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Resume : Nous etudions ici le probieme de minimiser la fonctionnelle

(1/p) ~0~ |u(m)(x)|p dx + ~0~ r(u(x))dx, p > 1, avec des conditions aux limites pour

x = 0. r(s) se comporte comme pres de s = 0 (r > 0). Nous obtenons des taux optimaux
de decroissance a l’infini pour les solutions de ce problème. Si 0  r  p les solutions ont un sup-

port compact. Presque aucune hypothese de regu!arite n’est demandee a la fonction r, qui peut
meme etre discontinue. Nous obtenons des resuitats analogues pour les solutions tendant vers
zero a !’infini de Fequation différentielle d’Euler associee d’ordre 2m

( sgn u(m)) + ~(u) = o, en su pp osant 7 continue. Les solutions p e uvent
etre oscillatoires et 7 n’est pas supposee monotone. Nous considérons aussi des non-Hnearites dans
les derivees intermediaires. Les demonstrations sont basees sur les inégalités d’interpolation de
Nirenberg et Gagliardo.

Summary : Consider the variational problem of minimizing the functional

(1/p) ~0~ |u(m)(x)|p dx +~0~ 0393(u(x))dx, p>1, with boundary data at x = 0 . T (s) behaves
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like I sl r near s = 0 (r> 0). We obtain optimal rates of decay at infinity for the solutions of this

problem. If 0  r  p the solutions havec compact support. The function r needs to satisfy almost

no regularity hypotheses, even it may be noncontinuous. We obtain analogous results for the solu-

tions tending to zero at infinity of the associated 2m-order Euler differential equation

(-1 )m dm/dxm ( I I p 1 sgn u(m)) + 7(u) = 0, assuming 7 continuous. The solutions of the
differential equation may not be solutions of the variational problem, since no monotony of y

is assumed. Nonlinearities in intermediate derivatives are also considered. The proofs are based on

Nirenberg-Gagliardo interpolation inequalities.

1. - INTRODUCTION

1.1. - Statement of the problems and notations

Given the real number p > 1 and the everywhere defined function 

we consider the variational problem :

where u is real-valued, m, j are integers (m > 1) and all aj are real numbers. The derivatives are
taken in the sense of distributions, so that E implies that u~m~1) is locally abso-

lutely continuous in R+ = [o,~).

. 
The Euler differential equations associated with Problem pr and with the particular

case p = 2 are respectively :

,m

For example, y(s) = sgn s for r(s) = (1/r) I sl r. Setting



Equation p03B3can be written as the normal system :

where p’ is the dual exponent of p : (1/p) + (1/p’) = 1. Notice that

We shall say that r is positive definite if and only if

Given C(R), the statement that u is a solution of Equation py in R+ will always
mean in this paper that (u,w) is a classical solution of the system (2), i.e. such that u E 

and w E Cm(R+) . For p = 2 u G C2m(R+) . (It is well-known that any distribution solution

in R+ of (2) is a classical solution in for all E > 0).

Functions and constants will be real-valued. C, K will be positive constants which

may be different in different occurrences. «Compact support» will mean «compact support in

R+». .

1.2. - Main results

The question of existence is summarized in Section 2, although the following theo-
rems are independent of existence theory.

THEOREM 1. Let y E C(R) and assume that near s = 0

Let u be a solution in R+ of Equation py,1  p  ~ such that u (x) -~ 0 as x -~ ~.

I. lf 1  r  p then u has compactsupport.

Il. andfor0jm

where the constants C and C* depend only on m, j, p, Bi and B~ .



III. 

This theorem is proved in Section 3. We note that (5) includes the sign condition

> 0, but no hypothesis of monotony of y is made. If (5) holds for all s E R and 1  r  p,

a bound of the support is given by (18). The case r = 1 can be incorporated in Theorem 1 in the

sense explained in Section 6.5. When p = 2 Point N! simplifies to :

If 1  p  2 and y(s) is Lipschitz continuous near s = 0, a standard ODE uniqueness

theorem applied to (2) implies that the support of u is noncompact unless u = 0. The following

theorem (proved in Section 4) gives much more precise results.

THEOREM 2. The bounds of Points ll and III of Theorem 1 are optimal in the sense that u is

identically zero aJ in Point II if exp(-x) is replaced by exp(-xg(x)) with g(x) -~ + ~ as x w + ~;
and b) in Point Ill if any capital 0 is replaced by a small o.

As by-product of the proofs of Theorems 1 and 2, we also obtain lower bounds for

the support and properties of «blow up» and continuation of solutions to the negative real axis

(Section 4).

THEOREM 3. Let u be a solution of Problem pr, 1  p  ~ , r positive definite in the sense

of (4). Assume that near s = 0 r is Borel measurable and

’ 

~/. l f 0  r  p then u has compact support.

Il. I f r = p then as x -~ ~ and for 0  j  m-1 = 0 where the

constant C > 0 depends only on m j, p, B~ and B2 .

III. lf r > p then as x ~ ~ and for 0  j  m-1 u (j) (x) = 0 where a is given

by (6).

If (7) holds for all s E Rand 0  r  p, then (18) gives an explicit estimate of the

support in terms of the data of Problem pr. No sign hypothesis for the derivative of r are needed.



In fact, the punctual derivative of r may fail to exist at every point. Even r may be nonconti-
nuous at points different from the origin. (In this respect, Theorem 3 is new even for 2m =4, see

below). The proof of Theorem 3 (Section 5) does not use at all the Euler differential equation.
In return, it does not apply to the Euler equation solutions of Theorem 1 if J (u) is not the abso-

lute minimum of J.

Further developments are sketched in Sections 6 and 7. They include nonlinearities
in intermediate derivatives, variable coefficents, r(s) noncontinuous at s = 0, optimality of the
bounds of Theorem 3, equations of odd order and other sign conditions for y.

1.3. - Related references

Application of Nirenberg [20] and Gabliardo [16] interpolation inequalities for half-
lines (see Appendix I) is the unifying feature of the proofs. A preliminary step (Section 2.2) is

based on some inequalities of Redheffer [22] and Redheffer &#x26; Walter [24] . The book of
Beckenbach &#x26; Bellman [2] has been a great help to us.

Compactness of the support results of Theorem 1 for p = 2 are included in our

n-dimensional paper [8] , but we give here a much shorter one-dimensional proof. All other results
of Theorems 1 and 3 on compactness of the support are new for 2m > 6. Pioneering work on
fourth order problems is due to Berkovitz &#x26; Pollard [5-1,11] , Redheffer [21 ] , Hestenes &#x26;

Redheffer [18-I,II] . Other fourth order references are [9,10,6,7,12] . As far as we know, the
results on power rates of decay of Theorems 1 to 3 are new for 2m > 4, except some fourth order
results of [6] . Fourth order models from optimal control in [5-!, 12] and from elasticity in [6,7].

For m = 1 Problem pr can be explicitly solved (see below). The corresponding second
order n-dimensional problem is included in the following works : I) Compactness of the support
for p = 2 and 1  r  2 in Benilan, Brezis &#x26; Crandall [4] and Redheffer [23] . First n-dimensional
results on the subject in Brezis [11]. II) Compactness of the support for general p and 1  r p
in Diaz &#x26; Herrero [29] and references therein. III) Asymptotic power bounds for p = 2 and r > 2
in Véron [25,26] . Most of second order papers use comparison principles to prove compactness
of the support. Antoncev [1] and Diaz &#x26; Véron [13] already apply imbedding-interpolation
inequalities for bounded domains.

There are many results on asymptotic rates of decay for more complicated second
order ordinary differential equations : see Bellman [3] . Nonlinear higher order equations seem
to be little studied from this point of view. Third order equations having u-power nonlinearities
are considered, from another point of view, in Erbe [15] and references therein. Compact support
results for nonoscillatory solutions of higher order equations are to be found in Kiguradze [27],
see also the survey [28].



1.4. - Some comments

tfm=1, u(0) = a > 0, r is positive definite and r E C(R+) n C~ (R+), the solution
of Problem pr is u (x) = G ~ (x) for 0  x  G(0) ; u (x) = 0 for x ~ G(0), where

The support of u is compact if and only if G(0) is finite. For r(s) = the solution is a power

if r > p, an exponential if r = p and a power prolonged by zero if 0  r  p. The exponent of the

powers is a, given by (6).

For even m, nontrivial solutions of Theorem 1 are necessarily oscillatory. (This is

implied by Lemma 2 and the sign condition sy(s) ~ 0). If m is odd > 3, the solutions of some

Problems pr, r(s) = are a-powers (exponentials for r = p), but this happens only for very

special boundary data. The factor (-1 )m of Equation p~y causes these differences between even
and odd m. Nonoscillatory solutions are easier to handle in many cases : see Section 7.3.

The proofs of this paper include long computations with exponents. In fact, if the

equation (or the functional) has only two termes (as in Theorems 1 to 3), the exponents are deter-

mined by dimensional analysis. Then the key point of the proofs is to show that the parameters

are within the allowed range of the inequalities to be applied. For example, in theorem 1 the

parameter a is associated to Equation p7 through the condition (a-m) (p-1) - m = Q(r~1 ). In

Theorem 3 the functional J generates the equivalent condition (a-m)p = or. Therefore, the dimen-

sionality exponent of ~! dx is 1 + q(o-j). Nevertheless, the methods of this paper apply

also to cases with more than two terms, e.g. in Section 6.1. .

2. PRELIMINARIES

2.1. - Existence, uniqueness and relation of Problem pr with its Euler equation

Problem pr, 1  p  has some solution if r is nonnegative and lower semiconti-

nuous and the minimization set is nonempty. (Proof as in [6] , which in turn is inspired in [5-I]).
This set is nonempty for any boundary data a. if in addition r(0) = 0 and r is locally bounded.

No hypotheses of the type r(s) > I sl r are needed. The solution is unique if r is convex. In par-

ticular, Problem pr, r(s) = C I s I r, has a solution for all r > 0 and it is unique for r > 1.

Now we state two standard results of the calculus of variations. If r E C1 (R), then

any solution of Problem pr is a classical solution in R+ of Equation p7 (or of the system (2)).



If in addition r is convex, then the unique solution of Problem pr is also the unique solution of

Equation py belonging to W and satisfying the boundary conditions at x = 0.

The solutions of Equation py considered in Theorem 1 are also solutions of the corres-

ponding Problem pr, r(0) = 0, if r is convex. The fact that they belong to W is not included in
the hypotheses of Theorem 1, but it is easily implied by the conclusions of Theorem 1 itself.

2.2. Conditions in order that u(i)(x) -~ 0 as x - 00

LEMMA I . Let u G Assume I) G LP(R+), I  p  % and 2) u(x) - 0 as x - Cx> or
r(u( . )) G with r positive definite in the sense (4). Then u(Î)(x) - 0 as x - Cx>,
o  j  m-i .

This is a particular case of Theorem I of Redheffer &#x26; Walter [24] . The lemma applies
to all functions of the set W of Problem pr if r is positive definite. Due to this result, the hypo-
thesis (7) of Theorem 3 needs to hold only near s = 0. On the other hand, in Theorem I we assume
that u (x) - 0 as x - Cx>. Then the role of the above resu Its is to give a sufficient condition for the
existence of solutions satisfying the hypotheses of Theorem I .

LEMMA 2. Let u G Let w be given by (I), m > I. /f u(x) - 0 as x - Cx> and

G then as x - -

(For p = 2 this lemma is included in the former). I t implies that the solution u of Theorem 1 satis-
fies lim u(!)(x) = lim = 0, 

Proof of Lemma 2. By Lemma 1 we only need to establish that w(x) -~ 0. In fact, we are going
to prove by induction on j that w(!)(x) -~ 0, 0 ~ j  m-1. The method of proof is taken from
[24] and we use the following lemma of Redheffer [22] :

LEMMA 3. Let E and b be positive constants and let u be a real-valued function which satisfies
I u (k) (x) I > E on an interval of length S. . Then

I u (x ) I > s k ~ on a subinterval of length b j4k.



We proceed with the proof. Firstly, we have by the continuity of w~~~

If not, u would be unbounded. By induction, it is enough to see that for 0  j  m-1 u(x) - 0

and w~~+1 ) E imply that w~~)~x) -~ 0. Set

We are going to see that S > 0 leads to contradiction. Take 0  E  S and a sequence { such

that tn -~ ~,

Consider the closed interval b «around» tn such that

In this construction we have used the continuity of w(j) and (8). Since L~ implies that

w(j) is Lipschitz continuous, we have :

From this relation, (9) and S > e is derived that for some 6 > 0

. So we have an unbounded sequence of intervals whose lengths are bounded away from

zero and wO) also is bounded away from zero on them. By Lemma 3, the same thing holds for w,
therefore for u (m) and for u, in contradiction to the hypothesis u (x) - 0. Q.E.D.



3. - UPPER BOUNDS FOR SOLUTIONS OF THE DIFFERENTIAL EQUATION : THEOREM 1

Proof of Theorem 1. We shall repeatedly use the hypothesis (5). The values of u will be in the

range of (5) on some half-line. By a translation, we can suppose that this half-line is R+ . We
define for x > 0

We multiply by u the differential equation and integrate by parts between x and ~. By (1 ),
Lemma 2 and Lemma 9 (in Appendix I I) we obtain for x > 0

(I n particular, the integrals of (10) are finite). Now we raise to a power A > 0; apply the power
inequalities (63), integrate between x and 00 and use Schwarz inequality:

By (10)-(1~ E LP(R+) E L~(R~). By (3), w E and by Equation py
~r ~~ since 7(u)!  B~ ! I u Then Nirenberg inequalities (Lemma 7, in Appen-

dix I ) imply that for X large enough the right-hand side of (12) is finite. For example, it is enough
to take

In several important cases it is possible to take A =1 (see Remarks 2 and 3 below), but
not for general r > p. The exponents of the final bounds will be independent of À. Now we apply
Nirenberg inequalities for the half-line (x,oo) in the following way :



In (15) we take into account that I u I r and I I p. Then we

insert (14) and (15) in (12) and apply the power inequality (64) of Appendix II : :

(3. J turns out to be independent of j, as it was expected by dimensional analysis. So we finally

obtain :

00

where a is given by (6). Therefore, the function f(x) IÀ dt satisfies the first order differen-
tial inequality of Lemma 11 (in Appendix II). x

Case r  p. Then a > 0. From (17), j3  1 and by Lemma 11 f and u have compact

support whose extreme a is bounded by (see formula (58)) : :

where we have (16). Computing the exponent and taking into account that I (0)  C J (u),
we arrive at the final expression of the bound :

a ~ C J 

(18) , ~ C depends only on m, p, r, 81 and B~

Remark 1. In (18) J is the functional of the associated Problem pr, r(0) = 0, but (for Theorem 1)
it is not required that u be a solution of Problem pr. If this also holds (e.g. if r is convex), then

J (u) is the minimum of J and the bound (18) becomes more useful. We also note that the proof

gives a constructive method to compute an admissible value of the constant C.

Case r > p. Then a  0 and 1 + ar  0. From (17) 0 > 1 and from (16) and Lem-

ma 11, formula (62) :



Since I is nonnegative and nonincreasing :

From (19), (20) and (17) :

We bound I u(x) I in terms of I (x) using again Nirenberg inequalities (now with j = 0 and q = ~)
and (64) : .

Computing the exponent and inserting in (21), we obtain finally that u(x) = 0 (x~). The asymp-
totic bound for is obtained now from the differential equation, i.e. from

I w~!  B~ ! u! ~ . Bounds for w~ and u~ follow then by integration, taking into account
thata*0, o0, w~(x)~0 and u~(x)~0.

Case r = p. From (17) j3 =J. The proof is like in the case r > p. Note that

’(x)~=(1/x)0(e~) implies 

Remark 2. If 1 ~ r  p (r = 1 in the sense of Section 6.5) it is possible to take ~ = 1. Then from

(11) to (12) we apply Hölder’s inequality (with appropriate exponents) rather than Schwarz ine-
quality. We explain the question a little more : The optimal interpolation exponent q. in Niren-

berg inequalities is obtained for a = j/m ; therefore u~ C for all q. and e 

where

If r " P then qj 
" P and I " P" If r  P then qi and I increase With ’. Noting that

~~~~j~ ~ ~~~~m~j~ ~ ’ ’

,, ’B. ,_ ,



This shows how to apply, firstly, Holder’s inequality and, secondly, Nirenberg inequalities to

Remark 3. For p = 2 (and any r > 1, r = 1 again in the sense of Section 6.5) a primitive of I can

be written without integrals. Indeed, using Lemma 10

Here we apply Nirenberg inequalities in the form :

and by the differential equation II u~2m~ II ~~ C II u II ;-1. Now (16) and (17) become :

4. - LOWER BOUNDS, OPTIMALITY OF UPPER BOUNDS, «BLOW UP» AND CONTINUA-
TION OF SOLUTIONS 

We begin with a general lemma.

LEMMA 4. Let u(m 1 w(m-1) be locally absolutely continuous in the real open interval

~,~ ), a ~ - ~, , m integer > 1. Assume that for all x > a u E )), 1  r  ~ ,

w E LP’ ( (x,~) ), .1  p  ~ and that

Then Lemma 12 (see Appendix !I) is satisfied on (a,a~ by the function

(a,a~ being the interval where f is positive.



the proof. Applying Nirenberg inequalities (Lemma 7) for the half-line (x,~) with q = 00 , j = 0 :

where (23) has been used. Therefore, by the power inequality (64) :

Some computations show that (31 =~i2 = j3 of (24). So the lemma is proved.

Now we assume again the hypotheses of Theorem 1 with (5) holding for all s E R.

(It will be clear which questions require (5) only near s = 0). We consider a continuation of u(x)
to the left of x = 0 as solution of the differential system (2). So we have u defined in (a,~),
- oo  a  0. Continuation may not be unique, but the following arguments apply to any conti-
nuation. Since u may be oscillatory, lower bounds will not apply directly to u.

Lemma 4 is a reversed form of the differential inequality (16). Now I (defined by
(10)) plays the role of ~|03BB dt in (16). Of course, @ in (17) is not the same asj3 in (24). The rela-
tion between Lemma 4 and Theorem 1 results from recalling (2) and noting that by (3) and (5) :

The power exponent corresponding to I by (24)-(25) is i.e. 1 + or. So for

r > p we have (3 > 1, 1 + ar  0 and writting down Lemma 12 we obtain that if 1 (0) ~ 0 :

The crucial point is that the exponent 1 + ar is the same as in (21). Therefore, we
have upper and lower power bounds both «to the left» and «to the right». (Exponential bounds
if r = p). These considerations and Lemmas 11 and 12 imply easily the following consequences :



Case r  p (then a > 0) :

1. The solution u is bounded «to the left» by a a-power and therefore is continued

to the whole R ; i.e. we obtain a result of global existence on R. (Argue as in (22)).

2. The following lower bound for the support holds :

C depending only on m, p, r, 81 and B~ . Compare with (18). Remark 1 is also pertinent.

3. Point 1 can be applied to the extreme of the support, a, to obtain :

which may be regarded as a regularity result at x = a.

4. The a-power bound of Point 1 is optimal in the sense explained in Theorem 2

(see Point 6 below). In particular, u is unbounded at - 00 unless u = 0.

Case r > p (then a  0 and 1 + ar  0) :

5. The solution u «blows up» at a finite a unless u = 0. Upper and lower bounds for

a are obtained. .

6. Proof of Theorem 2 for r > p. A small o for some or some implies a smal l

o for all u (j) and w(j) (by integration and the differential equation). This implies I(x) = o(x 
which contradicts (26).

Case r = p (then 0=1) :

’ 

7. The solution u is bounded «to the left» by an exponential (tending to + 00 as

x -~ - oo). Therefore, u is continued to the whole R. This exponential bound is optimal in the

sense of Theorem 2. In particular, u is bounded by no power near - 00 unless u = 0.

8. Proof of Theorem 2 for r = p. It is an easy modification of Point 6.

Remark 4. For even m the «blow up» of Point 5 is necessarily oscillatory. For odd m > 3 the

«blow up» is oscillatory unless all uO) and w(~), 0  j  m, are monotone. Heidel [17] finds

an oscillatory «blow up» in a third order nonlinear equation. See Kiguradze [28] for higher order.



Remark 5. For p = 2 this section can be approached in a very different way throught the integral
representation : 

’

which holds (in the usual Legesgue sense) due to the asymptotic bounds of Theorem 1. By (5)

B 1 I u(2m~ I  B 2 I u I The method consists in considering iterations and using the

monotony of the function s .

5. - UPPER BOUNDS FOR SOLUTIONS OF THE VARIATIONAL PROBLEM : THEOREM 3

LEMMA 5. Let u be a solution of Problem pr, 1  p  ~ , r Borel measurable in R. Assume
that for all s E R

Then for all x > 0 and for any positive function z : R+ ~ R+

the constant K depending only on m, p, rand B2 .

Proof. From the definition of Problem pr, it readily follows that for every x > 0

with the boundary conditions v~)(x) = u~(x), 0 j  m-1.

Therefore, it is enough to obtain (28) for x = 0, proving that z > 0 can be arbitrary chosen. We
recall =a.. .

Let P be the polynomial of degree  2m-1 such that :



The dependence on z becomes more transparent considering a second polynomial Q defined by

P(x) = Q(x/z). Then

Some elementary computations give :

where each constant ai~ depends only on m, by (29). Therefore for all i

J _

Consider now the function v(x) = P(x) for 0  x  z ; v(x) = 0 for x > z. Note that

r(v(x)) is Lebesgue measurable because r is Borel measurable. Since v belong to the minimiza-

tion set of Problem pr, from the definition of minimum and (27) we obtain :

where we have used P(x) = Q(x/z), P~m~(x) _ (1/z)m 

(The cas B2 =0 is trivial). Using now (30), (31) and the power inequality (63) :

which proves the lemma.

We shall also need the following simple lemma, whose idea is already in [5-I ] . .

LEMMA 6. Let u be a solution of Problem pr, r > 0, r(o) = 0. /f uO)(x) = 0, 0  j  m-1,
then u(y) = 0 for a/I y > x. .

Because any other admissible prolongation of u would make the functional strictly

greater.

Proof of Theorem 3. If u is a solution of Problem pr we call a (finite or not) the extreme of its

support and we set the notation :



By Lemma 1 u(x) ~ 0 as x  00 , so that u(x) lies within the range of (7) for x close enough
to a. This is assumed in the sequel. Power inequalities (63) will be repeatedly applied without
more notice.

Case r  p. Then a > 0. Furthermore, Q > m since (0 - m)p = ar. For x  a we set :

Then z(x) > 0 by Lemma 6. The choice of qi is guided by dimensional analysis : in this way all
terms preserve the same dimensionality. Other choices of z(x) (e.g. z(x) = 1) also give some
bounds, but not the optimal bounds. Taking into account that

and applying Lemma 5 we obtain :

Now we raise to a power X > 0 (see comments in Section 3), integrate between x and ~ and apply
Schwarz inequality :

We choose X large enough to assure the finiteness of the integrals. Since u e L/(R.)
and E Nirenberg inequalities and 0  r  p imply (Lemma 8) that u (~) C 
0  j  m. So we can choose

We finish the proof in a way similar to Section 3. We apply Nirenberg inequalities
(Lemma 8) to the termes and factors of (33). Afterwards, we pass from products to sums through


