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SINGULAR PERTURBATIONS FOR A CLASS

OF QUASI-LINEAR HYPERBOLIC EQUATIONS

Monique MADAUNE (1)

Annales Faculté des Sciences Toulouse

Vol !, 1979, P. 137 a 163

(1 ) Département de mathématiques, Université de Pau, A venue Philippon, 64000 Pau, France.

Resume : : Nous étudions Ie comportement pour ~ ~ 0+ de la solution d’un problème aux limites relatif a

EL2uE ou L. 
l 

(j = 1,2) est un opérateur linéaire hyperbolique d’ordre j et G une fonction lips-
chitzienne.

Dans le cas «tempered nous obtenons la convergence de u vers u et des dérivées de u dans des espaces de
Sobolev locaux ou u est la solution d’un problème aux limites relatif à Ll (u) + G(u) = f .

Summary : We study the behavior for E -~ 0 + of the solution of a boundary value problem relative to

EL2uE + + G(uE) = f where Lj j (j = 1,2) is a linear hyperbolic operator of order j and G a lipschitzian
function.

In the «time like» case, we obtain the convergence of uE to u and of the derivatives of u in local Sobolev spa-

ces where u is the solution of a boundary value problem relative to L~ u + G(u) = f.

We study a problem of singular perturbations for a class of hyperbolic quasi-linear partial differen-
tial equations which are of the type :

f) 9 ~ 
~ 

where L2 = A , L1 = b. -22014 and G : IR ~ R is a lipschitzian function.
8t" ’~ k=! 3x~
h particular, this type of equation inc!udes the Gordon’s equation with damping. A similar non
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linear problem has been studied by R. Geel [3] with a function G(x,t,v) whose derivative, with respect to v, satis-

fies a Holder condition with exponent a > 0, the solutions being taken in the classical sense.

We consider the problem in the «time-like» case, that is : when operator Ll divides operator L2 in

the sense of J. Leray [5], L. Garding [2]. The results of convergence are obtained in Sobolev spaces of local type

and are analogous, with some supplementary results, to those established in the case when the non-linear term is

G(v) = I v I P v [4]. Moreover the theory of non linear interpolation has the interest to give here a theorem of

convergence with weakened assumptions.

The following is an outline of this work :

1. Notations hypotheses and two examples
2. Convergence of u f and L 1 U f
3. Convergence of the derivatives of u~
4. Application of the non linear interpolation
5. Some remarks about correctors.

1. . NOTATIONS HYPOTHESES AND TWO EXAMPLES

S~ is a bounded open set in IRn of class,~(1 )~1 ( J . Ne~as [9]) with boundary r 

We set Q = n x ]o,T[, T real > 0, E = r x [o,T] and for every t E [o,T], Qt = n x ]0,t[, Et = r x [0,t].

We represent the norm of the usual Sobolev spaces, by :

and the inner product in L~( ~2) by (’,’). We keep the same notation (’,’) for the duality beetween ),

L~( ~2) (!+-!-= 1) and H-~ ( ~ 
P P’

We note u’, u",... the derivatives of u in the sense of vector-value distributions on ]0,T[ and the bilinear

~ ~ ~form grad u.grad v dx.

~2
We consider the following initial boundary value problem:



(two examples are given p. 141 and p. 143).

and the corresponding variational problem :

The condition H1 (iii) implies (see M. Marcus and V.J. Mizel [7]) the :

LEMME .1, G’ ((R) and for every v E H ~ (Q), we have : :

EXISTENCE AND REGULARITY OF THE SOLUTION UE 

Taking into account hypothesis about a, bk and f, and lemma 1.1, one can show thanks to Galerkin’s method
( in the case a, bk = 0 see J .C. Saut [10]), the

THEOREM 1.2. The problem p~ has o unique solution, for each e > p,



()n fact there exists a solution as soon as G is a Hölder function with exponent a, 0  a  1).

THEOREM 1.3. . Under hypothesis

for each E > 0, there exists a unique solution to the problem J~ such that :

In order to study the convergence, we have to introduce :

(1) The fundamental hypothesis :

The results of convergence are obtained in the « time-like» case that is with the condition :

One can deduce from (A) the two properties :

For every functions v E L2(Q), 9 E C°(Q), 8 > 0, such that 8 I grad v I and 8 v’ E L2(Q),
we have :

where the positive constant c~~ depends only on the coefficients.

(2) Weight functions : ;

Let v = (v ~,v2,..., v n, 0) the unit normal outward vector to Z when it exists.

We represent by A the null-subset of Z where v is not defined, and by E_, ~+ , ~o , the
subsets of E -~l corresponding respectively to :

Under the hypothesis H~ (ii) and the assumption :



H’1 : L is a vector-field of class C1 on an open set of IR n+ 1 which contains Q,we may use functions
03C6 (F. Mignot and J.P. Puel [8]) satisfying the condition : :

These functions are such that :

There is a null-set Z C Q such that V (x,t) E (Q-Z) U E_ , there existe a function ~p satisfying
such that 0. 

-

For each compact K C Q with K r1 E_~_) = ~ , where ~( ( E+) denotes a neigh bourhood of
E+ in 2, there exists a function 03C6 satisfying such that

GREEN’S FORMULA FOR OPERATOR L~ :

Under the hypothesis H’~ and the condition

(B) : 8 S_ is a finite reunion of (n-1) dimensional C submanifo!ds
C L~(Q~) such that L~(Q ), w! ( . = 0 ~ w(x,0) = u , we have :

We will start the study of the general case investigated below with an illustration through two simple examples
which are Klein-Gordon equation with G(u) = sin u.

EXEMPLE 1. We consider the problem where Q is the square ]0,1 [ x ]0,1 [ in IR2 (fig.1 )

Fig.1



b constant with 0  b  1.
au

We note Li the operator of first order L. u = u’ + b -.’ ’ ax

We have seen in the general case that if (S~) , u~ E L2(S~) and f E L2(Q) the problem ~ has a unique
solution u e’ for all e > 0, such that L°°(o,T ; H1 o (S~)), E L°°(o,T ; L2(S~)).
For the weight fonctions and the limit problem the subsets of the boundary taken into account are :

(We remark that the subset A of E where the outward normal is not defined is composed of the four edges,

00’, AA’, BB’ and CC’).

The weight fonctions /? satisfy :

Let ~(x,y)=1 -x.

Obviously 03C6 satisfies the condition 1 and we have here the fact 03C6 (x,y) > 0 for (x,y) C Q U r_. Moreover,

for each % 0 7  1 , ~(x,y) >7on ~ where ~==]OJ-7[ x 

The limit problem is here given by : :

~has a unique solution such that u E L2(S2)) and L~u E L~(Q).



Then, with the use of the function cp the results of convergence are

(i) For uo E Ho (Q), u1 E f E L2(Q), the solution uE converges to u in L~ (0,T ; L2( weak-

star and in Lq(Q), Vq  2. Moreover It: converges to u in L2(S2y)) and L1 uE converges
to L~ u in L2(O,T ; L2(S2y)), dy E ]0,1 [.
Besides for uE we have : u~ converges to u’ in L~ (OJ ; L~(~)) weak star

(ii) If we take u~ E H2(S2) n u~ E Ho(St), f E L2(O,T ; H~ ~2 )) such that f(O,y,t) = f(l,y,t) = 0
and f’ E L2(Q) we can state that ue converges to u in H~ (Qy) where Qy= and we have the

estimation :

where the constant Ky can be written Ky=C y 3 with C constant inde- "

pendant of e and y.

Let now, (1-x)(1-y)y.

This new function (/? satisfies the condition ,5~~ and is such that :

Moreover this function has the supplementary property ~p (x,y) = 0 on r o.

Then by the use of this more particular function, we obtain the result of convergence and the estimation of the
point (ii), without the condition f(x,y,t) = 0 on kO’ but with n replaced by x ]~,1-~y[ , Q by
]0,1-~[ x x ]O,T[ . . 

~ 

EXEMPLE 2. We take the same problems ,~E and @ but we consider here the open set S~ _ (x,y) E R2 ;
(x-1 )2 + y2  1 ~ (fig. 2) .

Fig. 2



and ~ is composed of the two generating lines AA’ and BB’.

The weight function we will use, is :

2
I t is such that : 03C6 (x,y) = 0 on (x,y) > 0 on 03A9 U r- and for each y, 0  y  1, 03C6 (x,y) 03B3- 4 on
SZy where Sty (x,Y) ; (x-~ + y)2 + v2  1 ~ (fig. 3)

Fig. 3

We have the same results as in example 1, point (i). Because of the fact: w (x,y) = 0 on r~, we have

nH~(~), converges

(Q ), V 7 S ]0,1 [, where Q~ = ~ x ]0,T[.

Moreover the use of the interpolation theory can improve the results in the following way :

ifu 6 H1o(03A9), u1 ~ L2(03A9), f ~ L2(0,T ; Hs(03A9)), 0  s  1 , we have the estimation



I 
L2(03A903B3 y K 7 E s/2 for each y E ]0,1 [ , where the constant K 7 can be written K = C 7 3 with C

constant independent of e and 7.

To avoid a too long text the remarks about the use of function ~p such that ~p = 0 on Eo U Z_~_
will not be detailed in the general case.

Throughout this paper, C~ and k~ will denote positive constants which are independent of f , uo , u1 and e .

2. CONVERGENCE OF uE AND L~ uE

In this section we obtain under the hypothesis H~ and the condition (A) the convergence of the solu-
tion u of the problem ~ to u solution of the problem.

as also the convergence of L1 ue to L1 u in a local space. We use a method of regularization and monotonicity-
compactness arguments. The first subsection is devoted to the study of a priori estimates and the second one to
the convergence.

2.1- A PRIORI ESTIMATES .

THEOREM 2.1.1. We assume condition (A) ; then ~ 0 such that : b’E  Eo the solution ue of the pro-
blem ~E satisfies : ;

Preuve We take off the method used in [4] theorem 2.1.

With assumption H2 :
Then we can make v = ue + 2 E a ~ u  in (1.4). With the same transformations as in [4] for the li-

near terms and taking into account that the nonlinear terms are bounded as follows



we obtain the statement.

With assumption H 1 :

We use a method of approximation. We consider a family satisfying hypothesis

H2 , such that

Then I u 
E 

I 2 + « II 2 + B~~ ~ N I 2  K1 ~ and K1 bounded independently of p. So we

can extract a subsequence still noted such that :

converges to v in L°°(0,T ; H1 o (S~)) weak star, u’ E , ~u converges weakly to v~ in L2(Q), u" E ~ I~ converges

weakly to in L2(o,T ; H-1 (S~)).

converges to v in L2(Q), G(u E~~ converges to G (v e ) in L2(Q).
Hence we can take the limit with respect to  in the equation satisfied by and in boundary conditions and

initial datas.

We deduce that v~ 
= 

u E which gives us the estimates of the theorem.

The estimates on the derivatives of u E are not sufficient to conclude about the behavior of u~ as e - 0+ .
Under the assumptions of this section, they may be improved by an estimate of L1 uE independent of e, ,

the weight function cp beeing introduced in order to compensate the behavior of the derivatives of u~, in a
neighborhood of the surface defining the boundary layer.

THEOREM 2.1.2. Under assumption H’1 and condition (A), for each function cp satisfying .9~J (i), the solution
u e of problem ~E verifies ;

Proof ; One can easily check as for theorem 2.1.1 that it is sufficient to show theorem 2.1.2. under hypothesis

H2.
Then we take the inner product of the two members of (1.1) with ~p L~ U e .

We transform the linear terms as in [4] theorem 2.3, the nonlinear term is bounded by :



and theorem 2.1.2 follows.

At last, with the additional hypothesis H2, we can obtain an estimate in L2( S~) which is indepen-
dent of e, by the method of differential ratios.

~ THEOREM 2.1.3. With assumptions H’~ , H~, condition (A) and the coefficients bk independent of t ; for each
e, 0  E  E o , the solution u E of ~E verifies

Proof . We use a method of differential ratios. We consider equality (1.4) with v E at time s and s + h

(h > 0). 

We set wE 
= h + h) - u E(s)~ and throughout the proof the constants k~ are moreover independent

of h.

By subtracting the two equal ities, we have :

_ ,..

By taking v = + 2e a-1(s+h)w’,h and integrating from 0 to t, we obtain as in the first part of theo-> >

rem 2,1 ,1 ; :

and where the nonlinear term has been bounded as follows :



Thanks to (1.1 ), one can see that e uE (0) is bounded in independently of e and so that :

KE (h) ~ k4 e) for small h.

Then (2.1 ) implies :

from which we deduce, by Gronwall’s lemma :

It results from (2.I ) and (2.2) that a su bsequence of is such that:
>

converges to u§ in C°(0,T ; L2(03A9)) weak star, weakly in L2(0,T ; H§( Q)) and strongly in L2(Q),
>

converges to u§’ weakly in L2(Q) and consequently by taking the limit with respect to h in (2.I ), we have:
>

Theorem 2.1.3 follows thanks to Gronwall’s lemma :

2.2 - CONVERGENCE

2.2.1- FIRST RESULTS OF CONVERGENCE :

We assume in all this subsection hypotheses H~ , H~ , conditions (A) et (B). The solution ue of ~E
satisfies the estimates of theorems 2.1.1, 2.1.2. Moreover we deduce from (1.1) that for each functions 03C6 satis-

fying conditions J~i (i) and for e  eo:

Then, we can extract a subsequence, still written such that :



Where u verifies ([4], section 3)

Its remains to prove that X = G(u), which can be established by a monotonicity method ([4], section 3), by
noting that we can write G(u) = - (Q+1 )u + Mu where M is a strictly monotone and hemicontinuous operator
(the monotonicity method is used in [4] when the operator L1- (Q+1 )I is positive ; we are brought back to this
case by the change of variable U~ = u~ e~t , the constant X beeing choosen such that the new first order linear
operator is positive. We remark that the new nonlinear function is defined by = e’~ e ) and veri-
fies

We can then apply the monotonicity method to the function UE which satisfies the same properties of regulari-
ty and the same estimates as because :

So u is solution of the problem

Remark. It results from (2.4) that L1 u E L°° (o,T ; L2(S~)). Moreover it is easy to see that u is unique, thanks
to Green’s formula (1.7).

Hence, we have the

LEMMA 2.2.1. (weak convergence) With assumptions H~, H~ conditions (A), (B), the solution uE of ~E con-
verges to the solution of problem P in L °°(0, T ; L 2( S?~) weak star.
Moreover ~ L luE converges to ~L 1 u weakly in and if b’ k = 0 (k=1,2,...,n) converges to u in

L °°(0, T ; L2(~)) weak star.

Our aim is now to obtain some results of strong convergence.

LEMMA 2.2.2. . With the hypotheses of lemma 2.2.1, the solution uE of problem ~E verifie converges
to 03C6 u in L °° (0, T ; L 2(03A9)) for each function satisfying 1.



Proof. We consider w~ 
= u ; w~ satisfies

We can take the inner product of the two members of (2.5) with w E E Loo (O,T;L 2( S~)). After integration from
0 to t, it comes :

from where, we deduce, by integrating by parts the term

thanks to the theorems 2.1.1, 2.1.2.

From (2.6) we deduce that :

As (2.3) implies : He (s) bounded by a constant independent of e and lim He (s) = 0, lemma 2.2.2 follows
E -~ 0

thanks to Lebesgue’s theorem.

The following lemma gives a result of convergence for ~p L~ .

LEMMA 2.2.3. We assume hypotheses and conditions (A), (B). Then, for each function cp satisfying

condition ~~1, the solution u E of ~E verifies ;

Proof. We consider the inner product of the two members of (2.5) with 03C62 L 1 w E L2(Q) and we integrate



from 0 to t. We obtain :

ft .By integrating by parts the term ~ t (L~u~, ~" L~u~) ds, then using inequality (1.5), and inequality (1.6)
with 0 =-03C6 Li 03C6 , we show the minoration :

where mi ’ (i = 1,2) is a constant independent of E.

Then, it results from (2.7) that :

As M e (t) -~ 0 when E ~ 0+ , and ME (t) is bounded independently of e thanks to (2.3), we conclude thanks
to Lebesgue’s theorem that Li w I 2 -~ 0 and the lemma follows.

Remark. The proof of the lemma also shows that u’E -~ 0 and I grad 0 in

L~ (o,T;L2(S~ )).

2.2.2 - CONVERGENCE OF uE and L~ uE :

The results of the subsection 2.2.1 I may be improved as follows.

THEOREM 2.2.4. With hypothesis H~ , conditions (A) and (BJ, the solution uE of problem .~E verifies : ;

(i) U E converges to u in L ~(0, T;L weak star and in b’q  2 where u

is the solution of the problem P.

Uf converges to u and L to L lu in where Q’ is an open set of Q such that

Q’ 
’ 

n ~ ( ~+ J = ~, where (E + J is a neighborhood of E in E.



(ii) for each function ~p satisfying conditions ~~ :

(iii) I f we also assume hypothesis H2 and that the coefficients bk are independent of t, u E--~ u 
’

in L~(O,T;L2(S~)) weak-star.

Proof. We remark that existence and uniqueness of u solution of the problem P is insured under the single hypo-

theses H1 and H’1 (C. Bardos [1 ] p.199, by using the transformation Gu =- (Q+1 )u+Mu).

To prove points (i) and (ii), we use a method of regularization as in the proof of theorem 2.1.1, We approximate
the triplet by a sequence (f;uo, ~; satisfying H2 such that :

and it results from theorems 2.1.1 and 2.1.2, since > ~) -G(uE ) I  Q that

where ko is a positive constant independent of ~u and e

from where we deduce by taking the inner product of (2.10) with w~ , using Green’s formula (1.7) and at last by

integrating from 0 to t

Then, Gronwall’s lemma implies :

Now by taking the inner product of (2.10) with L1 w~ , we obtain :



At last, by using the results of subsection 2.2.1, for each fixed 

As ue -u= - we ,Jl + w~ , one can easily check thanks to (2.8), (2.9), (2.11), (2.12), (2.13)
that :

and the point (ii) follows. To achieve the proof of the point (i) we remark that the convergence of uE and L1 uc
in L2(Q’) results from the properties of the functions 03C6 . These properties also imply that u ~ u a.e. in Q.

bounded in L2~q(Q), 2, there is a subsequence of u such that u - u q -~ 0 wea-
kly in (Q) Vq  2, from where u~ converges to u strongly in Lq(Q), Vq  2.

The point (iii) results from lemma 2.2.1. .

3. CONVERGENCE OF THE DERIVATIVES OF uE

In this section, we improve the results of convergence. We aim at obtaining, on the one hand, the strong conver-

gence of the derivatives of ue in local spaces, on the other hand, the rate of convergence in e of c~ 3~2(u - u)
in the space L~ (o,T,L (S~)). This kind of results needs hypotheses of regularity on f, because of the non-regula-
rity of u under the only assumptions : f, f’ E L2(Q), the derivatives of the function u generally having poles on
the part Eo of E.

So, we impose on f the hypothesis

With the hypothesis H~, we first establish additional a priori estimates which allow us to obtain by compactness
artuments the convergence of u to u solution of the problem P.



3.1 - A PRIORI ESTIMATES

THEOREM 3,1.1. . We suppose hypotheses Hj, H2, conditions (A), (B) and G(0) = 0.

Then for E, , o  E  Eo , the solution uE satisfies the estimates of theorems 2.1.1, , 2.1.2, 2.1.3 and moreover

veri fies :

for each function ~ satisfying ~ 
~ 

f

Proof. The smoothness properties of under hypothesis H2, allow us to take the inner product of two mem-

bers of (1.1 ) comes :

Green’s formula gives the following transformations :

as G(u ) E Q)), thanks to lemma 1.1,

Then we have :

by taking into account theorem 2.1.2 :



thanks to theorem 2.1.1. and lemma 1.1 :

and at last :

n

So, taking into account results (3.3) to (3.9), 0 on Q, bkv k)  0 on 03A3 and the properties of
the coefficients, equality (3.2) gives :

Now, we consider the method of the differential ratios when the coefficents bk depend on t. We have with the
same notation as in the proof of the theorem 2.1.3 :

We first obtain by taking v h + 2e a-1 (s+h)w’, h) in (3.I I ) as in the proof of the theorem 2.1 .3> >

and then by putting v = ~p3 (w~ h + 2 e a ~ (s+h) wE h) in (3.11 ) and taking into account (3.12), it comes :

It results from (3.10) and (3.13) :

and theorem 3.1.1 follows.



3.2 - CONVERGENCE

With hypotheses Hi, H~ , conditions (A), (B) and G(0) = 0, the following a priori estimates

allow us to extract a subsequence still denoted by u such that :

So, in particular, we have : cp3~2 u~ converges to ~P3~2 u weakly in H (Q) and strongly in L2(Q). The proper-
ties of functions ’() imply the existence of a new subsequence such that u~ converges to u a.e. on Q and so G(u f)
converges to G(u) a.e. on Q. As I G(uE ) I 2  Q K~ (f,uo,u1’ e) we finally have :

One can check that u is the solution of problem P (for which we also have shown smoothness properties).
Hence we have the

THEOREM 3.2.1. (weak-convergence). Under hypotheses H2 , H3 , conditions (A~, (B) and = 0, the

solution U 
E 
of ~E verifies ;

where u is the of the problem P.

Of course, the results of strong convergence of theorem 2.2.4 are still valid in the frame of this section. We are

now interested by the rate of convergence in e of w 3/2 (u - u) in L~ (0,T;L (03A9 )). For this, we first improve
the estimates satisfied by u in and u’ in which result from the theorem 3.2.1.

We obtain the

LEMMA 3.2.2. With the same hypotheses as in theorem ~.2. /, ~~ have



Proof. We consider the equality

Thanks to (3.3), (3.4), (3.5), (3.7), (3.9) where ue is replaced by u, inequality

n

the fact that 0 on Q, 0 on E, and the properties of the coefficients, it comes :

And Gronwall’s lemma gives the estimates. (When u is not smooth enough, the lemma results from the study of the
solution of the regularized problem - 

r~ ~ v + L~ v + G(v) = F , r~ > o 
).

= 0 , v(x,0) = uo 
~ °

Now, we may prove the

THEOREM 3.2.3. (rate of con vergence). With hypotheses of theorem 3.2.1, for each E, 0  e  Ea we have ;

where Q’ is an open set of Q such that Q’ ~ ~Y( E ~ = ~,

Proof. We set w~ 
= 

ue - u and we take the inner product of e L2 uE + L~ w + G(u) = 0 with
~P 3 w, E L~ )). It comes :

thanks to the theorems 2.1.1, 2.1.2 and lemma 3.2.2, the statement follows by application of Gronwall’s lemma.



Remark. We also have shown that |03C63/2| gr£ u ~2  K5 and |w 3/2 u’|2  K5.

The following theorem gives results of strong convergence for the derivatives of .

THEOREM 3 . 2 .4 (strong convergence of the derivatives). With hypotheses o f theorem 3. 2, I, we have:

Proof. We consider again (3.14).

Gronwall’s lemma and Lebesgue’s theorem allow us to conclude because (t)) I is bounded. (ii) results from

properties of functions ~ . .

Remark 3.2.5. With hypothesis H~, conditions (A),(B) and G(o)=o, the results of theorem 3.2.3 are still valid if

f E ( S~)). It is once more enough to approximate the triplet (f;u u ) in )) x Q)
x L2( Q) by a sequence (f I~ ;u ) satisfying hypothesis H2. 

01

4. APPLICATION OF NON LINEAR INTERPOLATION

The application of non linear interpolation theory (L. Tartar [11]) allows us to explicite i c~3/2(u _ E u) 12 in E,
with less assumptions than in section 3, in particular without condition on f over ~~ (~o U l~).

We first recall the theorem of non linear interpolation of [ 11] which will be then applied to our problem. The

useful result is the following :

Let A C B C B1 Banach spaces and T a map such that T(A1 ) C B~ , T(Ao) C Bo and :



f continuous on (~,2, g continuous on 

Then, if 0  8  1, 1  we have :

the space beeing defined by :

V 1

This result applied to our problem gives the :

THEOREM 4.1. We suppose hypothesis N~ , conditions (A), (B) and G(o) = 0,

for each function w satisfying 3/j and: :
I -0

j - 

u j L2(Q’)  K g e 
2 where Q ’ is an open set of Q such that Q ’ Q ’(03A3+ ) = fl

(it) /n particular, if f G L 2(0, T;f#( Q) ), 0  s  I Q regular, we have .’
2



It results from theorems 1.2 and 2.2.4 that TE maps A~ into B~ and also Ao into Bo.

from where by recalling the proof of theorem 2.1.1 and taking into account I G(Ue ) - I ~ we

deduce :

We take the inner product of two members of (4.2) with w and we integrate from 0 to t. Green’s formula (1.7)
gives :

and Gronwall’s lemma then implies that :

at last, (4.1) and (4.3) give the inequality :

(b) If we consider Ao -~ Bo, it results from remark 3.2.5 that :

(c) The hypotheses of the theorem of non linear interpolation are satisfied thanks to (a) and (b), with a = I ,

# = i , fr,s> = k~, gr> = cse> 1 ’2, p = 2
and the appl ication of this theorem allows us to assert that



x x L2(S2).
The result (ii) is an application of point (i) since, for 0 ~ s  ~,

5. REMARK ABOUT CORRECTORS

We can define under hypothesis H1 and condition (A) correctors in the sense of J.L. Lions [6].
Let g~ E L2(Q) given and 8 E defined by

The theorem 1.2 ensures the existence and uniqueness of 6E+ u such that :

Then is a corrector in the following sense :

THEOREM 5.1. Under hypothesis condition (A), if g ~ L2(Q) with |g|2 bounded independently of ,
we have .’

Proof. We consider ue - which verifies

and we follow once more the method of the proof of theorem 2.1.1.

We first suppose that g’E E L2(Q) and hypothesis H~.
We obtain by the same arguments, taking into account -- G(8E+u)I  Q I we I the inequality :



It is enough then to approximative in L2(Q) x L2(Q) x H1o( Q ) x L2( ( Q ) (f ; g ; u ; u1) by
(f Il;g satisfying hypothesis H2 with G L2(Q) to assert that (4.4) is still valid under hypothe-
ses of the theorem which thus is proved.
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