost long starting with ba−ϵi and ending with aϵib.
Meanwhile, either gi+1 = baϵba−ϵi or gi+1 is almost long starting with baϵ

and ending with a−ϵb. The triple (gi−1, gi, gi+1) cannot be

(a−ϵibaϵib, baϵib, baϵba−ϵi)

due to Operation 1′.

Therefore, the tuple (gi−1, gi, gi+1) can be transformed into (g̃i−1, g̃i, g̃i+1)
with f2(gi−1) + f2(gi) + f2(gi+1) ⩾ f2(g̃i−1) + f2(g̃i) + f2(g̃i+1), l(gi−1) ⩾
l(g̃i−1), l(gi) ⩾ l(g̃i), l(gi+1) ⩾ l(g̃i+1) but either l(g̃i−1) < l(gi−1) or
l(g̃i+1) < l(gi+1).

When gi = Q−1
i aϵiQ with ϵi = 1, 2, l(Qi) ⩾ 2, we have mi−1 = mi =

l(Qi)+1 and l(gi−1) > l(gi). To avoid l(g−1
i gi−1gi) < l(gi−1), gi−1 must end

with aϵiQi and start with Q−1
i a−ϵi . In this case, l(g−1

i gi−1gi) = l(gi−1) and,
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using the elementary transformation Ri−1, we are able to reduce (g1, . . . , gn)
to a new n-tuple, say (g̃1, . . . , g̃n), such that

∑
j f2(gj) =

∑
j f2(g̃j), l(gj) =

l(g̃j) for 1 ⩽ j ⩽ n and j ̸∈ {i− 1, i} but l(g̃i−1) = l(gi) < l(gi−1) = l(g̃i).

When gi = Q−1
i aϵibaϵibaϵiQi with ϵi = 1, 2, Qi ∈ G and l(Qi) ⩾ 0, then

mi−1 = mi = l(Qi) + 3. If l(gi−1) = l(gi) = l(gi+1), then
(gi−1, gi, gi+1) = (Q−1

i aϵibaϵiba−ϵiQi, Q
−1
i aϵibaϵibaϵiQi, Q

−1
i a−ϵibaϵibaϵiQi)

that can be transformed into a triple with a smaller sum of S2-complexities
via the following substitution.
(gi−1, gi, gi+1)
−→(Q−1

i aϵibaϵibaϵiQi, Q
−1
i a−ϵibaϵibaϵiQi, Q

−1
i a−ϵibaϵibaϵiQi)

−→(Q−1
i a−ϵibaϵibaϵiQi, Q

−1
i a−ϵiba−ϵiba−ϵiba−ϵibaϵiQi, Q

−1
i a−ϵibaϵibaϵiQi)

−→(Q−1
i a−ϵibaϵibaϵiQi, Q

−1
i a−ϵibaϵibaϵiQi, Q

−1
i a−ϵibaϵibQi).

If l(gi−1) = l(gi) < l(gi+1), then gi+1 = Q−1
i a−ϵibaϵiwa−ϵibaϵiQi with

the word w starts and ends with b. Therefore, by elementary transformations
the triple can be transformed into

(Q−1
i aϵibwba−ϵiQ, gi−1, gi)

with a smaller sum of S2-complexities, which induces a contradiction. If
l(gi−1) > l(gi) then again using the elementary transformation Ri−1 we
are able to reduce (g1, . . . , gn) to a new n-tuple, say (g̃1, . . . , g̃n), such that∑

j f2(gj) =
∑

j f2(g̃j), l(gj) = l(g̃j) for 1 ⩽ j ⩽ n and j ̸∈ {i − 1, i} but
l(g̃i−1) = l(gi) < l(gi−1) = l(g̃i).

The induction does not stop unless n is equal to 0. Due to Proposi-
tion 4.29, by restoring operations and applying more elementary transfor-
mations, we get a resulting n-tuple of almost short elements that can be
obtained from the original (g1, . . . , gn) via elementary transformations di-
rectly. □

Corollary 4.34. — Let g1, . . . , gn be such that each of them is con-
jugate to some element in S2 and g1 . . . gn = 1. Let (g′1, . . . , g′m) be a tuple
containing a generating set. Then, the tuple (g1, . . . , gn)•(g′1, . . . , g′m) is Hur-
witz equivalent to (h1, . . . , hn)• (g′1, . . . , g′m) where (h1, . . . , hn) is an n-tuple
of almost short elements.

Proof. — The corollary follows from Theorem 4.33 and Lemma 2.6. □

Recall that F13 = (b, b)2•(a2bab, t0, s1)3. Theorem 2.17 and Theorem 2.18
show that we are able to construct the normal form of (g1, . . . , gn)•F13 that
depends only on the number of components in each conjugacy class as in
Theorem 2.16. We prove them using the following.
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Theorem 4.35. — Let g1, . . . , gn ∈ PSL(2,Z) be conjugates of a, a2,
b, aba, a2ba2 or ababa satisfying g1 . . . gn = 1. Suppose that m of them are
conjugates of ababa. Let (v1, . . . , vc) be a tuple containing a generating set,
and let (v′1, . . . , v′c′) be a (b, b, b, b)-expanding tuple whose components are
conjugate to a, a2, b, s0 or t0. Then,

(g1, . . . , gn) • (v′1, . . . , v′c′) • (v1, . . . , vc)
is Hurwitz equivalent to

(h1, . . . , hn′) • (a2bab, ba2ba)(m−3+µ)/2 • (v1, . . . , vc),
where all components of (h1, . . . , hn′) are conjugate to a, a2, b, s0, t0, ababa
and only 3 − µ of them are conjugate to ababa, where µ = 3 −m if m ⩽ 3
and µ = (m+ 1) mod 2 otherwise.

Proof. — We assume that (v′1, . . . , v′c′) = (b, b, b, b) without loss of gener-
ality. Rewrite (g1, . . . , gn) • (b, b, b, b) • (v1, . . . , vc) as

(h1, . . . , hk) • (b, b) • (v1, . . . , vc) • (a2bab, ba2ba)l,

with (h1, . . . , hk) = (g1, . . . , gn, b, b) containing at least one component con-
jugate to b, with k = n+2 and l = 0. Following Corollary 4.34, we transform
(h1, . . . , hk) into a tuple of almost short elements that contains at least one
component of the form either b, a2ba or aba2.

We first apply the following inductions on k when m− 2l > 3.

Suppose that there exist two components, say hi and hj with i ̸= j,
such that both of them are conjugate to ababa and hihj = 1. We move
hi and hj to the rightmost positions. Since (v1, . . . , vc) contains a gener-
ating set, by Lemma 2.6, they are further transformed into a pair of the
form (a2bab, ba2ba) by elementary transformations on (g1, . . . , gn) • (b, b) •
(v1, . . . , vc). Therefore, we get the following tuple

(h̃1, . . . , h̃k−2) • (b, b) • (v1, . . . , vc) • (a2bab, ba2ba)l+1

where (h̃1, . . . , h̃k−2) is further transformed into a tuple of almost short ele-
ments.

Suppose that with a pair (τb, τababa) ∈
(b, a2bab), (b, ba2ba), (b, baba2), (b, aba2b),

(aba2, ababa), (aba2, a2ba2ba2), (aba2, baba2), (aba2, aba2b),
(a2ba, ababa), (a2ba, a2ba2ba2), (a2ba, a2bab), (a2ba, ba2ba)


there exist some components of the form τb and at least two components of
the form τababa. Using elementary transformations we gather them together
and obtain a pair of mutually inverse elements via the following substitution.

(τb, τababa, τababa) −→ (τ−1
ababa, b, τababa) −→ (τ−1

ababa, τababa, τ
−1
abababτababa).
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The pair of mutually inverse elements is further moved to the rightmost
position and transformed into (a2bab, ba2ba). The resulting tuple again has
the expression with a lower k.

Once the above induction stops butm−2l > 3, there is at most one almost
short element conjugate to ababa, say τabab, that appears more than once in
(h1, . . . , hk). Take a proper τb ∈ {b, a2ba, aba2} such that (τb, τababa) belongs
to the above set of pairs. Transform the extra pair (b, b) into (τb, τb) with
the help of (v1, . . . , vc). Again we gather all components of the form τababa in
(h1, . . . , hk) together with an additional τb using elementary transformations
and apply the following substitutions:

(τb, τababa, . . . , τababa) −→ (τ−1
ababa, b, τababa, . . . , τababa)

−→ (τ−1
ababa, . . . , τ

−1
ababa, b, τababa, . . . , τababa).

We make all mutually inverse elements within the above resulting tuple
pairs of the form (a2bab, ba2ba) and move them to the rightmost positions. By
elementary transformations the tuple (g1, . . . , gn) • (v′1, . . . , v′c′) • (v1, . . . , vc)
has been finally transformed into

(h1, . . . , hk) • (v1, . . . , vc) • (a2bab, ba2ba)m′/2,

where (h1, . . . , hk) is a tuple of almost short elements containing at most
three components conjugate to ababa and m−m′ ⩽ 3. □

Proof of Theorem 2.17 and Theorem 2.18. — We only prove Theo-
rem 2.17 while the proof of Theorem 2.18 is similar. Since (a2bab, t0, s1)
contains a generating set, Theorem 4.35 has shown that the concatenation
(g1, . . . , gn) • F13 can be transformed into

(h1, . . . , hn′) • (a2bab, ba2ba)(m−3+µ)/2 • (a2bab, t0, s1)3,

where µ is determined by m, only 3 − µ components of (h1, . . . , hn′) are
conjugate to ababa and the rest are conjugates of a, a2, b, s0 or t0.

Consider each of i = 1, 2, 3 in turn. Let hα be the first component
in the tuple (h1, . . . , hn′) conjugate to ababa. Since the first triple of the
form (a2bab, t0, s1) within the concatenation contains a genearting set, by
Lemma 2.6 we can transform (h1, . . . , hn′) into a tuple with a simultaneous
conjugation such that hα = ba2ba Therefore we are able to make the α-th
component in (h1, . . . , hn′) and the first component in the triple a pair of
the form (a2bab, ba2ba). Hence (h1, . . . , hn′)•(a2bab, t0, s1)4−i is transformed
into (h′1, . . . , h′n′′) • (a2bab, t0, s1)3−i • (a2bab, ba2ba) with n′′ = n′ + 1. □
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5. Stable classification vs. unstable classification

5.1. Hurwitz equivalence fails without stabilisation

We give some examples of global monodromies which are Hurwitz equiv-
alent up to stabilisation, as in Theorem B and Theorem C, but fail to be
Hurwitz equivalent. This illustrates why it is necessary to consider fibrations
up to the fibre-connected sum.

Example 5.1. — Let f1 be an achiral Lefschetz fibration which has a
global monodromy of the form (−A2B,−BA,−A2B,−BA) and let f2 be
an achiral Lefschetz fibration which has a global monodromy of the form
(−A2B,−BA,−ABA,A2BA2). Though f1 and f2 have the same type of
singularities, these two global monodromies are not Hurwitz equivalent.

Proof. — Indeed, the following graph shows all resulting tuples in the
group PSL(2,Z) from (s0, t0, s0, t0) using elementary transformations.

(s0, t0, t0, s0)

(s0, s0, t0, t0) (t0, t0, s0, s0)

(t0, s0, s0, t0)

(s0, t0, s0, t0) (t0, s0, t0, s0)

R±1
3 R±1

1

R±1
1 R±1

3

R±1
2 R±1

2

R±1
1

R±1
3

R±1
1

R±1
3

R±1
2

R±1
2

In particular, one cannot transform (s0, t0, s0, t0) into (s0, t0, s1, t1). □

Example 5.2. — Let (b, b, a2bab, ba2ba) and (aba2, a2ba, a2bab, baba2) be
tuples in PSL(2,Z). We claim that for arbitrary positive integer N ,

(b, b, a2bab, ba2ba) • (b, b)N

cannot be transformed into

(aba2, a2ba, a2bab, baba2) • (b, b)N

by elementary transformations.

Proof. — Assume that (b, b, a2bab, ba2ba)•(b, b)N can be transformed into
(aba2, a2ba, a2bab, baba2)•(b, b)N by elementary transformations for some N .
Then there exists an element g ∈ PSL(2,Z) which is a product of b, a2bab
and ba2ba such that aba2 = g−1bg, which implies b = (ga)−1b(ga). Therefore,
the element g is either a2 or ba2, but the number of occurrences of the letter
a in g modulo 3 is equal to 0, which is a contradiction. □
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5.2. Unstable classification of achiral Lefschetz fibrations

We consider torus achiral Lefschetz fibrations having fixed cardinality of
branch sets |B| = n ⩾ 1. A singular fibre is of type I+

1 if its fibre monodromy
is conjugate to L = −ABA = [ 1 0

1 1 ] and a singular fibre is of type I−1 if its
fibre monodromy is conjugate to R = −AB = [ 1 1

0 1 ].

By Theorem B, global monodromies of a pair of torus achiral Lefschetz
fibrations are Hurwitz equivalent after performing direct sums with fL

12 if
and only if they have the same type of singularities. However, the Hurwitz
equivalence between global monodromies is more difficult to state, especially
when singular fibres of type I+

1 and I−1 occur in pairs. In this subsection,
we enumerate all possible Hurwitz equivalent classes of global monodromies
of torus achiral Lefschetz fibrations, without stabilisation. This will prove
Theorem D.

By a rooted tree we mean a directed tree in which a specific vertex is called
the root, such that each directed edge indicates the parent-child relationship
between two vertices. A rooted forest is a disjoint union of several rooted
trees. In general, given a (directed) graph Γ, we always use V (Γ) to denote
the set of vertices.

Definition 5.3. — Given a rooted forest T and a non-negative integer
k, we define Ω(T, k) to be the set of formal sums

∑
v∈V (T ) mv ·v over vertices

with mv ⩾ 0 and
∑
mv = k such that any two vertices v1 ̸= v2 with mv1 ⩾ 1,

mv2 ⩾ 1 have no ancestor-descendant relationship (i.e. there does not exist
a directed path joining v1 to v2).

Definition 5.4. — For n = p + q with p ⩾ 0, q ⩾ 0, we define
HomaL

p,q(Fn−1,SL(2,Z)) to be the set consisting of all monodromy homo-
morphisms of torus achiral Lefschetz fibrations f : M → S2 with O(f) =
[ I+

1 , . . . , I
+
1︸ ︷︷ ︸

p components

, I−1 , . . . , I
−
1︸ ︷︷ ︸

q components

].

Theorem 5.5. — Let n, p and q be arbitrary integers such that n ⩾ 1,
p ⩾ 0, q ⩾ 0 and p+ q = n.

• If p ̸= q, then the set Bn\HomaL
p,q(Fn−1,SL(2,Z)) is a singleton.
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• If p = q, then there exists a one-to-one correspondence:

Bn\HomaL
p,q(Fn−1,SL(2,Z))

←→ {pt.} ⊔

(
p−1⊔
k=0

Ω(T∞, k)
)
⊔

(
p−1⊔
k=0

Ω(T∞, k)
)

⊔

(
p−1⊔
k=0

Ω(T∞, k)
)
⊔ Ω(T∞ ⊔ T∞ ⊔ T∞, p),

where T∞ is the rooted complete infinite binary tree.

Recall that each matrix g with non-zero trace in SL(2,Z) is uniquely
expressed by ϵQ with ϵ = ±I and Q a word in {A,A2, B} in which B’s
and powers of A appear alternatively. The length of an element g ∈ SL(2,Z)
is defined as the length of the word Q, denoted by l(g). Here we list all
possibilities for fibre monodromies of a torus achiral Lefschetz fibration:

−A2B,−ABA,−BA2 and ϵPABAQ,

−BA,A2BA2,−AB and ϵPA2BA2Q,

where P , Q are words in {A,A2, B} in which B’s and powers of A appear
alternatively, PQ = ±I, ϵ = ±I is uniquely determined by l(Q) such that
the trace is equal to +2.

Let g1 and g2 be matrices in SL(2,Z). Suppose that g1 and g2 are ex-
pressed by ϵtk . . . t1 and ϵ̃t̃1 . . . t̃l, respectively, with ϵ, ϵ̃ ∈ {I,−I}, k = l(g1),
l = l(g2), tj ∈ {A,A2, B}, j = 1, . . . , k and t̃j ∈ {A,A2, B}, j = 1, . . . , l.
The product g1g2 is either

τtk . . . tmrt̃m+1 . . . t̃l or τtk . . . tmr or τrt̃m+1 . . . t̃l

for some τ = τ(g1, g2) ∈ {I,−I}, r = r(g1, g2) ∈ G such that l(r) ⩽ 1 and
0 ⩽ m = m(g1, g2) ⩽ k, l.

Let Q = BAk1BAk2 . . . BAkmBλ be a matrix in SL(2,Z) with m ⩾ 0,
k1, . . . , km ∈ {1, 2} and λ ∈ {0, 1}. We introduce the suffix tree TQ which
is a rooted binary tree with infinitely many vertices, whose each vertex is
labelled with a pair of inverse elements in SL(2,Z). Set

Q̃ = BλA3−kmB . . . A3−k2BA3−k1B

so that Q̃Q = ±I and let ϵ = ±I be such that trace(ϵQ̃ABAQ) = 2. The
root of TQ is labelled with the pair

(ϵQ̃ABAQ,−ϵQ̃A2BA2Q)
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and the suffix tree TQ is defined by the following form iteratively, where each
directed edge indicates the parent-child relationship between a vertex and
the root of a suffix tree.

(ϵQ̃ABAQ,−ϵQ̃A2BA2Q)

TBAQ TBA2Q

All conjugates of L and R occur in pairs. They are in one-to-one corre-
spondence with the vertices in the following infinite directed graph Γ, where
each directed edge again indicates the parent-child relationship between a
vertex and the root of a suffix tree.

(−A2B,−BA) (−ABA,A2BA2) (−BA2,−AB)

TBA2 TB TBA

The vertices labelled by

(−A2B,−BA), (−ABA,A2BA2) or (−BA2,−AB)

are called exceptional. The components of these labels project to short ele-
ments in PSL(2,Z), as in Section 4.

Let (g1, . . . , gn) be a global monodromy of torus achiral Lefschetz fibra-
tions, which is an n-tuple of elements conjugate to either L or R. The com-
plexity of this tuple is defined to be

cxty(g1, . . . , gn) :=
∑

i

cxty(gi),

cxty(gi) =
{
l(Q) if gi = ϵQ̃ABAQ or gi = ϵQ̃A2BA2Q

0 otherwise.

Lemma 5.6. — Let (e1, e
−1
1 ), (e2, e

−1
2 ) ∈ V (Γ) be distinct vertices.

(a) If there exists an ancestor-descendant relationship between (e1, e
−1
1 )

and (e2, e
−1
2 ), then by a sequence of elementary transformations the

quadruple
(e1, e

−1
1 , e2, e

−1
2 )

can be transformed into a quadruple of the form

(e′1, e′
−1
1 , e′2, e

′−1
2 )

such that cxty(e1, e
−1
1 , e2, e

−1
2 ) > cxty(e′1, e′−1

1 , e′2, e
′−1
2 ).
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(b) If one of (e1, e
−1
1 ), (e2, e

−1
2 ) is not exceptional and they have no

ancestor-descendant relationship, then m(g1, g2) ⩽ min
{ l(g1)

2 , l(g2)
2
}

for any g1, g2 ∈ {e1, e
−1
1 , e2, e

−1
2 } unless g1g2 = I.

Proof. —

(a). — We first assume that (e1, e
−1
1 ) is exceptional. Then (e2, e

−1
2 ) can-

not be exceptional and we suppose that

(e2, e
−1
2 ) = (ϵ2P2ABAQ2,−ϵ2P2A

2BA2Q2).

When (e1, e
−1
1 ) = (−A2B,−BA) the pair (e2, e

−1
2 ) is a vertex of either TB

or TBA. If it is a vertex of TB , then both words P2ABAQ2 and P2A
2BA2Q2

end with AB and start with BA. Therefore the following sequence transforms
(e1, e

−1
1 , e2, e

−1
2 ) into a desired quadruple with a smaller complexity.

(−A2B,−BA, e2, e
−1
2 ) −→ (−A2B, e2, e

−1
2 ,−BA)

−→ (−A2B,−BA,A2Be2BA,A
2Be−1

2 BA).

Otherwise, (e2, e
−1
2 ) is a vertex of TBA. Both P2ABAQ2 and P2A

2BA2Q2
end with ABA and start with A2BA. Therefore, the following substitution
is desired.

(−A2B,−BA, e2, e
−1
2 ) −→ (e2, e

−1
2 ,−A2B,−BA)

−→ (−A2B,−BA,BAe2A
2B,BAe−1

2 A2B).

When (e1, e
−1
1 ) = (−ABA,A2BA2) or (e1, e

−1
1 ) = (−BA2,−AB), we

have similar arguments.

Now we assume that both (e1, e
−1
1 ) and (e2, e

−1
2 ) are unexceptional. Sup-

pose that (ei, e
−1
i ) = (ϵiPiABAQi,−ϵiPiA

2BA2Qi), for i = 1, 2. Then Q2
is extended from Q1 by a product of finitely many but at least one BA or
BA2 on the left, say

Q2 =
(

µ∏
i=1

BAri

)
Q1
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with µ ⩾ 1 and ri ∈ {1, 2}, for each i = 1, . . . , µ. Therefore, the following
substitution is desired for the case rµ = 1.(

e1, e
−1
1 , e2, e

−1
2
)

=
(
ϵ1P1ABAQ1,−ϵ1P1A

2BA2Q1, ϵ2P2ABAQ2,−ϵ2P2A
2BA2Q2

)
=
(
ϵ1P1ABAQ1,−ϵ1P1A

2BA2Q1,

ϵ2P1

( 1∏
i=µ

A3−riB

)
ABA

(
µ∏

i=1
BAri

)
Q1,

− ϵ2P1

( 1∏
i=µ

A3−riB

)
A2BA2

(
µ∏

i=1
BAri

)
Q1

)

−→

(
ϵ1P1ABAQ1, ϵ2P1

( 1∏
i=µ

A3−riB

)
ABA

(
µ∏

i=1
BAri

)
Q1,

− ϵ2P1

( 1∏
i=µ

A3−riB

)
A2BA2

(
µ∏

i=1
BAri

)
Q1,−ϵ1P1A

2BA2Q1

)

−→

(
ϵ1P1ABAQ1,−ϵ1P1A

2BA2Q1,

ϵ2P1A

( 1∏
i=µ−1

A3−riB

)
ABA

(
µ−1∏
i=1

BAri

)
A2Q1,

− ϵ2P1A

( 1∏
i=µ−1

A3−riB

)
A2BA2

(
µ−1∏
i=1

BAri

)
A2Q1

)
.

Besides, the following substitution is desired for the case rµ = 2.(
e1, e

−1
1 , e2, e

−1
2
)

=
(
ϵ1P1ABAQ1,−ϵ1P1A

2BA2Q1, ϵ2P2ABAQ2,−ϵ2P2A
2BA2Q2

)
=
(
ϵ1P1ABAQ1,−ϵ1P1A

2BA2Q1,

ϵ2P1

( 1∏
i=µ

A3−riB

)
ABA

(
µ∏

i=1
BAri

)
Q1,

− ϵ2P1

( 1∏
i=µ

A3−riB

)
A2BA2

(
µ∏

i=1
BAri

)
Q1

)
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−→

(
ϵ2P1

( 1∏
i=µ

A3−riB

)
ABA

(
µ∏

i=1
BAri

)
Q1,

− ϵ2P1

( 1∏
i=µ

A3−riB

)
A2BA2

(
µ∏

i=1
BAri

)
Q1,

ϵ1P1ABAQ1,−ϵ1P1A
2BA2Q1

)

−→

(
ϵ1P1ABAQ1,−ϵ1P1A

2BA2Q1,

ϵ2P1A
2

( 1∏
i=µ−1

A3−riB

)
ABA

(
µ−1∏
i=1

BAri

)
AQ1,

− ϵ2P1A
2

( 1∏
i=µ−1

A3−riB

)
A2BA2

(
µ−1∏
i=1

BAri

)
AQ1

)
.

(b). — When one of (e1, e
−1
1 ) and (e2, e

−1
2 ) is exceptional, the other be-

longs to the unique sub-tree either TBA2 , TB or TBA. Therefore,m(g1, g2) ⩽ 1
unless g1g2 = I. When (e1, e

−1
1 ) and (e2, e

−1
2 ) belong to different sub-trees

of TBA2 , TB and TBA, again we have m(g1, g2) ⩽ 1 unless g1g2 = I.

Now we assume that (e1, e
−1
1 ) and (e2, e

−1
2 ) are vertices of the same sub-

tree either TBA2 , TB or TBA. Let (ϵPABAQ,−ϵPA2BA2Q) be the lowest
common ancestor of (e1, e

−1
1 ) and (e2, e

−1
2 ). Therefore, there exist the re-

duced forms of e1, e−1
1 , e2 and e−1

2 such that
(ei, e

−1
i ) = (ϵiP (A3−riB)ωi(BAri)Q,−ϵiP (A3−riB)ω−1

i (BAri)Q)
with ri ∈ {1, 2}, ϵi = ±I, ωi ∈ SL(2,Z) and r1 ̸= r2, for i = 1, 2. Hence,
m(g1, g2) ⩽ l(Q) + 1 unless g1g1 = I. □

Suppose that a tuple of the form (e1, e
−1
1 , . . . , ep, e

−1
p ) in SL(2,Z) is a

global monodromy of torus achiral Lefschetz fibrations. One can write it as
a formal sum

∑
v∈V (Γ) mv · v such that

∑
mv = p. By Lemma 2.3, different

tuples which can be written as the same formal sum are Hurwitz equivalent.

Lemma 5.7. — Let
∑

v∈V (Γ) mv · v be a formal sum over vertices of Γ.
Let (e1, e

−1
1 , . . . , ep, e

−1
p ) be a tuple in SL(2,Z) expressed by

∑
v∈V (Γ) mv · v.

Suppose that there exist distinct vertices v1, v1 such that mv1 ⩾ 1, mv2 ⩾
1 and there exists an ancestor-descendant relationship between v1 and v2.
Then, by a sequence of elementary transformations the (2p)-tuple can be
transformed into a tuple of the form (e′1, e′−1

1 , . . . , e′p, e
′−1
p ) with a smaller

complexity.
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Proof. — The lemma follows from Lemma 5.6(a). □

On the other hand, we have the following lemma.

Lemma 5.8. — Let
∑

v∈V (Γ) mv · v be a formal sum over vertices of Γ.
Let (e1, e

−1
1 , . . . , ep, e

−1
p ) be a tuple in SL(2,Z) expressed by

∑
v∈V (Γ) mv · v.

Suppose that any two distinct vertices v1, v2 with v1 ⩾ 1, v2 ⩾ 1 have no
ancestor-descendant relationship. Then, either

(i) there exist at least two distinct exceptional vertices with mv ⩾ 1, or
(ii) there exists at most one of the three exceptional vertices satisfying

mv ⩾ 1.

In Case (i), all components of the (2p)-tuple are short (i.e. cxty(ei) = 0
for i = 1, . . . , p) and by a sequence of elementary transformations the (2p)-
tuple can be transformed into

(−A2B,−BA) • (−ABA,A2BA2)p−1.

In Case (ii), the tuple (e1, e
−1
1 , . . . , ep, e

−1
p ) is minimal according to the

complexity among tuples obtained from (e1, e
−1
1 , . . . , ep, e

−1
p ) using a sequence

of elementary transformations. Besides, all minimal tuples according to the
complexity among them of the form (e′1, e′−1

1 , . . . , e′p, e
′−1
p ) are expressed by

the formal sum
∑

v∈V (Γ) mv · v.

Proof. — As in Case (i), when there exist at least two distinct exceptional
vertices occurring in the product form, by an elementary transformation, the
corresponding quadruple can be transformed into

(−A2B,−BA,−ABA,A2BA2).
Besides, the resulting quadruple contains a generating set of SL(2,Z). There-
fore, by Lemma 2.6, the (2p)-tuple can be transformed into (−A2B,−BA) •
(−ABA,A2BA2)p−1, as desired.

In Case (ii), we assume that there exists a sequence of elementary trans-
formations that transforms (e1, e

−1
1 , . . . , ep, e

−1
p ) into a new tuple with a

smaller complexity or a new tuple of the form (e′1, e′−1
1 , . . . , e′p, e

′−1
p ) with

the same complexity but expressed by a different formal sum of vertices in
V (Γ). Therefore, there exists at least one component of the new tuple, say
Q−1ωQ, where ω is equal to some component of (e1, e

−1
1 , . . . , ep, e

−1
p ) andQ is

a product of e1, . . . , ep and their inverses, such that cxty(Q−1ωQ) < cxty(ω).
It contradicts Lemma 5.6(b). □

Proof of Theorem 5.5. — Since each component g ∈ SL(2,Z) in a global
monodromy of torus achiral Lefschetz fibrations is uniquely determined by
ι(g) ∈ PSL(2,Z), by Theorem 4.15, torus achiral Lefschetz fibrations of
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type O = [I+
1 , . . . , I

+
1︸ ︷︷ ︸

p components

, I−1 , . . . , I
−
1︸ ︷︷ ︸

q components

] have pairwise Hurwitz equivalent global

monodromies when p ̸= q.

When p = q, each global monodromy is Hurwitz equivalent to a tuple in
SL(2,Z) of the form

(e1, e
−1
1 , . . . , ep, e

−1
p )

and hence can be written as a formal sum
∑

v∈V (Γ) mv · v. We enumerate
all possible formal sums of vertices that express minimal tuples according to
the complexity among all Hurwitz equivalent tuples. By Lemma 5.7, there
is no ancestor-descendant relationship between any two distinct vertices in
such a formal sum of vertices.

If there are at least two distinct exceptional vertices v1 and v2 such that
mv1 ⩾ 1 and mv2 ⩾ 1, by Case (i) in Lemma 5.8, then all possible formal
sums like this are associated with the same tuple up to Hurwitz equivalence.

If there exists the unique exceptional vertex v occurring in the formal
sum, then other vertices belong to the same sub-tree T that is either TBA2 ,
TB or TBA. Therefore, by Case (ii) in Lemma 5.8, all possible formal sums
are in one-to-one correspondence with elements in Ω(T, p−mv).

Otherwise, there is no exceptional vertex in the formal sum. Again by
Case (ii) in Lemma 5.8, all possible formal sums are in one-to-one corre-
spondence with elements in Ω(TBA2 ⊔ TB ⊔ TBA, p). □

Appendix A. Computability

We have included this section to demonstrate that all Hurwitz equiv-
alences occurring in our results (including Theorem A, Theorem B, The-
orem C) are computable. For Theorem A, an algorithm exists to provide
a sequence of elementary transformations that transforms one tuple to the
other. Its time complexity is

O

(
n5 + n3

∑
i∈{1,2}

n∑
j=1

l(g(i)
j ) + n

( ∑
i∈{1,2}

n∑
j=1

l(g(i)
j )
)2)

.

We implement the algorithm in C++ and make our code available on GitHub:
https://github.com/AHdoc/monodromy_normalisation.

The main goal is to analyse the computability of Theorem 2.16. In par-
ticular, in Theorem 4.14, we need an algorithm to make a tuple inverse-free
by elementary transformations, but we cannot use Theorem 2.16 directly.
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Step 1. — Suppose that (g1, . . . , gn) is a tuple in PSL(2,Z) whose com-
ponents are conjugate to short elements. Recall that Theorem 4.14 shortens
the tuple by removing some pairs of the form (x, x−1) and triples of the
form (l, l, l) with l3 = 1; the resulting tuple is an inverse-free tuple of short
elements. The proof uses an induction on an inverse-free tuple, within which
one operation seeks to make the sum of S-complexities strictly-smaller by a
sequence of elementary transformations. In fact, it is sufficient to check all
transformations of the form (Ri)t with t ∈ {−2,−1,+1,+2}.

However, if we throw out the inverse-freeness, the induction still works
well and ends with µ = 0, but the restoration operations (see Section 2.2)
cannot result in a tuple of short elements. Indeed, a pair of long elements
of the form (x, x−1) could have been combined into a single 1, which was a
contradiction in Proposition 4.10. Therefore, restorations result in a tuple
(h1, . . . , hm) that probably contains sub-pairs (hi, hi+1) = (x, x−1) or/and
sub-triples (hi, hi+1, hi+2) = (l, l, l) with l3 = 1. Using cyclic permutations,
we move these pairs and triples, if exist, to the rightmost positions. Hence,
we get a tuple of short elements, still denoted by (h1, . . . , hm).

Proposition 4.10 asks us to handle each restoration (h1h2) 99K (h1, h2)
carefully. We repeat the search for (Ri)t with t ∈ {−2,−1,+1,+2} that
makes f(hi)+f(hi+1) strictly-smaller. In conclusion, Step 1 calls the follow-
ing procedure.

1: procedure Shorten((g1, . . . , gn))
2: (h1, . . . , hm)← (g1, . . . , gn), (k1, . . . , kl)← empty tuple
3: while True do ▷ see Section 4.2
4: if ∃ i : Operation 1 is available on (h1, . . . , hm) for i then
5: combine (hi, hi+1) into hihi+1
6: else if ∃ i : hi = 1 then
7: (h1, . . . , hm)← (1, h1, . . . , hi−1, hi+1, . . . , hm) ▷ via a cyclic permutation
8: else if ∃ i and t ∈ {−2,−1, +1, +2} : (Ri)t makes

∑
j

f(hj) strictly-smaller then
9: (h1, . . . , hm)← (Ri)t(h1, . . . , hm)

10: else if ∃ i : Ri keeps
∑

j
f(hj) unchanged but makes l(hi) smaller then

11: (h1, . . . , hm)← Ri(h1, . . . , hm)
12: else
13: break while
14: end if
15: end while
16: while ∃ a restoration on hi = h̃1h̃2 do
17: (h1, . . . , hm)← (h1, . . . , hi−1, h̃1, h̃2, hi+1, . . . , hm)
18: while True do
19: if ∃ t ∈ {−2,−1, +1, +2} : (Ri)t makes

∑
j

f(hj) strictly-smaller then
20: (h1, . . . , hm)← (Ri)t(h1, . . . , hm)
21: else
22: break while
23: end if
24: end while
25: end while
26: while ∃ i : hihi+1 = 1 do
27: (k1, . . . , kl)← (hi, hi+1) • (k1, . . . , kl)
28: (h1, . . . , hm)← (h1, . . . , hi−1, hi+2 . . . , hm)
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29: end while
30: while ∃ i : hi = hi+1 = hi+2 and hihi+1hi+2 = 1 do
31: (k1, . . . , kl)← (hi, hi+1, hi+2) • (k1, . . . , kl)
32: (h1, . . . , hm)← (h1, . . . , hi−1, hi+3, . . . , hm)
33: end while
34: return (h1, . . . , hm) and (k1, . . . , hl)
35: end procedure

The input of SHORTEN is an arbitrary tuple (g1, . . . , gn) in PSL(2,Z)
of conjugates of short elements. The output is the concatenation of a tuple
(h1, . . . , hm) of short elements and some pairs of the form (x, x−1) and some
triples of the form (l, l, l), l3 = 1, say (h1, . . . , hm) • (k1, . . . , kl). In general,
the tuple (h1, . . . , hm) is not inverse-free. Therefore the difficulty is inherited
to the next step.

Time complexity. — A step of the induction in SHORTEN either de-
creases

∑
i f(hi) or decreases the number of the pairs (i, j) such that

1 ⩽ i < j ⩽ m but l(hi) > l(hj). Therefore, the time complexity of
SHORTEN((g1, . . . , gn)) is O((n2 +

∑
i l(gi))n

∑
i l(gi)).

Step 2. — The tuple (h1, . . . , hm) of short elements probably has two
components (resp. three components) that form a tuple of mutually inverse
elements (resp. a triple of the form (l, l, l) with l3 = 1). In this case, we move
these components to the rightmost positions using cyclic permutations so
that (h1, . . . , hm) is transformed into the concatenation of a shorter tuple,
still denoted by (h1, . . . , hm), and a pair (resp. a triple). However, cyclic
permutations do not keep components of (h1, . . . , hm) short. We end up
with this reduction in an extra call on SHORTEN((h1, . . . , hm)) and then
repeat it.

Time complexity. — Using two/three cyclic permutations, we transform
a tuple of short elements into a tuple, denoted by (h1, . . . , hm), such that∑

i l(hi) = O(m). Therefore, the above reduction is O(m(m2 + m)m2) =
O(m5).

From now on, we can assume that (h1, . . . , hm) contains at most 2 com-
ponents equal to a, at most 2 components equal to a2, at most 1 component
equal to b and a, a2 cannot appear together within this tuple. We mark
a tuple of short elements with ca components equal to a, ca2 components
equal to a2 and cb components equal to b with the signature [ca, ca2 , cb]. The
following diagram shows a method to simplify such a tuple into a tuple of
signature [ca, ca2 , cb] with ca + ca2 + cb ⩽ 1 (cf. Step 2, Step 3 and Step 4 in
the proof of Theorem 2.16).
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[2, 0, 0] [0, 1, 0]
(a, a) 99K a2

[0, 2, 0] [1, 0, 0]
(a2, a2) 99K a

[1, 0, 1][0, 2, 1]

[0, 0, 2]

[0, 1, 1][2, 0, 1]

[0, 0, 1] [0, 0, 0]

(a2, a2) 99K a

(a, a) 99K a2

(a, s0) 99K b or
(s2, a) 99K b

(a, t0) 99K s1 or
(a, t1) 99K s2 or

(a, t2) 99K s0

(a2, t2) 99K b or
(t0, a2) 99K b (a2, s0) 99K t2

or (a2, s1) 99K t0
or (a2, s2) 99K t1

(s1, a, s1)→ (s1, s0, a)
99K (a, a) 99K a2

(t1, a, t1)→ (t1, t2, a2)
99K (a2, a2) 99K a

(b, b) 99K b

In the diagram, a reduction from a tuple of signature [ca, ca2 , cb] to a tuple
of signature [c′a, c′a2 , c′b] is a directed edge endowed with some elementary
transformations and contractions on a pair or a triple. The reduction starts
with cyclic permutations that create a sub-pair or a sub-triple with which
the edge is first endowed. It ends with a call on SHORTEN.

Signature [0, 0, 2] is the only exception that does not satisfy the hypothe-
ses on the tuple. However, with at most 4 contractions, any tuple of short
elements satisfying hypotheses can be transformed into a tuple of signature
[ca, ca2 , cb] with ca + ca2 + cb ⩽ 1. Indeed, if a tuple of signature [1, 0, 1] has
to be aimed at a tuple of signature [0, 1, 1], then it is a tuple of a, b, s1 and
it is transformed into a tuple of a2, b, s0, s1, s2 of signature [0, 1, 1], which is
further transformed into a tuple of signature [0, 0, 1].

Time complexity. — Both cyclic permutation and contraction are linear.
We have shown that a cyclic permutation on a tuple of short elements
results in a tuple such that

∑
i l(hi) = O(m). The simplification along the

diagram calls SHORTEN at most 4 times, therefore its time complexity is
O((m2 +m)m2) = O(m4).

From now on, we can further assume that (h1, . . . , hm) contains at most
1 component equal to either a, a2 or b. Proposition 4.4 claims that, if
(h1, . . . , hm) is inverse-free, then it is either a tuple of a, a2, b, s0, s1, s2 or
a tuple of a, a2, b, t0, t1, t2. The proof is a rearrangement of s0, s1, s2 and
t0, t1, t2. To introduce a similar reduction, we provide the following proce-
dure.

1: procedure st-Rearrangement((κ1, . . . , κl))
2: if ∃ i : κi ∈ {a, a2, b} then
3: (κ1, . . . , κl)← (κi, κi+1, . . . , κl, κ1, . . . , κi−1) ▷ via a cyclic permutation
4: end if
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5: while ∃ i : κi ∈ {t0, t1, t2} and κi+1 ∈ {s0, s1, s2} do
6: if (κi, κi+1) ∈ {(t0, s0), (t1, s1), (t2, s2)} then
7: return (κ1, . . . , κi−1, κi+2, . . . , κl)
8: else if (κi, κi+1) ∈ {(t0, s1), (t1, s2), (t2, s0)} then
9: (κ1, . . . , κl)← R−1

i
(κ1, . . . , κl)

10: else if (κi, κi+1) ∈ {(t0, s2), (t1, s0), (t2, s1)} then
11: (κ1, . . . , κl)← Ri(κ1, . . . , κl)
12: end if
13: end while
14: if ∃ i < j : (κi, κj) ∈ {(s0, t0), (s1, t1), (s2, t2)} then
15: return (κ1, . . . , κi−1, κ

κj
i+1, . . . , κ

κj
j−1, κj+1, . . . , κl)

16: else if ∃ i < j < k : (κi, κj , κk) ∈ {(s0, t1, t2), (s1, t2, t0), (s2, t0, t1)} then
17: (κ1, . . . , κl)← (R2)2(κi, κj , κk, κ

κiκj κk
1 , . . . , κ

κj κk
i+1 , . . . , κ

κk
j+1, . . . , κk+1, . . . )

18: return (κ3, . . . , κl)
19: else if ∃ i < j < k : (κi, κj , κk) ∈ {(s2, s1, t0), (s0, s2, t1), (s1, s0, t2)} then
20: (κ1, . . . , κl)← (R2)−1(κi, κj , κk, κ

κiκj κk
1 , . . . , κ

κj κk
i+1 , . . . , κ

κk
j+1, . . . , κk+1, . . . )

21: return (κ3, . . . , κm)
22: else
23: return (κ1, . . . , κm)
24: end if
25: end procedure

The input of ST-REARRANGEMENT is a tuple of short elements, say
(κ1, . . . , κl), that contains at most 1 component equal to a, a2 or b. The out-
put is either a tuple of short elements of length l, meaning that (κ1, . . . , κl) is
inverse-free, or a tuple (κ̃1, . . . , κ̃l−2) of length l−2, meaning that (κ1, . . . , κl)
can be transformed into (κ̃1, . . . , κ̃l−2) • (si, ti) with some i by elementary
transformations.

We call ST-REARRANGEMENT and SHORTEN with (h1, . . . , hm) re-
peatedly unless the tuple is inverse-free. In conclusion, Step 2 calls a pro-
cedure, named as INVERSE-FREE, whose input is a tuple (h1, . . . , hm) of
short elements and output is an inverse-free tuple (κ1, . . . , κl) of short ele-
ments such that at most 1 component is equal to a, a2 or b.

Time complexity. — The procedure ST-REARRANGEMENT decreases
the length of the tuple and transform a tuple of short elements into a tuple,
denoted by (κ1, . . . , κl), such that

∑
i l(κi) = O(l). The time complexity of

ST-REARRANGEMENT is O(l4).

Meanwhile, SHORTEN transforms the tuple back to a tuple of short ele-
ments. In conclusion, the time complexity of INVERSE-FREE(h1, . . . , hm)
is O(m5 +m4 +m(m4 + ((m2 +m)m2))) = O(m5).

Step 3. — To slightly improve the complement to Theorem of R. Livné
introduced in [27, p. 180-187] to a tuple of a, b, s0, s1, s2 that at most 1
component is equal to a or b, we first introduce the following procedure
named as MOISHEZON (cf. Proposition 4.6).
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1: procedure MOISHEZON((κ1, . . . , κl))
2: if ∃ i : κi ∈ {a, b} then
3: (κ1, . . . , κl)← (κi, κi+1, . . . , κl, κ1, . . . , κi−1) ▷ via a cyclic permutation
4: end if
5: while True do
6: if ∃ i : (κi, κi+1) = (s1, s0) then ▷ decrease # of s1
7: (κ1, . . . , κl)← Ri(κ1, . . . , κl)
8: else if ∃ i : (κi, κi+1) = (s2, s1) then ▷ decrease # of s1
9: (κ1, . . . , κl)← R−1

i
(κ1, . . . , κl)

10: else if ∃ i : (κi, κi+1, κi+2) = (s0, s2, s0) then ▷ Claim 1
11: (κ1, . . . , κl)← (κ1, . . . , κi−1, s2, s0, s2, κi+3, . . . , κl)
12: else if ∃ i + 1 < j : (κi, . . . , κj+1) = (s1, s2, . . . , s2, s0, s2) then ▷ Claim 2
13: (κ1, . . . , κl)← (κ1, . . . , κi−1, s1, s0, s2, s0 . . . , s0, κj+2, . . . , κl)
14: else if ∃ i + 2 < j : (κi−1, . . . , κj+1) = (s2, s0, s2, . . . , s2, s0, s2) then ▷ Claim 3
15: (κ1, . . . , κl)← (κ1, . . . , κi−2, s2, s0, s2, s0, . . . , s0, κj+2, . . . , κl)
16: (κ1, . . . , κl)← (κ1, . . . , κi−2, s0, . . . , s0, κj+2, . . . , κl)
17: else if ∃ i : (κi, . . . , κi+5) = (s0, s2, s2, s0, s2, s2) then ▷ Claim 4
18: (κ1, . . . , κl)← (κ1, . . . , κi−1, κi+6, . . . , κl)
19: else if ∃ i : (κi, . . . , κi+5) = (s2, s2, s0, s2, s2, s0) then ▷ Claim 4
20: (κ1, . . . , κl)← (κ1, . . . , κi−1, κi+6, . . . , κl)
21: else
22: break while
23: end if
24: end while
25: end procedure

The input of MOISHEZON is an inverse-free tuple (κ1, . . . , κl) of a, b, s0,
s1, s2 that at most 1 component is equal to a or b. The output, denoted by
(κ′1, . . . , κ′l′), is again a tuple of a, b, s0, s1, s2 and shows that (κ1, . . . , κl) can
be transformed into the concatenation of (κ′1, . . . , κ′l′) and some sextuples of
the form (s0, s2, s0, s2, s0, s2) by elementary transformations. If (κ1, . . . , κl) is
a tuple of s0, s1, s2, then l′ = 0; otherwise, by Lemma 4.18 and Lemma 4.20,
either

• (κ′1, κ′2) = (a, s0) or (κ′l, κ′1) = (s2, a) or (κ′l, κ′1, κ′2) = (s1, a, s1), or
• (κ′1, . . . , κ′l) starts with (b, s2) or (b)• (s0)v0,1 • (s2, s0) with v0,1 ⩾ 1,

or
• (κ′2, . . . , κ′l, κ′1) ends with (s0, b) or (s2, s0) • (s2)uµ,nµ • (b) with
uµ,nµ

⩾ 1.

By elementary transformations and at most 2 contractions, tuple (κ′1, . . . , κ′l′)
is further transformed into a tuple of a, a2, b, s0, s1, s2 that at most 1 com-
ponent is equal to a, a2 or b.

Time complexity. — The procedure MOISHEZON((κ1, . . . , κl)) is loop-
ing, seeks the minimal number of components equal to s1 and seeks the min-
imal according to the lexicographical order given by s0 < s2. Therefore, the
number of times that the loop loops is related to the number of reverse pairs,
i.e. i < j but κi > κj according to the lexicographical order, which is O(l2).
The time complexity of MOISHEZON is O(l5).
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In Step 3, we consider an inverse-free tuple (κ1, . . . , κl) of short elements
that contains at most 1 component equal to a, a2 or b. Let A be the set of
elements in (κ1, . . . , κl). We follow the diagram below to reduce the tuple
using elementary transformations and at most 3 contractions.

A =
{a, s0, s1, s2}

·
MOISHEZON

A =
{a2, s0, s1, s2}

(s1, a, s1)→ (s1, s0, a)
99K (a, a) 99K a2

A =
{s0, s1, s2}(a2, si) 99K ti−1,

INVERSE-FREE

A =
{b, s0, s1, s2}

(a, s0) 99K b (s2, a) 99K b

·
MOISHEZON

(b, s2) 99K a2 (s0, b) 99K a2

(s0, s2, s0, s2, s0, s2)ms

MOISHEZON

A symmetric procedure, named as MOISHEZON−1, can handle a tuple
of a2, b, t0, t1, t2 that at most 1 component is equal to a2 or b. Therefore, we
have a symmetric diagram for the rest of the cases.

Time complexity. — In conclusion, Step 3 contracts the tuple at most 3
times, calls MOISHEZON several times and calls INVERSE-FREE at most
once. Its time complexity is O(l5).

Step 4. — We have shown that by elementary transformations and at
most 7 contractions, the initial tuple (g1, . . . , gn) is transformed into a con-
catenation of the following tuples:

(s1, t1)Q, (t1, s1)Q, (a, a2)Q, (a2, a)Q, (b, b)Q, (a, a, a)Q, (a2, a2, a2)Q,

(s0, s2, s0, s2, s0, s2), (t0, t2, t0, t2, t0, t2),

where Q ∈ PSL(2,Z) is arbitrary, such that
(s0, s2, s0, s2, s0, s2) and (t0, t2, t0, t2, t0, t2)

cannot appear at the same time. By Lemma 2.3, the concatenation can be
transformed into such with a desired order by elementary transformations.
Besides, a pair of the form (x, x−1) can be transformed into (x−1, x) by an
elementary transformation. Therefore, we handle each restoration carefully
and obtain

(h1, . . . , hm) • (s0, s2)3ms • (t0, t2)3mt •
mst∏
i=1

(s1, t1)Xi •
ma∏
i=1

(a, a2)Yi

•
mb∏
i=1

(b, b)Zi •
∏

ϵ=±1

nϵ∏
i=1

(aϵ, aϵ, aϵ)Pϵ,i

with msmt = 0, Xi, Yi, Zi, Pϵ,i ∈ PSL(2,Z), which is Hurwitz equivalent to
the initial tuple.
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The tuple (h1, . . . , hm), called the exceptional part of the resulting tuple,
is a tuple of short elements. In fact, if p = q, |pa − qa| ≡ 0 (mod 3) and
nb is even in Theorem 2.16, the exceptional part does not exist anymore,
i.e. m = 0, thus we have already finished the computation. Otherwise, the
exceptional tuple (h1, . . . , hm) contains a generating set; by Lemma 2.6, we
obtain

(h1, . . . , hm) • (s0, s2)3ms • (t0, t2)3mt • (s1, t1)mst

• (a, a2)ma • (b, b)mb • (a, a, a)n1 • (a2, a2, a2)n−1 .

With a slight adjustment using cyclic permutations, we may further assume
that n1n−1 = 0.

The length of the exceptional tuple is bounded by a constant. In fact,
we claim that the exceptional tuple (h1, . . . , hm) satisfies m ⩽ 13 without
further discussion. The proof of Theorem 2.16 has revealed that a partial
normal form can be transformed into the desired normal form by cyclic
transformations and elementary transformations that keep each component
short. The whole computation ends with a brute-force search.

Time complexity. — The brute-force search is O(1) as the length of the
exceptional tuple is bounded by a constant. The time complexity of Step 4
is O(n

∑
i l(gi) + n3 + 1). Hence, the computation of Theorem 2.16 has the

time complexity O(n5 + n3∑
i l(gi) + n(

∑
i l(gi))2).
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