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A closure operation on
complex analytic cones and torsion(*)

REYNIR AXELSSON(1) and JÓN MAGNÚSSON(1)

Annales de la Faculte des Sciences de Toulouse Vol. VII, n° 1, 1998

Nous etudions 1’operation qui consiste a fermer (analytique-
ment) la partie localement libre d’un espace lineaire complexe. Plus

generalement nous demontrons : soit un cone analytique : X -> S défini

par une OS-algèbre graduee A et soit A un sous-ensemble analytique de
S. Alors la fermeture du sous-cone ouvert X B ~r-1 (A) dans X est un cone
analytique sur la fermeture de S B A dans S et il est défini par l’algèbre
graduee Dans le cas ou S est reduit, A est d’interieur vide dans
S et A est sans torsion sur S B A; on a = ou T(A)
designe l’idéal gradue des elements de torsion dans A. Nous etablissons
des relations entre les elements de torsion et les elements nilpotents d’une
algèbre symetrique d’un faisceau analytique coherent. En appliquant nos
resultats aux espaces tangents globaux de Zariski, nous obtenons, pour
S reduit et localement intersection complete, une condition necessaire et
suffisante en termes de dimensions pour que le cone de Whitney C4 (S)
soit la reduction de l’espace tangent global de Zariski, et deux criteres de
régularité pour des courbes analytiques. Finalement, il y a des applica-
tions aux notions de positivite (amplitude). .

ABSTRACT. - We study the operation of taking the (analytic) closure
of the locally free part of a linear space in a more general setting: For a
cone : X --~ S defined by a graded 0 s-algebra sheaf A and a closed
analytic subset A the closure in X of the open subcone X B~r-1 (A) is a cone
over the closure in S of S‘ B A defined by the graded algebra sheaf .

In the case that S is reduced, A is analytically rare in S and A is torsion
free on this can also be described as the algebra where )
is the graded ideal of torsion elements in A. We prove a relation between
the torsion ideal and the ideal of nilpotent elements in the symmetric
algebra of a coherent analytic sheaf. Among applications to linear spaces, ,
in particular tangent spaces, are a necessary and sufficient condition
involving dimensions for the Whitney cone C4 {S) to be the reduction
of the global Zariski tangent space, valid for a reduced complex analytic
space S that is locally a complete intersection; two regularity criteria
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for complex analytic curves and some applications involving notions of
positivity.

Introduction

Certain natural operations that can be performed on linear spaces over a

complex analytic space the natural generalization of holomorphic vector
bundles - produce not linear spaces, but complex analytic cones. In [2],
where we studied complex analytic cones in general, we gave an important
example of such an operation, namely the blowing-down of the zero section
of a linear space. In this paper we study another operation of this kind:

Taking the closure in a linear space of its locally free part. More generally,
we study the operation of closing (analytically) the restriction of a complex
analytic cone to a Zariski-open subset of the base space and describe it in
terms of the connected graded sheaf of algebras defining the cone.

This operation has been studied earlier in special cases: In [23] Whitney
defined several tangent cones to a reduced analytic space S. One of them,
the tangent cone that Whitney denoted by C4(S), may be defined as the
closure of the locally free part of the global Zariski tangent space of S. The
operation was defined for general linear spaces by Rabinowitz in [17] (see
also [16]), who used it to define a notion of primary weakly positive sheaves.
Let S be a reduced compact complex analytic space and let 0 be a coherent

Os-module. Denote by V(F) the linear space associated with F (see [10])
and let A be the analytic subset of S over which F is not locally free.
Rabinowitz defines the primary component of as the closure 

in V(F)red of and calls 0 primary weakl y positive if the zero
section of v{~’)# is exceptional; here denotes the reduction of the

space V(F). The space v(~’)# is, in general, not a linear space over S. It

is a complex analytic cone over S.

Since the definition of the "primary component" involves the reduction
of a linear space, we also examine more generally the operation of reducing
a complex analytic cone, another operation which, when performed on a
linear space, produces in general not a linear space, but a complex analytic
cone. When considering the duality between coherent analytic sheaves on
a complex space S and linear spaces over S it is essential that the linear

spaces are allowed to be non-reduced, also when the base space S is reduced.



It turns out that some very natural linear spaces associated with a complex
space, such as its global tangent space, are in general non-reduced, even if
the original space is reduced. Thus, if we want to work with linear spaces,
we are forced to allow them to be non-reduced. There are however notions,
similar to that of linear spaces, defined in the category of reduced spaces.
Thus Grauert defined in [8] a class of reduced spaces that he called linear
spaces over a (reduced) complex space; in this paper we shall call them

Grauert-linear spaces. The reduction of a linear space is a Grauert-linear

space, but not a linear space in general, and there are Grauert-linear spaces
that are not obtained by reducing linear spaces. In the paper we clear

up the relationship between Grauert-linear spaces and linear spaces and
characterize the former as a certain type of complex analytic cones.

In Sections 1 and 2 of this paper, we consider the algebraic analogues
of taking the reduction of a cone and the closure of an open subcone. We
show (the non-surprising fact) that the reduction of a cone corresponds to
the reduction of its algebra (Theorem 1.2). For a cone 7r : X --~ S defined

by the graded Os-algebra A and a closed analytic subset A of S we show
that the closure in X of the open subcone X B ~r-1 (A) is a cone defined

by the algebra (Theorem 2.2). In the case that S is reduced, A
is analytically rare in S and A is torsion free on S B A this can also be
described as the algebra ,A~ := A/T(A), where T(A) is the graded ideal of
torsion elements in A. We also prove a certain proposition concerning the
fibre dimension of the closure (Prop. 2.8).

In Section 3, we consider these operations on linear spaces. In Proposition
3.4, we characterize Grauert-linear spaces. We prove a relation between the
torsion ideal and the ideal of nilpotent elements in the symmetric algebra
of a coherent analytic sheaf (Prop. 3.6) and draw some corollaries. We
also show that the primary component (in the sense of Rabinowitz) of a
coherent sheaf 0 is given by V’(~’)# - Specan(S(0),), where is the

symmetric algebra of :F (Theorem 3.10). In Proposition 3.11, we consider
a dimension condition necessary for the equation V(~")~ = where

~’ is a coherent analytic sheaf over a reduced pure dimensional complex
space, and prove that it is also sufficient in the case that F is everywhere
of projective dimension ~ 1. Finally, we give some examples; in particular
we show that the reduction of a linear space need not be a linear space.

In Section 4, we apply the foregoing to tangent cones, in particular the
tangent cone C4 (,S’) of Whitney. In Proposition 4.6, we give a necessary
and sufficient condition involving dimensions for C4 (,S) to be the reduction
of the global Zariski tangent space, valid for a reduced complex analytic



space S that is locally a complete intersection. Among other results of the
section we point out two regularity criteria for complex analytic curves: We
show that a reduced complex analytic curve S is regular if the symmetric
algebra is torsion free (Prop. 4.3); a stronger unproved conjecture
by Berger (see [4]) states that a reduced complex analytic curve is regular
if the sheaf SZS is torsion free. We also prove that a reduced complex curve
S is regular at the point s if it is locally irreducible and its tangent cone
C4(S, s) is reduced (Prop. 4.9).

In Section 5, we introduce the notion of cohomological positivity for
a connected graded algebra A, locally of finite presentation. We prove
that a complex analytic cone is weakly negative if and only if its algebra
is cohomologically positive (Theorem 5.2). We give a characterization of
primary weak positivity (Theorem 5.4) and prove that a reduced compact
complex analytic space is Moisezon if and only if it carries a primary weakly
positive coherent sheaf (Theorem 5.5); in the case of normal irreducible

spaces this result was proved by Rabinowitz in [17]. Finally, we give
an example of a coherent analytic sheaf that is torsion free and primary
weakly positive but not weakly positive; thus answering a question of
Rabinowitz [17].

1. Reduction of complex analytic cones

1.1 Complex analytic cones

We recall that a complex analytic cone over a complex analytic base

space S is a complex analytic space 7r : : X --~ S over S together with an

S-morphism  : Cx X ~ X, called multiplication, and a section v S ~ X
of ~r, called the vertex of the cone, satisfying the axioms:

(i) 
(ii) = idx ~

(iii) = v o x,

where is the usual multiplication in C and 1x, Ox : X -; C
are the constant mappings with values 1, 0 respectively.

By Theorem 1.4 in [2], every complex analytic cone X over S can be
obtained as X = SpecanA, where A = a (commutative)



graded Os-algebra, locally of finite presentation, such that Ao = Os; we
call such algebras connected graded Os-algebras of finite presentation. The
algebra A can be obtained as a subalgebra of the direct image for
an open set U in S the m-th component Am (U) consists of the holomorphic
functions f : ~r-1 (U) -~ C that are homogeneous of degree m with respect
to the multiplication i.e. satisfy f o (zm x f ) on C x 7r-1(U),
where z’n : ~ --~ ~, t ~ t"’L .

Let x : : X --~ S be a complex analytic cone over S with multiplication
~ : : C x X - X and vertex v : S’ --~ X. . Then clearly the reduction
03C0red : Xred --+ Sred is a complex analytic cone over Sred with multiplication
pred C x Xred = (C x X)red ~ Xred and vertex vred : ’Sred ~

Let A be a connected graded Os-algebra of finite presentation. We
denote by N(A) the graded ideal of nilpotent elements in A. Clearly,
N(A)o = Ns = the ideal of nilpotent elements in Os. . Thus we may
consider Ared :_ as a connected graded -algebra.

THEOREM 1.2. - Let X be a cone over the complex analytic space S
corresponding to the connected graded Os-algebra A. Then Xred is the cone
over Sred corresponding to the algebra Ared. In particular, the algebra Ared
is a connected -algebra of finite presentation, and the A-ideal N(A) is
locally finitely generated.

Proof. - We identify S (resp. Sred) with a subspace of X (resp. Xred)
via the vertex mapping and write Xred = Specan B, where B is a connected
graded OSred -algebra of finite presentation. The natural embedding Xred -
X is in an obvious sense a morphism of cones over the natural embedding
Sred ~ S and thus induced by a graded algebra homomorphism 03C8 : A ~ B.
We put JC := Ker 03C8 and obtain a commutative diagram

of sheaves over S, where the vertical arrows are inclusions and r is the
natural projection. We have JC = A n (N X ~S) = N(A). It remains to
show that the homomorphism 03C8 is surjective. Let s E S’ and b E Ss. Write
b = with bm E Bm,s. . Then there is an element a E Ox,s such that
r(a) = b. By [2, Lemma 1.9], a can be written uniquely as a = am

in the natural topology of Ox,s with am E Am,s. By the continuity of r we



have r(a) = r(am) and thus r(am) = bm for m = 0, ..., M by the
uniqueness of the representation. But then

COROLLARY 1.3. - Let X be a cone over the complex analytic space S
corresponding to the graded Os-algebra A. The space X is reduced if and

only if the algebra A is reduced; and then necessarily the space S is reduced.

Remark 1.4. - Let X be a complex analytic cone over a complex space
S such that the fibre Xs is reduced for every point s in S, and let A be the

corresponding graded algebra. Then for every open set U in S and every
m > 1 we have

In fact, Am(U) consists of the holomorphic functions f in 
that are homogeneous of degree m, where 7r : : X -~ S is the projection,
and N(A)m (U) is the subset of Am (U) consisting of those functions f that
are nilpotent, locally with respect to S, i.e. for every s in S there is an

open neighbourhood V of s such that (V) is nilpotent. Because of

the homogeneity, this just means that f is nilpotent, locally with respect to
X, which again means that f induces the zero function on This

is equivalent to saying that f induces the zero function on each (reduced)
fibre.

2. Closure of open subcones

2.1 Zariski closure

We recall some basic facts about the closure of Zariski-open subspaces
of a complex analytic space. (We refer, of course, to the analytic Zariski-
top ology. )

Let S be a complex analytic space, 0 be an Os-module and A be a closed
analytic subset of S. Denote by H0AF the subsheaf of F defined by

for every open set U of S.



Let I be a coherent Os-ideal such that A = let s be a

point in Sand f E 0s . If .~’ is Os-coherent, then a necessary and sufficient
condition for f to be in ~7-l,~q.~’~ S is that f = {0} for some natural
number n; it follows that 7-LA.~’ is a coherent C’Jg- submodule of .~’ (for the
details see [7], [21]).

In particular, is a coherent Os-ideal, and it is easily seen that
= S ~ A. The closure of S ~ A in S is by definition the

closed subspace of S defined by i.e., the subspace

If Z is a coherent Os-ideal such that ~ A = 0, then clearly I C 
This means that cls(S B A) is the smallest closed subspace of S containing
S B A as an open subspace. If 0 is an Os-module, then .~/?-lA.~’ has a
natural (9~/7~ (~-module structure.
We recall that the closed analytic subset A of S is said to be analytically

rare in S if cls(S B A) = S, i.e., if = 0. This is equivalent to the
condition that I A,s contains a regular element (i.e., an element that is not
a zero divisor) for every s in S, where I A is the full sheaf of ideals defining
A (see [7, Prop. 0.43]). For a reduced space S this condition simply means
that A is nowhere dense in S.

Now let A = Am be a connected graded Os-algebra of finite
presentation. Then

is a graded A-ideal, and the algebra is locally of finite presentation.
This follows from our next theorem, but may also be derived directly from
[2, Prop. 1.17~ .

THEOREM 2.2. - Let : X ~ S be a cone over the complex analytic
space S, X = SpecanA, where A is a connected graded Os-algebra of
finite presentation, and let A be a closed analytic subset of S. Then

clx(X B ~r-1 (A)) is the closed subcone of the analytic restriction of X
to cls(S B A) corresponding to the graded algebra A. In

particular, if A is analytically rare in S, then clx(X B ~r-1 (A)) is a cone

over 5’.



Proof. - Put Y := T := cls (S B A) and let i : Y -~ X ,
j : : T -; S be the canonical embeddings. Since clearly ~r-1 (?-~A~s ) O x C
?~~ _1 we obtain a projection ?f : : Y --~ T such that j = ~r o i. Since

the multiplication p : C x X 2014~ X is an S-morphism, we have

and thus obtain a holomorphic mapping  : C x Y ~ Y such that x o  =

p o (id x i). Finally, since 7r o v = ids, we have C 

and we obtain a holomorphic mapping v : T --~ Y such that . It

is now easily verified that ~c is a T-morphism, that v is a section and

that Y satisfies the cone axioms.

We have an exact sequence

of ~-modules. We obviously have ~~-i(~~ = Because

R~~.F = 0 for every coherent (~-module ~ by [2, Lemma 4.1] and
get an exact sequence

Since Y is a cone over T, we can write Y = Specan B, where B = 
is a connected graded OT-algebra of finite presentation. We can identify
Bm (resp. Am ) with the subsheaf of (resp. consisting of the

holomorphic functions that are homogeneous of degree m with respect to the
cone multiplication. The homomorphism~ : clearly maps
A to j*B. We will now show that 03C8 induces an isomorphism A/H0AA ~ j*B.
Let s E S, b E (j*B)s and write b = bm, where bm E (j*Bm) S . Then
b = ~(a) for some a E S, 

and a is the germ at s of some section

f E = C~~ ( ~r-1 ( U ) ~ where U is an open neighbourhood of s in
S. By [2, Lemma 3.1] we may uniquely write f = fm in the canonical
Frechet topology of C~X (~r-1 (U)~ with E Am(U). By continuity of the
restriction homomorphism we have

with By the uniqueness statement we have

= bm for m = 0, ..., M and thus b = ~(a~), where



Thus ~ induces a surjective algebra homomorphism ~ .A --~ j*B, and we
have

2.3 Torsion of a graded algebra

Let S be a reduced complex analytic space and .~’ be an Os-module.
Recall that we can define the torsion submodule of .~’ by the condition

T ~~~ S = ~ f E there is a regular element a in Os,s such that a f = 0} .

If F is coherent, then T(F) is the kernel of the canonical homomorphism
of F to its bidual and thus coherent. It is well known (e.g. [9, Chap. 4,
Sect. 4.2]) that the subset A of S where F is not locally free is an analytically
rare closed analytic subset of S. We clearly have B A = 0.

For a family of O s-modules one clearly has

We put

If .A = Am is a connected graded O s-algebra of finite presentation,
then T(A) is a graded A-ideal, and .~~ = A/T(A) is a connected graded
algebra of finite presentation, by [2, Prop. 1.17].

LEMMA 2.4. - Let S be a reduced complex analytic space and let A be an
analytically rare closed analytic subset of S. Let F be a coherent Os-module
that is torsion free on S B A. Then = ?~~~’.

Proof. - Since F is torsion free on 5’ B A we have ?’(~’) ~S’ B A = 0 and
thus T(0) C ~YA~’. Let s E S, f E (?-~C~~) S. Then for some natural
number n we have = ~0~, where ~A is the full sheaf of ideals

defining A. Since A is analytically rare, IA,s contains a regular element;
hence f E T (~’) S, and we conclude that ?-~A~’ = ?-’(~’). 0

As an immediate consequence we get the following proposition.



PROPOSITION 2.5.- Let : X --~ S be a complex analytic cone over a
reduced complex analytic space S, X = Specan A, where A is a connected

graded Os-algebra of finite presentation, and let A be an analytically rare
closed analytic subset of S‘ such that A is torsion free on S B A. Then

LEMMA 2.6.- Let X be a complex analytic cone over the complex
analytic space S and let k be a positive integer. Then the set

is an analytic subset of 5‘.

Proof. - Let A be the graded algebra corresponding to X, put Z :=

Projan(A) and let ~ : Z ~ S be the canonical projection. The set 
is the image of the set Bk :_ ~ z E Z : : > k - 1 } under the
projection 03C9. But 03C9 is proper, and it is a well known result of Cartan and

Remmert that the set Bk is analytic (e.g. [7, Prop. 3.6~ ) . ~

LEMMA 2.7.- Let X be a complex analytic cone over the complex
analytic space S of dimension n such that dimXs = r for every point s
in S. Then dimX = n + r. ,

Proof. - This is a simple consequence of the fact that for every point s
in S there is an open neighbourhood U of S and an embedding over U of

onto a sub cone of U x CC~ for some ~~ with weighted multiplication
[2, Corollary 1.13~ . ~

PROPOSITION 2.8. - Let X be a complex analytic cone over the complex
analytic space S and let A be a nowhere dense analytic subset of S. We

suppose that S is of pure dimension n and that for every point s in S B A
we have dimXs = r. Put Y := clx (X B ~r-1 (A)) . Then, using the notation

of Lemma 2.6, we have  n - k for every k > l.

Proof.- Obviously is a nowhere dense subspace of Y. . By
Lemma 2.7, dim(Y|S B A) = n + r and thus dim Y = n + r, since closure
does not increase the dimension. Hence  n + r and consequently

 n + r for every k > l. But Lemma 2.7 also implies that

dim + r + k if ~‘ ~ ;
hence the result. 0



3. Linear spaces and related notions

3.1 Linear spaces 

Let F be a coherent Os-module. Recall that the linear space associated
to ~’ is given by

:= Specan ,

where S(F) is the symmetric algebra of ~’. By a theorem conjectured by
Fischer [6] and proved by Prill [15] every linear space over S arises in this
manner. (We recall that a linear space over S is by definition a module over
the ring object x 5’ in the category of complex spaces over the
complex space S.)

In [2], we gave a new proof of this theorem along the following lines: The
scalar multiplication of a linear space L over a complex analytic space S
clearly defines L as a cone over S. Thus we have L = Specan(4), where
A = Am is a connected graded Os-algebra of finite presentation. We
showed that for a linear space L, the canonical morphism L --~ of
cones is an isomorphism of linear spaces over S. In addition to the theorem
of Fischer-Prill this implies that the linear space structure of L is already
determined by the cone structure: For a complex analytic cone X over S
there is at most one structure on X as a linear space over S compatible
with the given cone structure. . This interesting fact holds in the category of
complex spaces over a complex base space, but not in an arbitrary category;
see however [3]. (We see, for instance, that there is only one holomorphic
addition on (Cn making it into a linear space over C together with the usual
multiplication; but for n > 2 it is easy to find different non-holomorphic
additions with the same property.)

It therefore makes sense to ask whether a given cone X = Specan(A) is a
linear space; this means that the canonical morphism J~ -~ of cones
over S is an isomorphism.

3.2 Reduction of a linear space

Now let L = V(F) be a linear space over S. Then Lred is a cone over
Sred. In view of paragraph 3.1 it is natural to ask (see Fischer [7, § 1.6])
whether Lred is a linear space over Sred. Theorem 1.2 implies that Lred
is a linear space if and only if the canonical Os-algebra homomorphism



S(.~’/Nl) -> S(0)/N is an isomorphism, where N := N(S(0)) is the

graded ideal of nilpotent elements in S(.~’), or equivalently if N is generated
as an by Ni . This is not always the case, as will be shown in

Proposition 3.11(3).
. We remark that as a consequence of paragraph 1.4, we have

in particular

3.3 Grauert-linear spaces

In [8] Grauert introduced a notion of quasilinear and linear spaces in
the category of reduced complex spaces as follows: Let S be a reduced

complex space. A quasilineaT space over S is a reduced complex space L
over S together with holomorphic mappings a : (L x s L)red -> L and
~ : C x L -~ L over S such that for every point s in S the induced mappings

define the structure of a vector space on the reduced fibre (Ls) red °
A morphism ~ : L1 -~ L2 of quasilinear spaces over S is a holomorphic

mapping over S such that for every point s in S the induced mapping
"~ of the reduced fibres is linear.

Let L be a quasilinear space over S. A quasilinear subspace of L is a
reduced closed analytic subspace L’ of L such that for every point s in S
the reduced fibre is a linear subspace of The restriction

of the " quasiaddition " of L then induces a quasiaddition on L’ making
L’ a quasilinear space, and the inclusion L’ -~ L a morphism of quasilinear
spaces.

For a quasilinear space L over S we get a mapping (of sets) v : ,S -~ L,
called the zero section of L, by putting v(s) := OS, where Os is the zero

element of (Ls)red. °


