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Resume : Nous étudions !e problème d’évolution ut + Au 
= 0 dans (0,T) x RN, u(0) = uo dans

avec N > 1, 0  T  ~, Au =- d!v( ! |Du|p-2 Du), Du étant !e gradient de u, 1  p  ~

et nous supposons que u appartient a un espace de fonctions intégrables. On prouve l’existence

2N
d’un temps fini d’extinction s! N  2 et p  20142014. Dans )e cas contraire (s! N = 1 et p > 1 ou

N+1 ~ 

si N > 2 et p ~ 20142014) on prouve !a !o! de conservation: / u(t,x)dx = / u (x)dx pourN+1’ ~ 

r 
o

tout t > 0. On estime aussi !a convergence vers zero des integrates JIRN ! dx, m > 1

et on obttent certains effets régularisants.

Summary: The evolution problem u. + Au 
= 0 in (OJ) x u(0) = u~ in !R~ is considered

where d!v( ! |Du|p-2 Du), with Du the gradient of u, 1  p  ~

2N
and u !s supposed to belong to some integrable space. !f N > 2 and p  20142014 the existence of a

N+1
2N

finite extinction time ts shown. On the contrary, tf N = 1, p > 1 or N > 2, p N+1 conserva-

tion of total mass holds, Le. / u(t,x)dx = ~ for every t > 0. We prove also that

~ ~!R"
the integrals / ! u(t,x) ! | dx, m> 1 converge to zero as t goes to infinity, and some regula-

7!pN
rizing effects are shown.
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INTRODUCTION AND PRELIMINARIES

’ 

We shall consider the asymptotic behaviour in time of the solutions of

with N > 1, 1  p  00 and Au = - I Du I p-2 Du) where Du = - is the gradient
i

of u. The operator A has been widely considered in the literature in P.D.E., and arises in several

physical situations, such as one-dimensional non newtonian fluids and glaciology.
2N

This behaviour depends strongly on p and N : in fact, if p  - we show that the

total mass / u (t,x)dx is conserved, i.e. is independent of time. On the contrary if p  -

we show that the solution corresponding to initial data u 0 ELm (I R ), m = N (--1 ) vanishes in

finite time. The existence of a finite extinction time was found by Bénilan and Crandall [2] for

the equation (E) ut dum = 0 in spatial domain I R 
~~ ~ 

if and only if 0  m  -~, N > 3.
N

As it is noted in [2] , equation (E) in bounded domains with homogeneous Dirichlet conditions
has also that property if 0  m  1. The case N = 1 was considered by Sabinina [8] . Several

properties of solutions of (E) related to the ones we consider here can be found in Evans [5] .
Finite extinction times for (Eti) ut - = 0 with ti maximal monotone graph and bounded do-

main are discussed in terms of 03B2 in [3] .

We also consider the homogeneous Dirichlet problem

for Q C I RN open and bounded. We show the existence of a finite extinction time if p  2,

uo E and m as above, completing a result of Bamberger [1 ] : he showed that effect for
2N 
-  p  2 and u E For p  2 it is easy to see that solutions with positive initial

data do not vanish.

2N
For p > - L. Véron [11 ] shows a smoothing and decay effect for the solutions

N+1



addition !! u !! ~Ct"~ . !! u !! ~ where 5, a depend on m,mo’p and N. We adapt his proof for
o ~

(P) to get similar results. We know that for m 
= N(2014 - 1) solutions vanish. For

2 ~ 
1 N

1  mo  N( - - 1) we prove a «backwards» effect : for t > 0, u(t,.) ~ L’(!R’’) and

tt u ~1  Ct-03B4 !t uo !! 03C3m0 with 5, a > 0 as before.
We shall need some facts about the operator A in and in ~2 C bounded

with homogeneous Dirichlet conditions : First, if J(u) =2014 / ! Du |p when u ~ L (!R ) and

t Du ~ J(u) = + oo otherwise, J is a convex I.s.c. proper functional in L2(IRN) whose
subdifferential A is defined as Au = - div( I Du I ~ Du) in the domain

D(A)={u~L2(IRN) : |Du|~Lp(IRN), div( |Du I and for every vCD(J),

/ Au . v = I Du p-2 Du . . DV}. !f p > 2, the last condition may be omitted as it

follows by density. A is accretive in L1(IRN) and hence in every 1  p  ~ :
in fact for t > 0 and R~), !! [u~ (t,.) - u~(t,.)r (0,.) - u~(0,.)]" !! 

p
where u+ = max(u,O). This implies a comparison principle that allows us to consider only nonnega-
tive initial data and solutions ; for non positive data we consider -u instead of u. Defining for

p ~=2, A = A n x we may close A to find ~ m-accretive in 
C 

The corresponding results for ~2 bounded and homogeneous Dirichlet conditions are

well known ; Au = - div( |Du|p-2 Du) and D(A) = { u e n L2(03A9) : Au C L2(03A9)}. On
the other hand A is defined as m-accretive operator in by restriction if p > 2 and clo-

sure if p  2.

We shall use the following inequality due to Nirenberg and Gagliardo (see [6] , ,
Th. 9.3.).

LEMMA 0. Let q,r be any numbers satisfyng 1  q,r  ~ and u G Then

1 1 1 1 1 1 ..

where -= a. - 
+ (1- a) - and - = -- - for all a in the interval o  a  1, with C = C(N,q,r,a), ,p r* q r* r N

with the following exception ; r = N and a = (hence p =~J.

We remark that by density the result remains true for u E LP(IRN) such
that Du E Lr(IRN) if r,q  ~ and q  r* if r* is positive. To show this, approach u by u 1 boun-
ded, then convolve u 1 with a regular kernel to get u2 E C~ (lRN) and finally cut u2 with a smooth
function 03B6n which vanishes outside B2n(0) and is equal to 1 on B (0) ; let us check this last step.



Assume u ~ C~(IRN) and put un = u 03B6n, where 03B6n(x) = 03B6o (|x| n), 0  03B6o  1, 03B6o(x) = 1 if

’ x X 1, 03B6o(x) = 0 if |x t > 2 and t D03B6n(x)|  C. It is dear that un ~ u in and

Also D = Du . ~ 
+ u . D~ . Du . ~ ~- Du in t/()R~) and we have to prove that

u . D~ -~- 0 in L’’()R~). Then, C representmg different constants independent of n :

lf r*  0 the previous proof applies as well for every q, I  q  - .

Our plan is a follows: Sections 1 , 2, 3 are devoted to problem (P). Section I studies

the existence of a finite extinction time when p  , u G m = N (-1). Section 2
N+1 ° p

is devoted to conservation of mass and Section 3 to the regularizing effects and decay of the inte-

gral norms 11 u(t,.) ll 
m 

as t - -. Finally Section 4 gathers the results on (Pq), Q open and

bounded.

I . - - FINITE EXTINCTION TIME

We obtain the following result

2N ~ ~~q 
2

THEOREM I . Let N > 2, 1  p  - and let uo G L (lR ) where m = N (-- I ). Then forN+i p

every t > 0 u (t, . ) G ) and there exists to > 0 such taht u (t, . ) 
= 0 a.e. if t > .

Proof. We may assume that u~(x), u(t,x) are nonnegative. A formal proof to be justified later by
discretization in time runs as follows: As p  if m = N (  - l ) we have m > I . Let

N+i p
N p m+p-2

p* = - and q = - ; : then m = p*q. Also for k > 0 we write (u-k)+ * max(u-k,0) and

v = vf" Multiply div( I Du I p-2 Du) * 0 by and integrate over IRN to

obtai n :



I ntegration by parts and Sobolev’s inequality give

Write Em k(t) = ~ dx. (1.1) and (1.2) give
’ JIRN

Integrating (1.3) gives

!f we take k = 0 the existence of a finite extinction time ~ = ~ o results. Given t > 0, if we take
k > 0 large enough extinction of E ~(t) in time t ~  T may be obtained. Hence

u(t,.) E L~(IRN) for t > 0, a regularizing effect. 
’

This forma) proof can be made rigorous by means of the discrete scheme and Crandall-

Liggett’s resutts. Assume that uo E L1 (IRN) n L~(IRN), let h > 0 and define a discrete approxi-
mation to the solution of (P) thus : ui+1 E L’(!R’’) n L~(IRN) is defined implicitely in terms

of u. by

Now repeat the previous argument on (1.5) to obtain a discrete version of (1.3) and

pass to the limit as h -~ 0. The assumption on u can be weakened by approximation for 

depends only on II u II 
m. 

The details repeat those in [2] for ut - 
= 0 and we omit them.

Only the integration by parts needs some care : if m > 2, D(A) n L°° 
then

by the characterization of D(A). If m  2 we have to linearize the function ~(u) = near the



origin to apply integration by parts. Passing to the limit it follows by Fatou in this case that

For u as in the theorem the result follows by density for A is accretive #

2. - MASS CONSERVATION

We say that the mass conservation law (MCL) holds for (P) if for every t > 0

In this section the validity of MCL is discussed in terms of p :

2N
THEOREM2.MCLholdsfor(P)ifandonlyifN=1,p> 1 or N ~ 2, p > .

N+1

In order to prove Theorem 2 we need some previous results. A variant of the following
Lemma has been used in [10] :

LEMMA 1. Let S~ C be an open set and let u E L 2(IRN) be such that u E D(A) and - Au = u
a,e. in f2. Let ~ E such that II ~ ~~ = 1 and let x be the characteristic
function Then

Proof. Multiply u = Au by integrate over integrate by parts (u E D(A)) and apply
Hölder’s inequality.

LEMMA 2. Let 20142014 p  2 and let u be a solution of Au + u = f, f Then
N+1

~ Au = o.

~R~
Proof. By accretivity of A in L we may restrict ourselves to consider fG We

obtain first an estimate for !! Du !! over the exterior of a ball : Assume supp(f) C B~(0) and
take n > R. Choose ~n ~ C~ (IRN) such that 0  ~n  1 , ~n = 0 if I x  n, ~n 

= 1 if x ! > 2n

and !! D~n ~~  2014L, , c1 > 1. Put An ={x C n  |x ! 2n} and 
I x I > n ~ . Then (2.1) gives in ~ = B~(0) :



Hereafter C denotes several positive constants depending only on p and N and not on n.

By virtue of [9] , Corollary 2, the following estimate applies to u(x), for I x I > R: :

Also by accretiv!ty tt u !t i 
!! f !t i , so that

~u~pLp(An)  ~u~L1(An).~u~p-1L~(An)=o(1) 
(1) 

° " p(p-1) 2-p. It follows that
1

!t Du !! =o(1). n ~P . Putting ~(x) = 1 -"~p(x) have , , ,

Since Au = lim IRN Au 03B6n, the desired result follows whenever

-  0 i.e. p ~ #
p 2-p N+1

We say that the finite propagation property (PF) holds for (P) if for every admissible

initial datum having compact support in IRN, the corresponding solution u(t,x) is such

that for every t > 0 u(t,.) has compact support in IRN. It is know that (PF) holds for (P) if

and only if p > 2 (see [4] ). There exists a simple relation between (FP) and (MCL) : :

LEMMA 3. If p > 2, then (MCL) holds.

Proof. Let u(x,t) be a solution of (P) such that u(x,0) = uo(x) has compact support. If t > 0 we
know that there exists n such that supp u(t’) C B~(0) for 0  t’ ~ t. Take ~’~ as before. Then
for t’ fixed :

Hence ut dx 
= 0 and it follows that / u(t,x) = / This last assertion can be

justified by means of the discrete scheme as before.

. 

If supp(uo) is not compact, approximate uo a sequence of initial data

with compact support #

(1 ) Here o(1) denotes a quantity that goes to 0 as n -~ oo.



2N
Proof (of Theorem 2), If N = 1, p > 1 or N > 2, 2 > p > -- the result follows from Lem-’ 

N+1
ma 2 applied to the discrete scheme

for then r ui = IRN ui+1 . If p > 2 it follows from Lemma 3 in the same way. The

case p = 2 is classic (and it falls within the scope of [2] ).

For the negative part it is sufficient to remind Theorem 1, for (MCL) is incompatible
with extinction #

3. DECAY OF THE INTEGRAL NORMS. REGULARIZING EFFECT

Our first result is the extension to IRN of the work of L. Véron [11] for the case S~
bounded.

THEOREM 3. Let p > , uo with 1. If t > 0, u(t,.) for

every m such that m  ~. In addition, the following estimate holds ;

(3.1) II u(t,.) II m  . II uo ~03C3mo for some constant C = C(m,mo,N,p), where

Proof, The case m = mo follows from the accretivity property ; it suffices to show the case

m = + 00 , the intermediate cases being obtained from these by interpolation. Assume (for simpli-

city) that u ~ 0 ; for p ~ N we adapt the iterative procedure of L. Veron [11 ] as follows. Define
the sequences mn , rn by :

Note that from (3.3) and (3.4) it follows :



Now we claim that, if we write v = with qn 
= , Nirenberg-Gagliardo’s

inequality applies to v. Namely one has: 
~

That is a consequence of the following facts : i) As it was pointed out in Theorem 1,
~n ~n-1

we can suppose u e D(A) n n n for each

> 1, for then is always greater than one, ii) Dv E as a consequence of the

%-1
validity of formula (1.7), iii) Nirenberg-Gagliardo’s inequality (Lemma 0) applies with the present

regularity, as it was observed at the introduction.

We shall give a formal proof, just as at the first part of Theorem 1 (rigorous justifica-
tion by means of the discrete schema approximation is made in the same way as there). Assume

first p  N. Multiply the equation Au = 0 by u 
"~ and integrate over to get

r -m _~Next multiply (3.7) by 11 u and use (3.6). It follows that
n-1

where C involves 1 Cm n and the constant in (3.6), which depends only on N and p. Take

tn = t(1- n) and integrate (3.8) in In this way we obtain :
2

The previous argument remains true if we replace u by uk 
= (u-k)+ for some k > 0.

But then = meas ~ x : uk(t) > 0 } is finite and



Now (3.1), (3.2) follow from two facts : a) lim 
_ 

sup II uk (tn) II 
m 

can be evaluated now just

in the same way as in [11 ] , which implies estimates (3.1) (3.2) for uk. b) These estimates do not

depend on k, and consequently we can pass to the limit and obtain the desired results for k = 0.

When p = N, choose {03B2n} such that

On the other hand, by Sobolev

Now multiply (3.7) by II u ~rn-mmn-1, use (3.11), (3.12) and a standard interpolation

argument to get :

where C = . ( )N. C... (3.13) is the analogous of (3.8) and we can now argue as in
~" B ~n-1 /

the previous case.

When p > N we do not need to use the iterative procedure. For note that Nirenberg-

Gagliardo’s inequality reads :

(3.14) and (3.7) give



Now note that from the inequality

it follows, integrating between 0 and t

Use (3.16) with !! u~ !!~~ ~(t) = !j u M" ~ 9 =f. and (3.1)~ (3.2)
’" 

a a

follow. Note that this argument includes the case N = 1 which was discarded in [11 ] #
2 B

When 1  mo  N --1 J we have the following result, concerning a «backwards 
’

regularizing effect. 
B P /

THEOREM 

m such that 1  m  mo. . ln addition the following estimate holds : :

Proof. Let us see first that u(t,.) E L m(lRN) for each m such that 1  m  mo (the case m 
= 

mo
follows by accretivity). Remark that

where v, q are as in the last part of Theorem 3, the validity of (3.18) is justified as there, and

a 

m[m 0 (N-p)-N (m+p-2)) ’ Arguing 
as in Theorem 1 (with k = 0), we arrive at

Now notice that solutions of the inequality f’ + afy  0 with 7 > 1 satisfy f ~ 1 .
This gives (3.17) . ~

( (’Y’-1 

The case u(t,.) (lRN) is obtained by modifyng slightly the previous argument :



instead of (3.18) write

a = 
N(m-1)(p-1) 

. Corresponding to (3. 1 9) we have

Now integrate (3.21 ) between 0 and t and use the fact that ~u (t) II 
m 

is not increasing
in t to get the result #

4. - BOUNDED DOMAINS

Concerning with S~ bounded, it is known that there is a finite extinction time if

~ 2N 
C 2

uo L (S~) and --~ p  2 ( [1 ] ). In that paper, extinction of the L norm of the solution
N+2

implies this result. The method of the proof of Theorem 1, based on the extinction of the Lm

norm of solutions for some m > 1, enabies us to extend the above mentioned result to get the

following complete picture.

TH EOREM 5. Assume that SL is bounded and regular. Let uo E where

m > max N - -1 , 1 and p  2. The corresponding solution of (P03A9) vanishes in a finite

time to. If p > 2 there are, for uo E C~(03A9) and uo > 0, solutions which are strictly positive for
every t > 0.

Proof, Let m > N --1 the case m = N --1 I is an easy modification of the proof in Theo-

rem 1 . We write again q = , v - u . By Holder~ p

Starting as in Theorem 1 (with k = 0) we arrive at

Next use Sobolev ( II Dv c II v and (4.1) to obtain



From (4.3) we conclude that u vanishes at most at to, where

Assume now that il is connected (1). When p = 2 the fact that for u > 0, u~ ~ 0
and t > 0, u(t,.) > 0 follows from the strong maximum principle of L. Nirenberg (see [7] ). If

p > 2 take S~ = and g a positive eigenfunction corresponding to the first eigenvalue X of
’ - A in with homogeneous Dirichlet conditions ; g is radially symmetric, C°° and Ag  Cg

for some C > 0. To check this last assertion, note that

Now try as a subsolution v(t,x) = T(t) g(x), where T(t) = 
. (1+c(p-2)Tg 2 t)~~p-2

solves T’(t) + CT(t)p-1 = 0. It follows from the maximum principle that if uo(x) > To g(x), the
corresponding u(t,x) is greater or equal than V(t,x) for each t > 0 #

Remark. Observe that as a consequence of the decay of some m-norm, m > 1 and Q being boun-

ded, MCL never holds. When p ~ 2 we have shown that for smooth initial data there is a reten-

tion property : if 0 in some n u(t,x) > 0 in SZ for each t > 0.

’ 

We conclude by noting that the results of this paper are valid when Au is replaced by

other similar nonlinear.

As a natural generalization we may consider operators like

(1 ) For general Q argue on each connected component.



N

where L s with s = ~sl,...,sN). .
i=1

Some of the previous results have immediate counterparts. In particular Theorem 1 remains

valid unchanged.
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tion 3.
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