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OPTIMAL CONTROL OF UNSTABLE NON LINEAR

EVOLUTION SYSTEMS

Pedro Humberto Rivera Rodriguez(1)(*)~
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(1) Instituto de Mathematica. UFRJ. Caixa Postal 68530, CEP 21944 Rio de Janeiro. R.J. (Brasil).

Resume : Dans le cas où Uad a un intérieur non vide, I’auteur obtient un systeme d’optimalité,
pour deux problèmes de contrôle optimal provenant d’un systeme d’évolution non linéaire où la

variable de contrôle apparaît a la frontière.

Summary : We show that if we suppose the interior of Uad non’ empty, then we obtain an opti-
mality system for two problems of optimal control of unstable non linear evolution systems where

the control variable appears on the boundary.

INTRODUCTION. 
,

Let S~ be a bounded open set in IRn with smooth boundary r. We study the problems
of optimal control related to the partial differential equation

where the control variable v is a function definite on E = r X ]O,T[ .

(*) This research was supported by CNPq and CEPG-UFRJ (Brasil).
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We will show that if the interior of Uad (the set of admissible controls) is non empty,
there exists an optimality system characterizing the optimal couple.

_ 

I n Section 1 we given an abstract statement for problems of optimal control of singu-
lar systems, we show the existence of an optimal couple (u,y) and we make some remarks on the

penalized problem.

In Section 2 we study the case where the state equation is given by (1), (2) and (3),
where :

In Section 3 we consider the problem of optimal control of the system governed by
(1), (2’), (3), where : .:

The plan is as follows :

1. The abstract problem.

2. Unstable non linear evolution system : Case of the Neumann condition.

3. Unstable non linear evolution system : Case of the Dirichlet condition.

The author likes to thank Professor Jacques Louis Lions for many suggestions and
discussions during the development of this research.

1. THE ABSTRACT PROBLEM 
,

1.1. Setting of the Problem.

’Let U and H be two Hilbert spaces on IR and let Z be a reflexive Banach spaceson IR.

We consider the control variable v E U and the state z G Z related by the state equation :

where f is given in H, a is an operator (non necessarly linear) from the domain D(a,) C ~ into



H and B is an operator from U into H.

In the usual theory (Lions [1] ) we assume that the equation (1.1) has a unique solu-
tion for each v in U. At the present we ignore the existence or the uniqueness of the solutions of

(1.1 ). For each control v we define the set :

Also, for each M C U we consider the set given by :

The cost fu nction is given by :

in which ~ is a positive real function defined on Z and N : U -~ U is a linear operator.
n

Let Uad be a subset of U such that Uad is non empty. The optimal control problem is :

(1.5) Find a couple (u,y) in Uad X Z such that y E Z(u) and

THEOREM 1.1. Let us suppose that the following hypothesis (1.6) (1.7) (1.8) (1.9) (1.10) are
fulfilled : :

(1.6) The graph of a is closed in the weak topology of U X Z.

(1.7) ) The graph of B is a weakly closed, convex subset of U X H. Also, if K is a bounded set
of U then B(K) is a bounded set of H. .

(1.8) ) ~ is a convex, weakly lower semi-continuous function from Z into R+ _ [0, + ~~ such
that :

(1.9) ) N E ~(U) is hermitian, positive definite.
n

(1.10) U ad is a closed, convex subset of U such that Uad ~ ~ ’ .

Then there exists a couple (u,y) satisfying (1.5).



Proof. Let Xad be the set defined by :

From (1.10) we deduce that X~ is non empty and then is finite.

Let IN) minimizing sequence for the Problem (1.5). Then the se-
quence (m ~ IN) is bounded in U X Z and then we may extract a subsequence, again
denoted by such that, as m -~ oo :

Since a zm = f + from (1.7) we obtain that the sequence zm(m E IN) is
bounded in H and we may assume, by extraction of a subsequence, that, as m -~ ~ :

Hence :

and, from (1.6) (1.7) (1.10), we obtain :

Then the couple (u,y) belongs to Xad and by standard arguments, using (1.8) ) and
(1.9) we show that.(u,y) verifies (1.5).

Remark 1.1. There is no uniqueness of (1.5) in general.

1.2. The Penalized Problem.

For given e > 0 we define the penalized cost function by : :

(*) By introducing an extra term in as in V. BARBU [10] (cf. also J.L. LIONS ), theresults which follow are valid for every optimal couple 
~ ~ " ""



THEOREM 1.2. Under the hypothesis of Theorem 1.1, there exists o couple (uE,yE) such that :

Proof. Let (vm,zm) (m E IN) be a minimizing sequence for the penalized problem (1.18). If we

set hm = a zm - f - the sequence (vm,zm,hm) is bounded in U X Z X H and we may assu-
me, by extraction of a subsequence, that, as m -~ oo :

From (1.7) we have that Bv~ (m E IN) is a bounded sequence in H. Hence, we may
assume hat :

Then (1.6) (1.7) (1.19) (1.20) imply :

From (1.8) (1.9) (1.19) (1.20) (1.21) (1.22) we obtain that is a solution of the

penalized problem (1.17). .

1.3. Convergence of 

THEOREM.1.3. Under the hypothesis of Theorem 1.1, there exists a solution (u,y) of (1.5) and
there exists a sequence Em (m E IN), which converges to 0, such that, as m -~ ~ :



Proof. Since Xad C Uad X D(a) we have :

from which we have that, as E -~ 0+ , p~) is in a bounded set of U X Z X H and from
(1.7) we obtain that Bu is in a bounded set of H. Hence, we may extract a sequence, again deno-
ted by B/T Pe), such that, as E -~ 0+ :

From the relation f + e p~ and by the same arguments given in the

proof of the Theorem 1.2 we obtain that (u,y) E Xad . Hence :

from which we obtain that J (u,y) = inf J (Xad), i.e. : (u,y) is an optimal couple.

We have again the properties (1.24) (1.27) and

if we set:

from (1.8) (1.9) (1.29) and (1.32) we obtain :

from which we obtain that ae  a, be  b, as E -~ 0+ . Hence :



We deduce from (1.29) (1.33) the strong convergence (1.25).

Remark 1.2. If we assume that J is Gateaux-differentiable, and B(a) is a convex subset of Z, the

couple verifies :

Remark 1.3. If we assume that pE is bounded in H, by passing to the limit in (1.34) we can obtain
a set of relations to characterize one optimal couple (u,y). In Sections 2 and 3 with the additional
(strong) condition « Int Uad ~ Ø » we prove that, as e ~ 0+ , p~ remains in a bounded subset of H.
For the case where a and B are linear operators, we refer to Rivera [8] , others examples are
given in Lions [3], [4], [5] and Murat [7]. .

2. - UNSTABLE NON LINEAR EVOLUTION SYSTEM : CASE OF THE NEUMAN CONDITION

2.1. Setting of the Problem.

Let S~ be a bounded open set in IRn with smooth boundary r and let T be a positive
number. We shall use the following notation :

Let us assume that the control variable v and the state z satisfy the state equation
given by :

with v and z satisfying the contraints conditions :



The cost function is given by :

where zd belongs to L6(Q), N E ~G(L2(E)) is an hermitian, definite positive operator on L (Z)
and where ( denotes the inner product in L2(E) and I I L the norm.

Let Uad be a subset of L2(E) such that :

(2.4) Uad is a closed, convex subset of L2(E) and there exists v in Uad for which the Pro-
blem (2.1) admits solution z E L6(Q).

The problem of optimal control is : :

2.2. Abstract formulation for the Problem (2.5).

I n order to set the optimal control problem (2.5) in the abstract form that was given
in the Section 1, we consider :

We verify easily that the Problems (1.5) and (2.5) are equivalent and the hypothesis

(1.7) (1.8) (1.9) (1.10) are fulfilled. We have :



PROPOSITION 2.1. The graph of the operator a given by (2.7) is weakly closed in Z X H. .

Proof. Let zm (m E IN) be a sequence in D(Q,) such that, as m -~ oo :

Then the sequence z m (m E IN) is bounded in L2(O,T;H3~2(S~)) (Lions-Magenes [6] )
and we may extract a subsequence, again denoted by z , such that, as m -~ oo :

Since the embedding H~~2(S2) C L2(S2) is compact, we may assume that zm conver-
ges to z strongly in L2(Q) and therefore

But, from (2.12) z~ (m E IN) is a bounded sequence in L2(Q), hence we may assume that, as
moo:

From (2.12) (2.14) we obtain :

Since 4 E ~G(H3~2(S2), Fi-1/2(SZ)), we deduce from (2.12) (2.13) that :

From (2.12) (2.13) (2.16) we obtain :

Hence, z E D(a) and a z = and Proposition 2.1 I is proved.



By Proposition 2.1 and the previous remarks, we are in the conditions to apply Theo-

rems 1.1,1.3 and we obtain the followings results :

THEOREM 2.1. Let us suppose that the state equation and the cost function are given by (2.1 )
and (2.3) respectively. If Uad verifies condition (2.4), there exists a solution of the optimal con-
trol problem (2.5).

THEOREM 2.2. For each e > 0 there exists (uE,yE) in U ad X D( a. ) such that, if we consider : :

we have the following relations :

for z in D(a).

We have also : :

(2.23) ) As e ~ 0, remains in a bounded subset of L2(E) X L 6(Q)

(2.24) There exists a sequence, again denoted by and there exists a solution (u,y) of
the Problem (2.5) such that : :

Proof. We consider the penalized cost function given by

By Theorem 1.2 we obtain a couple in Uad X D(a) such that :



Since Uad X D( a ) is a convex subset of L2(E) X L6(Q), the couple is charac-

terized by : :

from which we obtain (2.21 ) and (2.22).

2.3. Estimates for e > 0.

I n order to obtain estimates for Pe ’ E > 0, we shal assume that :

For p > 1 given, we define the space W2,1 ;03C1(Q) as the space of functions 03A6 in 
such that the partial derivatives ~03A6 ~t, ~03A6 ~03C3i, ~203A6 ~xixj (i,j = 1,2,3) belong to L03C1(Q).

With the norm defined by

W2,1,p (Q) is a Banach space and we have the fo l lowing property :

PROPOSITION 2.2. Let us assume that (2.25) holds and p  5/2. If we consider the real number
p* = 5 p/(S-2p), we have the following embeddings :

W2,1;p(Q) ‘ LP* (Q)~ with continuous embedding.

W2,1;p(Q) ~ LP(Q) with compact embedding, for 1 ~ p  p*. .

Proof. See Becov, Ilin &#x26; Nikolski [11 ] and Lions [S] .

COROLLARY 2.1. The embedding of W2~1;6/5(Q) in L2(Q) is compact.

We need also the following results.

PROPOSITION 2.3. Let ~m (m E IN) be a bounded sequence in L2(Q) such that = 0,
= 0 (on E) and ~m - ~ is a bounded sequence in L6~5(Q). Then the sequence ~ m



(m E IN) is bounded in e6~5(Q),

This result is classical.

PROPOSITION 2.4. As E -~ 0+ , belongs to a bounded subset of L2(Q).

If Proposition 2.4 was wrong, then :

Ifweset:

from (2.21 ) we have :

where :

and we have that qe is a solution of :

From (2.23) (2.26) (2.27) we have that is bounded in L2(Q) X L6(Q), there-
fore g~ 

= + 3y2~ q~ is bounded in L6/5(Q). If we define = and

= ge(T -t), from (2.30) we obtain :

and Proposition 2.3 gives that ~ is bounded in W~ ~(Q). It follows that q is bounded in the
same space and by Corollary 2.1 we may suppose that :



From (2.24) (2.26) (2.28) (2.31 ) we obtain :

and (2.33) gives :

from which it follows that

Since (2.32) and (2.34) give a contradiction, we have that Proposition 2.4 holds.

COROLLARY 2.2. As e ~ 0+ ,

(2.35) pE remins in a bounded subset 

(2.36) pE(0) remains in a bounded subset of W~.~6/5~~~.

Proof. From (2.21 ) we have that pE is solution of

Since is bounded in L2(Q) X L6(Q), we obtain that 3y~ p~ + (y~ - zd)5 is
bounded in L6~5(Q) and Proposition 2.3 gives the estimate (2.35).

Hence (2.35) implies (2.36) (Lions [2] ).



LEMMA 2.1. 77~ ~M=~;zeD(~), 
)

Proof By the Trace Theorem (Lions-Magenes [6] ) we verify easily that M - { ~/ 8 ~ ;

~/ e H~(~) , ~ C ([0,T]) ~ C M, from which we obtain that the Lemma 2.1 holds, because

M~ is dense in L~(E).

PROPOSITION 2.6. we assume that Uad has non empty interior. Then, as e ~ 0+ , p~
//7 J Of L (E).

Proof First we note that (2.21) and (2.37) imply :

Since Q C IR3, by Sobolev’s embedding Theorem (Sobolev [9]) we have that
H~ (S2) C L6(S2) with continuous embedding. Hence, (2.35) and (2.39) imply :

(2.40) y o is in a bounded subset of H1

From Lemma 2.1 and the hypothesis made on Uad ,’we may find a real number r > 0
and ~po such that :

From (2.25) and (2.42) we obtain :

.If we substitute z by in (2.21 ) we obtain :

where :



We deduce from (2.23) (2.40) and Proposition 2.5 that :

is finite. Therefore (2.43) (2.44) imply :

from which we obtain :

From (2.23) (2.38) and (2.47) we obtain that Proposition 2.6 holds.

2.5. The optimality system.

The estimates that we found in Proposition 2.5 and 2.6 are sufficient to pass to the
limit in (2.21) (2.22) and we obtain the following result : :

THEOREM 2.3. We assume that Q C 1R3 and Uad has non empty interior. Then there exists
(u,y,p) such that : ;



(2.53) (u,y) is solution of the optimal control problem (2.5).

Remark 2.7. In the case S2 C IR2 the mapping ~ -> ~ I E is continuous from W2~1;6/S~Q~ into
L2(E) and in this case we obtain directely from Proposition 2.5, that I E is boun-

ded in L2(E). Hence : in the case S2 C IR2 we obtain the optimality system (2.48) (2.49) (2.50)
(2.52) (2.53) without the hypothesis that the interior of Uad is non empty.

3. - - UNSTABLE NON LINEAR EVOLUTION SYSTEM : : CASE OF THE DIRICHLET

CONDITION

Let us assume that the control variable v and the state z are related by the following

state equation :

where is given in L"(Q) X X 

The cost function is defined by :

where zd is given in L6(Q) and N E ~(L2(E)) is an hermitian, positive definite operator on 

Let Uad be a subset of L2(E) such that :

(3.4) Uad is a closed convex subset of L2(E) and there exists v in Uad for which (3.1)

(3.2) has solution.



The problem of optimal control is :

Remark 3.1. If v and z verify (3.1 ) then z’ + = f + z + z3 belongs to L2(Q), from which we
obtain thatzE L2(O,T;H~~2(S2))_

By analogous arguments as those used in Section 2, se obtain the following results : :

THEOREM 3.1. We assume that the state equation and that the cost function are given by (3.1 ) )
and (3.3) respectively and we assume that (3.4) holds. Then there exists a solution (u,y) of the
Problem (3.5).

THEOREM 3.2. We assume that Q C IR 3 and that the interior of Uad is non empty. Then there
exists a solution (u,y) of the Problem (3.5) and there exists p in L2(Q) such that : :
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