Annales de la faculté des sciences de Toulouse

PATRICE TAUVEL

Sur les quotients premiers de l'algèbre enveloppante d'une algèbre de Lie résoluble, II

Annales de la faculté des sciences de Toulouse 5^e série, tome 1, n° 3 (1979), p. 257-267 http://www.numdam.org/item?id=AFST 1979 5 1 3 257 0>

© Université Paul Sabatier, 1979, tous droits réservés.

L'accès aux archives de la revue « Annales de la faculté des sciences de Toulouse » (http://picard.ups-tlse.fr/~annales/) implique l'accord avec les conditions générales d'utilisation (http://www.numdam.org/conditions). Toute utilisation commerciale ou impression systématique est constitutive d'une infraction pénale. Toute copie ou impression de ce fichier doit contenir la présente mention de copyright.

SUR LES QUOTIENTS PREMIERS DE L'ALGEBRE ENVELOPPANTE D'UNE ALGEBRE DE LIE RESOLUBLE, II.

Patrice Tauvel (1)

(1) Mathématiques, U.E.R. 47, Tour 46, Université Pierre et Marie Curie 4, place Jussieu, 75230 Paris.

Résumé: Soient g une algèbre de Lie résoluble et A le corps des fractions d'un quotient premier de U(g). On calcule le maximum des degrés de transcendance des sous-corps commutatifs de A.

Summary: Let g be a solvable Lie algebra and A the quotient field of a prime quotient of U(g). We compute Max tr. deg A.

1 - INTRODUCTION ET RAPPELS

- 1.1. Dans toute la suite, F désigne un corps commutatif de caractéristique 0. Le mot «algèbre» signifie «algèbre associative à élément unité» et tous les modules sur une algèbre sont supposés unitaires. Si A est une F-algèbre, on note Dim_FA ou Dim A la dimension de Gelfand-Kirillov de A sur F (c.f. [2]). Si M est un A-module, on désigne par Kdim_AM ou Kdim M la dimension de Krull de M (c.f. [6]).
- 1.2. Soit A une F-algèbre. Rappelons la définition du degré de transcendance de A sur F (c.f. [13]). Si B est une sous-algèbre commutative intègre de A, le degré de transcendance de B sur F est le degré de transcendance sur F du corps des fractions de B. Le degré de transcendance de A sur F (noté tr. deg_F A) est le maximum des degrés de transcendance sur F des sous-algèbres commutatives de A.

La dimension de Gelfand-Kirillov commutative de A (notée $CDim_FA$) est le maximum des dimensions de Gelfand-Kirillov des sous-algèbres commutatives de A (c.f. [7]). Il est clair, d'après [2], 2.1., que si A est intègre, on a tr.deg_FA = $CDim_FA$.

1.3. - Dans la section 2 de ce travail, on calcule le degré de transcendance des algèbres $\mathcal{A}(V, \delta, G)$

258 P. Tauvel

(c.f. [8] et [9]). On passe ensuite au cas d'un quotient premier A de l'algèbre enveloppante d'une algèbre de Lie résoluble dans la section 3. La dernière partie est consacrée à une construction explicite (inspirée par [11]) de certains sous-corps commutatifs maximaux du corps des fractions de A. Ces sous-corps sont stables par la représentation adjointe de l'algèbre de Lie et leur degré de transcendance est égal à celui de A.

2 - DEGRE DE TRANSCENDANCE DES ALGEBRES A(V, δ,G)

- 2.1. Soient A une F-algèbre et $x_1,...,x_n$ des indéterminées. On pose $A[x_1,...,x_n] = A \otimes_F F[x_1,...,x_n]$ et $A(x_1,...,x_n) = A \otimes_F F(x_1,...,x_n)$. Nous aurons dans cette partie à utiliser les résultats suivants ([13], proposition 3.8. et théorème 3.16.).
 - Si A est une F-algèbre noethérienne, Kdim $A(x_1,...,x_n) \ge Kdim A$.
 - Si K est un corps de centre F et si tr. $\deg_F K \ge n$, Kdim $K(x_1,...,x_n) = n$
- 2.2. Soient V un F-espace vectoriel de dimension finie, δ une forme bilinéaire alternée sur V, G un sous-groupe libre de type fini de V^* . On renvoie à [8] et [9] pour les rappels suivants.

On note $U_{\delta}(V)$ la F-algèbre engendrée par V avec les seules relations $v.w-w.v=\delta$ (v,w) pour $v,w\in V.$ Si $\lambda\in V^*$, on lui associe un automorphisme θ_{λ} de $U_{\delta}(V)$ défini par $\theta_{\lambda}(v)=v+\lambda(v)$ pour $v\in V.$ Notant encore G l'image par $\theta:\lambda\to\theta_{\lambda}$ du groupe G dans $Aut(U_{\delta}(V))$, l'algèbre $\mathscr{A}_F(V,\delta,G)$ (ou $\mathscr{A}(V,\delta,G))$ est le produit croisé de $U_{\delta}(V)$ par G défini par θ . On notera V^{δ} le noyau de δ , V^{G} l'ortogonal de G dans G et G le noyau de G l'ortogonal de G dans ce cas, elle est même centrale simple. Nous supposerons dans la suite cette condition réalisée.

2.3. LEMME. - Soit $A = \mathcal{A}_{F}(V, \delta, G)$ (supposée simple) comme en 2.2. On a

$$CDim_F A = tr. deg_F A = (1/2)(dim V^G + dim V^{G\delta}) + rang(G) = Kdim A.$$

Démonstration. La première égalité résulte du fait que A est intègre. La dernière est montrée dans [14], I, proposition 4.1, (ii).

Soit $\left\{x_1,...,x_n,y_1,...,y_n,z_1,...,z_p\right\}$ une base de V^G . On suppose que $\left\{z_1,...,z_p\right\}$ est une base de $V^{G\delta}$ et que

$$[x_{i},x_{j}] = [y_{i},y_{j}] = 0 \; ; \; [x_{i},y_{j}] = \; \delta_{\; ij} \; , \;\; 1 \leqslant \; i,j \; \leqslant n.$$

Soit $\{g_1,...,g_r\}$ une base du Z-module libre G. La sous-algèbre de A engendrée par $x_1,...,x_n,z_1,...,z_p,g_1,...,g_p$ est commutative. Il vient donc CDim A \geq Kdim A.

Soit F[G] l'algèbre du groupe G. Pour $i \in N$, soit $A_i \subset A$ le sous-espace des polynômes (non commutatifs) à coefficients dans F[G] et de degré \leq i en les éléments de V. Les A_i , $i \in N$, définissent une filtration de A et

Sur les quotients premiers 259

l'algèbre graduée associée est commutative de type fini (voir par exemple [13], I, démonstration de la proposition 4.1.). Considérons A comme un A-module à gauche. Pour $a \in A$, soit $R_a \in \operatorname{Hom}_A(A,A)$ défini par $x \to xa$ pour $x \in A$. L'algèbre A étant intègre, si B est une sous-algèbre commutative de A, l'application $a \to R_a$, $a \in B$, définit un isomorphisme de B sur une sous-algèbre commutative de $\operatorname{Hom}_A(A,A)$. D'après [7], proposition 1.2., il vient donc CDim $A \leqslant \operatorname{CDim} \operatorname{Hom}_A(A,A) \leqslant \operatorname{Kdim} A$. D'où le lemme.

2.4. PROPOSITION. - Soient $A = \mathcal{A}_F(V, \delta, G)$ (supposée simple) comme en 2.2., B le corps des fractions de A et $x_1,...,x_n$ des indéterminées. On a

- (i) Kdim $A(x_1,...,x_n) = Kdim A = (1/2) (dim V^G + dim V^{G\delta}) + rang (G)$.
- (ii) Kdim $B(x_1,...,x_n) = Inf(Kdim A, n)$.

Démonstration. (i) Soient $K = F(x_1,...,x_n)$ et V', δ ', G' les objets déduits de V, δ , G par extension des scalaires. On a

$$A(x_1,...,x_n) = A \otimes_{\mathbf{F}} K = \mathscr{A}_{\mathbf{K}}(V', \delta', G')$$

L'assertion (i) résulte donc de [14], I, proposition 4.1., (iii).

(ii) Il résulte de [13], proposition 4.1., que le centre de B est égal à F.

Supposons $n \le Kdim A$. D'après le lemme 2.3., on a tr. $\deg_F B \ge tr$. $\deg_F A \ge n$. L'assertion (ii) résulte donc dans ce cas de 2.1.

Supposons n > m = Kdim A. Posons $K' = F(x_1,...,x_m)$, $B' = B \otimes_F K'$. D'après 2.1., on a

Kdim $B(x_1,...,x_n) = Kdim(B' \otimes_{K'}K'(x_{m+1},...,x_n) \ge Kdim B'$. La première partie de la démonstration montre que Kdim B' = Kdim A. On a donc Kdim $B(x_1,...,x_n) \ge Kdim A$. D'autre part, $B(x_1,...,x_n)$ étant un localisé de $A(x_1,...,x_n)$, on a Kdim $B(x_1,...,x_n) \le Kdim A(x_1,...,x_n) = Kdim A$. D'où l'assertion (ii).

2.5. PROPOSITION. - Soit $A = \mathcal{A}_{\mathsf{F}}(\mathsf{V}, \delta, \mathsf{G})$ (supposée simple) comme en 2.2., B le corps des fractions de A. On a

tr.
$$deg_F B = tr. deg_F A = (1/2)(dim V^G + dim V^G \delta) + rang (G)$$
.

Démonstration. Compte tenu de 2.3., il reste seulement à démontrer la première égalité. On a déjà vu tr. $\deg_F B \geqslant m = \text{tr.} \deg_F A$. Si $\text{tr.} \deg_F B > m$, d'après 2.1., on aurait Kdim $B(x_1,...,x_{m+1}) = m+1$, en contradiction avec la proposition précédente. D'où le résultat.

3 - QUOTIENTS PREMIERS DES ALGEBRES ENVELOPPANTES

3.1. - Dans toute la suite de ce travail, on désigne par k un corps commutatif algébriquement clos de caractéristique 0.

Si A est une k-algèbre et E une partie de A permettant un calcul des fractions, on note A_E l'anneau des fractions de A défini par E.

Toutes les algèbres de Lie considérées sont, sauf mention du contraire définies sur k, de dimension finie et résolubles. On renvoie à [1] et [3] pour les concepts généraux utilisés.

Soient g une k-algèbre de Lie résoluble et P un idéal premier de l'algèbre enveloppante U(g) de g. On désigne par A(P) l'algèbre U(g)/P, par E(P) l'ensemble des semi-invariants non nuls de A(P) et par SZ(P) la sous-algèbre de A(P) engendrée par E(P). Le corps des fractions de A(P) est noté K(P); le centre de K(P) est noté K(P). D'après [8] et [9], il existe une K(P)-algèbre simple $\mathcal{A}_{C(P)}(V,\delta,G)$ et un K(P)-isomorphisme

$$\Phi: A(P)_{E(P)} \longrightarrow \mathscr{A}_{C(P)}(V, \delta, G)$$

3.2. LEMME. - Avec les notations précédentes, $\Phi\left(SZ(P)_{E(P)}\right)$ est égal à l'ensemble des combinaisons linéaires à coefficients dans C(P) des éléments de G. Tout élément inversible de $A(P)_{E(P)}$ est quotient de deux éléments de E(P).

Démonstration. D'après [9], théorème 4.3., les unités de l'algèbre $\mathcal{A}_{C(P)}(V, \delta, G)$ sont les multiples scalaires (à coefficients dans C(P)) des éléments de G. Il nous suffit donc de démontrer la seconde assertion du lemme. Soit $a \in A(P)_{E(P)}$ inversible. On peut supposer $a \in A(P)$. Il existe $b \in A(P)$ et $c \in E(P)$ tels que $1 = abc^{-1}$, soit c = ab. On a alors $a, b \in E(P)$ d'après [10], III, lemme 2. D'où le résultat.

3.3. PROPOSITION. - Avec les notations de 3.1., on a

$$\operatorname{tr.deg}_k A(P)_{E(P)} = \operatorname{tr.deg}_k A(P) = \operatorname{tr.deg}_k K(P).$$

Démonstration. D'après la proposition 2.5. et les rappels de 3.1., on a $\operatorname{tr.deg}_{C(P)}A(P)_{E(P)}=\operatorname{tr.deg}_{C(P)}K(P)$. Il vient donc $\operatorname{tr.deg}_{K}A(P)_{E(P)}=\operatorname{tr.deg}_{K}K(P)$. Identifions $A(P)_{E(P)}$ avec $\mathcal{A}_{C(P)}(V,\delta,G)$. Soient $x_1,...,x_n,z_1,...,z_p,g_1,...,g_r$ comme dans la démonstration du lemme 2.3. et L le corps commutatif engendré par ces éléments sur C(P). On peut supposer que $x_1,...,x_n,z_1,...,z_p$ sont dans A(P). Compte-tenu du lemme 3.2., il est clair que L est le corps engendré (sur k) par ces éléments et E(P). Comme $\operatorname{tr.deg}_k A(P)_{E(P)} \le \operatorname{tr.deg}_k A(P)_{E(P)} \le \operatorname{tr.deg}_k A(P)$. L'inégalité opposée étant évidente, on a le résultat.

3.4. - Conservons les notations de 3.1. Soit Q l'idéal de l'algèbre symétrique S(g) de g canoniquement associé à P par l'application de Dixmier. Désignons par $g^{\ }$ l'intersection des noyaux des formes linéaires sur g qui sont poids d'un semi-invariant non nul de A(P). On note $P^{\ }=P\cap U(g^{\ }), \ Q^{\ }=Q\cap S(g^{\ })$; on sait que $P^{\ }$ et $Q^{\ }$ se correspondent par l'application de Dixmier ([14], II, lemme 4.2., (i)). On désignera par $Y(Q^{\ })$ la variété des zéros de $Q^{\ }$ dans $(g^{\ })^*$, par $\Gamma^{\ }$ le groupe adjoint algébrique de $g^{\ }$ et par $m(\Gamma^{\ };Q^{\ })$ la dimension maximale des $\Gamma^{\ }$ -orbites dans $\mathscr{V}(Q^{\ })$. On adopte les notations $A(P^{\ })$, $K(P^{\ })$ et $C(P^{\ })$ comme en 3.1. On sait que $C(P^{\ })$ est le corps des fractions du centre de $A(P^{\ })$, car ce centre coincide avec $SZ(P^{\ })$ ([1], S atz 6.1., (a)).

Sur les quotients premiers 261

PROPOSITION. - Avec les notations précédentes, on a

$$\operatorname{tr.deg}_{\mathbf{k}} A(P) = \operatorname{tr.deg}_{\mathbf{k}} K(P) = (1/2)(2 \dim_{\mathbf{k}} \mathscr{V}(Q^{\hat{}}) - m(\Gamma^{\hat{}}; Q^{\hat{}}).$$

En particulier les degrés de transcendance sur k de A(P), K(P), $A(P^{^{\wedge}})$, $K(P^{^{\wedge}})$ sont égaux.

Démonstration. D'après le lemme 2.3. et la proposition 3.3., on a

$$\operatorname{tr.deg}_k A(P) = \operatorname{tr.deg}_k C(P) + (1/2)(\dim_{C(P)} V^G + \dim_{C(P)} V^{G\delta}) + \operatorname{rang}(G).$$

Il vient donc ([14], III, proposition 3.2. et lemme 3.4.)

$$tr.deg_k A(P) = (1/2)(Dim_k A(P^{\hat{}}) + tr.deg_k C(P^{\hat{}}))$$

Il est connu que $\operatorname{tr.deg}_k C(P^{\hat{}}) = \dim_k \mathscr{Y}(Q^{\hat{}}) - \operatorname{m}(\Gamma^{\hat{}}; Q^{\hat{}})$ et, d'après [14], III, corollaire 2.5., $\operatorname{Dim}_k A(P^{\hat{}}) = \dim_k \mathscr{Y}(Q^{\hat{}})$. L'autre assertion résulte alors de la proposition 3.3. et du fait que $(g^{\hat{}})^{\hat{}} = g^{\hat{}}$. (voir par exemple [1], Satz 6.1., (a)).

4 - SOUS-CORPS COMMUTATIFS DE K(g)

- 4.1. Soit g une k-algèbre de Lie résoluble ; on désigne par K(g) le corps enveloppant de g . On construit dans cette section une sous-algèbre commutative A de U(g) dont le corps des fractions K vérifie :
- (i) K est une extension transcendante pure de k et un sous-corps commutatif maximal de K(g).
- (ii) $\operatorname{tr.deg}_{\mathbf{k}} K = \operatorname{tr.deg}_{\mathbf{k}} K(g)$.
- (iii) K est stable par la représentation adjointe de g dans K(g).
 - 4.2. Introduisons quelques notations.

Soient A une k-algèbre, X une indéterminée et D une dérivation de A. On note $A_D[X]$ l'algèbre engendrée par A et X soumise aux seules relations [X,a] = D(a) pour $a \in A$.

Si $r \in N$, on note A_r l'algèbre de Weyl sur k engendrée par des éléments $p_1,...,p_r,q_1,...,q_r$ vérifiant

$$[p_i,p_i] = [q_i,q_i] = 0 ; [p_i,q_i] = \delta_{ii}, 1 \le i,j \le r$$

Si g est une algèbre de Lie, on désigne par Z(g) (resp. C(g)) le centre de U(g) (resp. K(g)). Si $e \in Z(g)$ et si $E = \{1,e,...,e^n,...\}$ on écrit $U(g)_e$ pour $U(g)_E$.

Soient g une k-algèbre de Lie résoluble et Λ_g le sous-espace de g^* engendré par les formes linéaires sur g qui sont poids d'un semi-invariant non nul pour la représentation adjointes de g dans U(g). On pose

$$g^{\hat{}} = \bigcap_{\lambda \in \Lambda_q} \ker \lambda$$

Soit & un idéal de g; l'algèbre de Lie & $\hat{}$ contient le plus grand idéal nilpotent de & ; c'est donc un idéal de g. Soit $\pi:g^*\to k^*$ l'application de restriction. Comme l'action adjointe de g dans U(&) est localement finie, on a $\Lambda_k\subset\pi(\Lambda_g)$ ([1] , lemme 6.4) et même, $\pi(\Lambda_g)=\Lambda_k$ ([3] , lemme 4.3.4.). Il en résulte & $\hat{}$ $\hat{}$ $\hat{}$ $\hat{}$ Supposons & de codimension 1 dans g; on a alors dim Λ_g — dim Λ_k $\hat{}$ 1. Si dim Λ_k = dim Λ_g on a donc dim(g^*/k^*) = 1 ; si dim Λ_k = dim Λ_q —1, on a $g^*=k^*$.

4.3. - Une suite s d'idéaux de $g:0=g_0\subset g_1\subset ...$ $g_n=g$ sera dite saturée si dim $g_i=1$ pour i=0,1,...,n.

Soit $s^* = \{g_i^*\}_{0 \le i \le n}$ et soit s' l'ensemble des éléments distincts de s^* . Il résulte de 4.2. que s' est une suite saturée d'idéaux de g^* .

Soit s une suite saturée d'idéaux de g. On désigne par $U^O(g;s)$ la sous-algèbre de U(g) engendrée par les $Z(g_i)$, $0 \le i \le n$. C'est une sous-algèbre commutative de U(g) dont le corps des fractions sera noté $K^O(g;s)$.

THEOREME. - Soient g une k-algèbre de Lie résoluble, Γ son groupe adjoint algébrique, $0 = g_0 \subseteq g_1 \subseteq ... \subseteq g_{n-1} = g' \subseteq g_n = g$ une suite saturée s d'idéaux de g. On suppose que le semicentre de U(g) est égal à son centre.

- (i) Il existe $e \in Z(g)$ et $r \in N$ tels que $U(g)_e = Z(g)_e \otimes A_r$. On peut choisir les éléments $p_1,...,p_r$ de A_r dans $U^O(g;s)$ et alors, le corps $K^O(g;s)$ est engendré par C(g) et les éléments $p_1,...,p_r$ algébriquement indépendants sur C(g).
- (ii) La dimension maximale des Γ -orbites dans g^* est égale à 2r.
- (iii) Le corps $K^{0}(g;s)$ est une extension transcendante pure de k et

$$\operatorname{tr.deg}_{k}K^{0}(g;s) = n - r$$

(iv) Si Z(g) $\not\subset$ U(g'), Z(g) contient strictement Z(g'). Le corps C(g) est une extension transcendante pure de C(g') et

$$\operatorname{tr.deg}_{C(g')}C(g) = 1$$

(v) Si $Z(g) \subset U(g')$, Z(g') contient strictement Z(g). Le corps C(g') est une extension transcendante pure de C(g) et

$$\operatorname{tr.deg}_{C(g)}(g') = 1$$

Remarque. Pour g nilpotente, (i) et (iii) sont démontrés dans [15], (iv) et (v) dans [4].

Démonstration. Les résultats du théorème sont en essence contenus dans [1], démonstration du théorème 6.1. Nous suivons de près cette démonstration.

Soient $s_p = \{g_0, g_1, ..., g_p\}$, $0 \le p \le n$, $s_{n-1} = s'$. On suppose que pour tout p < n, il existe $e_p \in Z(g) \cap U(g_p)$ et $r(p) \in N$ tels que $U(g_p)_{e_p} = Z(g_p)_{e_p} \otimes A_{r(p)}$. Notons pour simplifier Z et Z' au lieu de Z(g) et Z(g') respectivement. Il existe (hypothèse de récurrence) $e' \in Z \cap U(g')$ et $r \in N$ tels que

$$U(g')_{e'} = Z'_{e'} \otimes A_r$$

les éléments $p_1,...,p_r$ de A_r appartenant à $U^0(g';s')$.

Soient x un élément de g n'appartenant pas à g' et D la dérivation de U(g) prolongeant ad x. L'algèbre Z' est stable par D. Distinguons deux cas :

1er cas. - On suppose DZ' = 0, et donc DZ'_{e'} = 0. D'après [1], 4.10., il existe $a \in U(g')_{e'}$ tel que z = x - a soit central dans $U(g')_{e'}$. On a alors

$$U(g)_{e'} = (U(g')_{e'})_{D}[x] = U(g')_{e'}[z] = Z_{e'}[z] \otimes A_{r}$$

Il vient $Z_{e'} = Z_{e'}[z]$. Il existe $p \in N$ tel que $z' = (e')^p z$ soit un élément de U(g). Il résulte facilement du théorème de Poincaré—Birkhoff-Witt que z' est transcendant sur C(g') et sur $K^0(g'; s')$. Il est clair que Z contient strictement Z' et que C(g) = C(g')(z). Le corps $K^0(g; s)$ est engendré par C(g), $p_1,...,p_r$. Le fait que $p_1,...,p_r$ sont algébriquement indépendants sur C(g) résulte de [15], lemme 2.9.

2ème cas. - On suppose DZ' \neq 0. D'après [1] , lemma, page 67, il existe $a \in U(g')_{e'}$ tel que $ad(x-a) \mid A_r = 0$ et $ad(x-a) \mid Z_{e'} = D \mid Z_{e'}$. Si t = x - a, on a alors

$$(U(g')_{e'})_{D}[x] = (Z_{e'})_{D}[t] \otimes A_{r}$$

D'après [1], Beweis das Satz 6.8., page 67, il existe des éléments u et v non nuls tels que $u \in Z'$, $v \in DZ' \cap Z$ et Du = v. Posons $\alpha = v^{-1}$ u. Puisque le semi-centre de U(g) est égal à son centre, D opère de manière localement nilpotente sur $Z'_{e'v}$ et on peut définir pour $w \in Z'_{e'v}$

$$\chi(w) = \sum_{0}^{\infty} \frac{(-1)^n}{n!} (D^n w) \alpha^n$$

On a alors (voir par exemple [3], lemmes 4.7.5. et 4.7.6.)

$$w = \sum_{0}^{\infty} \frac{1}{m!} \chi(D^{m}w)\alpha^{m} = \sum_{n \geq 0, m \geq 0} \frac{(-1)^{n}}{n! m!} (D^{m+n}w)\alpha^{m+n}$$

Il est immédiat de vérifier que $X(w) \in Z_{e'v}$ et il vient donc $Z'_{e'v} = Z_{e'v}[v^{-1}u]$, $(Z'_{e'v})_D[t] = Z_{e'v} \otimes A_1$ où A_1 est engendrée par $u = p_{r+1}$ et $q_{r+1} = tv^{-1}$. On a donc $U(g)_{e'v} = Z_{e'v} \otimes A_{r+1}$. Il résulte de la démonstration que Z' contient strictement Z et que C(g') est un extension transcendante pure de C(g) avec $tr.deg_{C(g')}C(g') = 1$.

Enfin, $K^{0}(g; s)$ est engendré par C(g), $p_1,...,p_{r+1}$ et les p_i , $1 \le i \le r+1$ sont algébriquement indépendants sur C(g) d'après [15], lemme 2.9. On a donc démontré les assertions (i), (iv), (v). Démontrons (ii).

Soit E l'ensemble des éléments non nuls de Z(g). D'après ce qui précède, on $a:U(g)_E=C(g)\otimes A_r$. Il résulte alors de [14], III, lemme 2.1., corollaire 2.5. et proposition 3.3., (i) et de [2], 2.1. et lemme 3.1.

$$\operatorname{Dim} U(g)_{E} = \operatorname{Dim} U(g) = \dim g$$
$$= \operatorname{tr.deg}_{k}C(g) + 2r = \dim g - m + 2r$$

où m est la dimension maximale des Γ -orbites dans g^* . D'où m = 2r.

Démontrons (iii). On a déjà vu que $K^{O}(g;s)$ est une extension transcendante pure de k et de C(g). D'après ce qui précède, on a $\operatorname{tr.deg}_{k}K^{O}(g;s) = n - r$.

- 4.4.Remarques. a) Conservons les hypothèses du théorème. On a $U(g)_E = C(g) \otimes A_r$ et compte tenu de ce qui précède, on voit que $K^O(g; s)$ est un sous-corps commutatif maximal de K(g).
- b) Soit g de base $\{x,y,z\}$ avec [x,y] = y, $[x,z] = \alpha$. z, $\alpha \in k Q$. Le semi-centre de U(g) n'est pas égal à son centre. Les résultats du théorème ne sont plus valables.
- (i) La dimension maximale des Γ -orbites dans g^* est égale à 3.
- (ii) Soit g' = k.y + k.z. On a C(g) = k, C(g') = k(y,z) et donc $tr.deg_{C(g')}C(g') = 2$.
- c) Des sous-corps commutatifs maximaux de K(g) sont étudiés par des méthodes différentes dans [11].
- 4.5. Soient g une F-algèbre de Lie de dimension finie, # un idéal nilpotent de g et P un idéal complètement premier de U(g). Soit ϵ la représentation adjointe de # dans le corps des fractions K(P) de U(g)/P. On désigne par H l'ensemble des éléments de U(g)/P annulés par ϵ (#). Le résultat suivant est bien connu.

LEMME. - Soit $u \in K(P)$ annulé par $\epsilon(A)$. Alors, il existe $a,b \in H$ tels que $u = a^{-1}b$.

Démonstration. Soit $J = \{ v \in U(g)/P ; vu \in U(g)/P \}$; J est un idéal à gauche de U(g)/P stable par $\epsilon \not\in \mathbb{N}$. Comme f opère de manière localement nilpotente dans J, il existe $b \in J \cap H$ tel que $bu \in H$. On a alors $u = b^{-1}(bu)$; d'où le résultat.

4.6. LEMME. - Soit $A = \mathcal{A}_F(V, \delta, G)$ simple comme en 2.2. Le commutant de G dans le corps des fractions de A est égal au corps des fractions du commutant de G dans A.

Démonstration. Il existe une F-algèbre de Lie complètement résoluble g et un idéal premier P de U(g) tels que, si E désigne l'ensemble des semi-invariants non nuls de U(g)P, on ait ([9], théorème 4.8.):

 $(U(g)/P)_E = \mathcal{A}_F(V, \delta, G)$. Il est immédiat dans la construction de g donnée dans [9], page 169, que le commutant de G dans Fract(A) est égal à l'ensemble des éléments de Fract(u(g)/P) annulés par ad(n), où n est un idéal nilpotent de g. Le lemme est donc une conséquence du lemme 4.5.

4.7. - Soit g une k-algèbre de Lie résoluble. On conserve les notations introduites en 3.4. .

LEMME. - Le commutant de SZ(P) dans K(P) est égal à $K(P^{^{\circ}})$.

Démonstration. On a un isomorphisme $\Phi: A(P)_{E(P)} \to \mathscr{A}_{C(P)}(V, \delta, G)$ (voir 3.1.). D'après [14], III, lemme 3.4., le commutant de SZ(P) dans A(P) est égal à A(P^). Le lemme est donc une conséquence des lemmes 3.2. et 4.6.

4.8. - Soient g une k-algèbre de Lie résoluble et g ^ comme en 4.2. . Soit Γ ^ le groupe adjoint algébrique de g ^ et m(Γ ^) la dimension maximale des Γ ^ - orbites dans (g ^)*.

THEOREME. - Soit $0 = g_0 \subset g_1 \subset ... \subset g_n = g$ une suite s saturée d'idéaux de g. Le corps $K^0(g;s)$ est stable par la représentation adjointe de g dans K(g). C'est une extension transcendante pure de k et un sous-corps commutatif maximal de K(g). On a

$$\operatorname{tr.deg}_{\mathsf{k}}\mathsf{U}(g) = \operatorname{tr.deg}_{\mathsf{k}}\mathsf{K}(g) = \operatorname{tr.deg}_{\mathsf{k}}\mathsf{K}^{\mathsf{O}}(g;\mathsf{s})$$

= $(1/2)(2\dim g^{\hat{}} - \mathsf{m}(\Gamma^{\hat{}})).$

Démonstration. Il est clair par construction de $U^{O}(g;s)$ que $K^{O}(g;s)$ est stable par la représentation adjointe de g dans K(g). Compte tenu de 3.4., 4.3., 4.4., (a), il nous reste seulement à montrer que le commutant de $U^{O}(g;s)$ dans K(g) est contenu dans $K(g^{\circ})$. La sous-algèbre $U^{O}(g;s)$ contient $Z(g^{\circ})$ qui contient Z(g) ([1], Satz 6.1., (a)). On a donc le résultat d'après le lemme 4.7.

4.9. Remarques. - 1) Il est clair que $K^{O}(g;s) \cap U(g)$ est une sous-algèbre commutative maximale de U(g). Cette sous-algèbre peut être distincte de $U^{O}(g;s)$. Donnons un exemple.

Soit g l'algèbre de Lie nilpotente de base $\{e_i\}$ $1 \le i \le 6$ avec

$$[e_1,e_2] = e_3$$
; $[e_1,e_3] = [e_4,e_5] = e_6$

On pose $g_1 = ke_6$; $g_2 = ke_5 + ke_6$; $g_3 = ke_4 + ke_5 + ke_6$; $g_4 = ke_3 + ke_4 + ke_5 + ke_6$; $g_5 = ke_1 + ke_3 + ke_4 + ke_5 + ke_6$; $g_6 = g$. On déduit facilement de [5]:

$$Z(g_1) = k[e_6]; Z(g_2) = k[e_5,e_6]; Z(g_3) = k[e_6]; Z(g_4) = k[e_3,e_6]; Z(g_5) = k[e_6].$$

Des calculs faciles analogues à ceux de [5], démonstration de la proposition 2, fournissent $Z(g) = K[e_6, 2e_2e_6 - e_3^2]$. On a alors $U^O(g; s) = k[e_6, e_5, e_3, 2e_2e_6 - e_3^2]$ et $K^O(g; s) = k(e_2, e_3, e_5, e_6)$. On a donc $K^O(g; s) \cap U(g) = k[e_2, e_3, e_5, e_6]$. Il est clair que $e_2 \notin U^O(g; s)$; d'où $K^O(g; s) \cap U(g) \neq U^O(g; s)$.

2) Soit s^ une suite saturée d'idéaux de g^. D'après le théorème 4.3. et le lemme 4.7., le corps $K^{O}(g^{\circ}; s^{\circ})$ vérifie les propriétés (i) et (ii) de 4.1. .

4.10. - Reprenons les notations de 3.4. . Soit $0 = g_0 \subset g_1 \subset ... \subset g_p = g^n$ une suite s saturée d'idéaux de g^n . On note $P_i = (P^n) \cap U(g_i)$ et $Z(P_i)$ désigne le centre de $A(P_i)$. On désigne par $U^0(g^n; s; P)$ la sous-algèbre de A(P) engendrée par les $Z(P_i)$, $1 \le i \le p$ et par $K^0(g^n; s; P)$ son corps des fractions. Reprenant la démonstration du théorème 4.3. ou celle de [1], Satz 6.8., on peut démontrer comme en 4.8., en utilisant le lemme 4.7., le résultat suivant :

THEOREME. - Le corps $K^{O}(g^{\circ}; s; P)$ est un sous-corps commutatif maximal de K(P). On a

$$\mathrm{tr.deg}_{k}K^{O}(\ g^{\,\widehat{}}\ ;\, s\; ;\, P)=\mathrm{tr.deg}_{k}K(P)=(1/2)(2\mathrm{dim}\ \mathscr{V}(Q^{\,\widehat{}})-\mathrm{m}(\ \Gamma^{\,\widehat{}}\ ;\, Q^{\,\widehat{}})\;).$$

Si la suite s est une suite d'idéaux de g, le corps $K^{O}(g^{\circ}; s; P)$ est stable par la représentation adjointe de g dans K(P).

Remarque. - Si P \neq 0, on ne peut affirmer que K^O($g^{\hat{}}$; s; P) est une extension transcendante pure de k, car C(P) n'est pas en général une extension transcendante pure de k. Cependant, C(P) étant une extension de type fini de k, ([3], proposition 4.4.11.), on voit facilement qu'il en est de même de K^O($g^{\hat{}}$; s; P).

REFERENCES

- [1] BORHO W., GABRIEL P., RENTSCHLER R. «Primideale in Einhüllenden auflösbarer Lie Algebra». Berlin, Springer-Verlar, 1973, Lectures notes in Math., n° 357.
- [2] BORHO W., KRAFT H. «Uber die Gelfand-Kirillov Dimension». Math. Annalen, t.220, 1976, p. 1-24.
- [3] DIXMIER J. «Algèbres enveloppantes». Paris, Gauthier-Villars, 1974, Cahiers Scientifiques, 37.
- [4] DIXMIER J. «Sur les représentations unitaires des groupes de Lie nilpotents II». Bull. Soc. Math. France, 85, 1957, p. 325-388.
- [5] DIXMIER J. «Sur les représentations unitaires des groupes de Lie nilpotents, III». Canadian J. Math. Vol. 10, 1958, p. 321-348.
- [6] GABRIEL P., RENTSCHLER R. «Sur la dimension des anneaux et ensembles ordonnés». C.R. Acad. Sc. Paris, série A, t. 265, 1967, p. 712-715.
- [7] JOSEPH A. «A generalisation of Quillen's lemma and its application to the Weyl algebras». Israël J. Math. 1977, t. 28, p. 177-192.
- [8] Mc CONNELL J.C. «Representations of solvable Lie algebras and the Gelfand-Kirillov conjecture». Proc. London Math. Soc. series 3, t. 29, 1974, p. 453-484.
- [9] Mc CONNELL J.C. «Representations of solvable Lie algebras, II: Twisted groups-rings». Ann. Sci. Ec. Norm. Sup., série 4, t. 8, 1975, p. 157-158.
- [10] MOEGLIN C. «Factorialité dans les algèbres enveloppantes». C.R. Acad. Sc. Paris, série A, t. 282, 1976, p. 1269-1272.
- [11] NGHIEM XUAN HAI. «Sur certains sous-corps commutatifs du corps enveloppant d'une algèbre de Lie résoluble». Bull. Soc. Math. France, 96, 1972, p. 111-128.
- [12] RENTSCHLER R., VERGNE M. «Sur le semi-centre du corps enveloppant d'une algèbre de Lie». Ann. Sci. Ec. Norm. Sup., série 4, t. 6, 1973, p. 389-405.
- [13] RESCO R. «Transcendental division algebras and noetherian rings». Israël J. Math., à paraître.
- [14] TAUVEL P. «Sur les quotients premiers de l'algèbre enveloppante d'une algèbre de Lie résoluble». Bull. Soc. Math. France, 106, 1978, p. 177-205.
- [15] VERGNE M. «La structure de Poisson sur l'algèbre symétrique d'une algèbre de Lie nilpotente». Bull. Soc. Math. France, 100, 1972, p. 301-335.

(Manuscrit reçu le 23 mars 1979)