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Resume : Dans ce papier, a la suite de C. Foias et de R. Temam [ 4 ], nous demontrons les pro-

prietes génériques de I’ensemble des solutions des equations stationnaires de Fhydromagnetisme
avec viscosité et diffusivité magnétique. L’outil important utilisé est le théorème de Sard dans sa

version en dimension infinie due a Smale.

Summary : In this paper, following C. Foias and R. Temam [ 4 ] , we have proved generic proper-

ties of the set of solutions of stationary hydromagnetic equations with viscosity and magnetic

diffusivity. The main tool used is Smale’s infinite-dimensional version of Sard’s theorem.

INTRODUCTION

In this paper we study the structure of the set of stationary solutions of equations for

viscous incompressible conducting fluid with diffusivity in the presence of a magnetic field. The

boundary condition for the velocity field is assumed to be homogeneous. We consider the follo-

wing system of equations governing the stationary hydromagnetic flows :
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Here Q is an open bounded set of Rn, n = 2 or 3, and r is its boundary. Di = 8 / axi and p de-
notes the total pressure. u and B are the velocity and magnetic fields.

Without loss of generality, we take X = v. The problem is reduced to the functional

equation in u and B. We denote by S(f,~,v) the set of solutions~u,B~of the problem (0.1) - (0.4).
The methods of proving the properties of S(f,~,v) rely on those in C. Foias and

R. Temam [4].
In section 1, we prove general properties of S(f,~,v).
In section 2, we prove a generic property. The proof is based on an infinite-dimensional version

of Sard’s theorem due to Smale and some results developed in Section 1.

The case with nonhomogeneous boundary condition for velocity field can be trea-

ted as in [4J . ..

Notations are as in [4J . .

1. GENERAL PROPERTIES OF THE SET S(f,~,v)

Regarding r, the boundary of S~, we assume that

(1.1) r is a manifold of class Cr of dimension n - 1 and 03A9 is locally located on one side of r

(r = 2 unless otherwise specified).

(1.2) r has a finite number of connected components.

Let

WS = closure of W in



Then H =closure of V in

We have the following continuous injections :

1.1. - The Homogeneous Hydromagnetic Problem.

Given f and ~, to find u, Band p such that

We assume that f E H ~ (S2), the dual space of and ~ is given in H~~2(r) (the space of
traces of functions in H (S2)) with

n being the unit outward normal on r. Then (1.7) is implied by (1.6).

One can find ~ ( [7] , [11] ) with ~ E H~ (S2), = = ~ on r. Hence the pro-
blem (1.3) - (1.6) is equivalent to finding {u, B}, B = B - I> , solution of



where

Equivalently,

bilinear and A is linear

Let be the set of solutions ( u,B ) of the problem (1.8) - (1.11 ) or (1.13)-
(1.14). We now list some properties of this set which are easy consequences of 

well known results.

THEOREM 1.1. Let (1.1J and (1.2) hold for St. Let f be given in H ~ (S2) in H~~2(r) with

which is satisfied by (1 . 6).

Then

( P i ) S (f,, v) is not emP tY

( P ~ ) S (f,§, v) is closed and bounded in H 
~ ( Q) X H 

~ ( Q ) and compact in

X 

where J~ 
= 

J~ (f,§,v,Q) depends on f,§,v,Q.

(P3) S (f,§,v) is reduced to one point (uniqueness) if

C~ depends on S~



Here I u,B L is the product norm on V x V defined, as usual, as ( u ! T + B )’~
which is equivalent to the norm tt {u,B} ~’ = ! lull + B h. . (1.18)

Proof. The proof for (Pi), the existence of solution {u,B} is given by easily extending the standard

proof for existence for a single equation, say, Navier-Stokes equation ( [6] [8] ). See also [5] ,
in which existence is proved assuming (1.15) as the boundary condition.

The crucial step in the proof is to show that choice of above ~ can be made so that

H -norm of 4J depends on ~ and ~. ~ ~ )

We now prove (1.16) : :

We take the scalar product of (1.13) with u and (1.14) with B. Then we get

since b(u,u,u) o and b(u,B,B) = o.

Also because b(u,v,w) = -b(u,w,v), we get on adding (1.20) and (1.21) )

(1 ) Inequality (1.19) can be proved as follows using arguments as in [6] , p.109 :
By Theo. 1.1. [5], 03C6 E H1/2 and r dr = o d i implies 03C6 = curl F|0393,ri r

F E H2(03A9). i.e. 03A6 I r 
= curl F|0393. 

I

Then as in [6] , we can write ~ = curl (b~), ~’ constructed in [6] .
Thus following [6] , p.109, we get

./ 1

choose E &#x26; p so small that E . C3 + C4(p)  v and (1.19) follows.
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So, by using (1.19), we have

( II {u,B}~ using (1.18)

C3 depends on 03C6.

So II II= II II  2 03BD ( If v) and (1.16) follows.

The closedness of S in H1(03A9) x H1 (St) is elementary. Compactness of S in

x follows by Rellich Lemma applied to product space. For compactness result

for Navier-Stokes (stationary) equation, see [6] .

Uniqueness (P 3) is standard by using estimates made above. (cf. [8] , [11] for single
equation).

Lastly, regularity (P 4) follows by the arguments given in [4] , by applying them to
product-case (cf. [6] , [11 ] ).

Hereafter we assume that

From [5] , it follows that the function 4$ can be chosen in H2(S~) with

and satisfying (1.19).

4$ can be chosen with

where is increasing with respect to s, decreasing with respect to v. Thus ~ remains bounded

in H2(S~) when § remains bounded in H3~2(r~ (1.24)

Same thing holds for which appear in this following sections. They remain

bounded when (f,~) remain bounded in H x H3~2(r~.



1.2. - A Priori Estimates

LEMMA 1.1. 5(f,~,v~ is bounded and closed in

Proof. We have, from (1.13) and (1.14), the inequalities

By Lemma 1.1 [4] and remark thereafter,

and also

Hence

We have

Also from (1.16),

Also

Hence we get



Adding these two inequalities,

Applying Young’s inequality,

Hence

Hence

Using ~1.25) again,

and S(f,~) is bounded in H~(n) x H~(~).

Since the set is dosed in H~) x H~(n) and injection of H~) ~ H~(~) is dense

and continuous, it is dosed in H~) x H~(~). The temma is proved:

Before we state next temma, we introduce, together with Pm of [4] , one more pro-

jection operator P~ as follows : There are eigen vectors Cj in W~ such that

~c.} then form basis of W, and hence basis of W n W n = W if n  4.

Also injection of W~ H is compact, so form basis of H. Then we may assume

c is a constant depending only on S~.



Then P * , m > 1, denotes the orthogonal projection onto the space spanned by c ,c ,...,c.,
either in H, W or W’.

LEMMA 1.2. There exists a constant Q3 depending on f, ~, St, v such that if

(m to be chosen max, of m 1 , m 2 with 03BBm1 + 1 > Q 3 and 03BB*m2 + 1 > Q 3 ) then for every pair
u,B ~ , ~ v,c ~ belonging to S(f, ~, v~, we have

where 04 is simply related to Q3.

Proof. We have from (0.1 ),

where

Similarly, from (0.2),

where

and put 8 = Qm w in (1.29), ~G = Qm F in (1.30).



Then (1.29) gives

where we have used properties of b and that

Similar arrangements in (1.30) give

Using Lemma 1.1 [4], (1.31 ) gives

and (1.32) gives

By Lemma 1.1, , |c|2 are all bounded by Q2(f, 03C6, 03BD).



Hence by (1.33),

and by (1.34),

Adding these two inequalities, we get

or using equivalent product norm,

Hence

Also we have

So,

Let this max. be A 1 ~2 .
Hence,

Then (1.35) gives



If (1.26) holds with

Hence

Then (1.36) gives

and so

which gives (1.27) by using equivalent norms.

We now prove (1.28) : Replacing 8 by A Q m w in (1.29) and 03C8 by A Q*m F in (1.30), we get



similar to (1.33) ; and similar to (1.32) and (1.34) we get

Here we have used Lemma 1.1 [4] and (1.25).

Hence on adding respective sides of (1.37) and (1.38), and using (1.18),

We have similar to (1.36),

Hence

choose

Then

and we get (1.28).

1.3. - Other Properties of S(f, ~, v)

We are now in a position to prove



THEOREM 1.2. S(f, ~, v) is a compact subset of

S (f, 03C6, v) is homeomorphic to a compact subset of Rm x Rm, m suffi-
ciently large so that (1.26) is satisfied.

Proof. By using lemma 1.2 above, proof of [4] can directly be extended in this case, using pro-
duct spaces.

2. GENERIC PROPERTIES

We set

Then ~ ~ . n dr = o, i =1,...,k is automatically satisfied.
r.1

(2.4) 16(u,B) = u + ,9B (u,u) - .5B (B,B), B + £6 (B,u) ; B I g~ )

where  u = -PH A u, PH the projector in L2(03A9) onto H.

We now prove

TH EOREM 2. I . We assume that Q n = 2,3 satisfying (I . I ), (1,2). Then, for every v > o

(P~) : There exists a dense open set e C F, such that for every (f, 0, §) G e,
the set S(f, §, v) is finite.



For every connected component 0 of 0, the number of elements in S(f, ~, v) for
(f, 0, ~) E Oa is constant and every solution is a C °°-function of (f, 0, ~).

Proof. We apply Sard-Smale theorem ( [4] , [9] ) with E, F, ~ given as above. Clearly ~ is C~and
its Frechet derivative is given by

~.’(u,B) E £ (E,F) has the form A + K,

That A is an isomorphism from E to F follows from the classical result on Stoke’s problem applied
to product space. Also ~ is bilinear continuous on H2(S2) x H~ (S2) and on H~ (St) x 

with values in or H. Hence for u E Ep B E E2 ,

are linear continuous mappings from H~ x H~ 1 into H. Hence

is linear continuous from H 1 x H1 1 into H x H.

K is therefore compact. Hence dim. Ker. K and dim. Coker K are both finite and they are equal.
For A, being isomorphism, both these dimensions are zero. Hence we conclude that &#x26;’(u,B) is

a Fredholm operator of index zero.

Hence by Smale’s theorem, the set 0 of regular values ~f, 0, ~~ of &#x26; is dense in F and

S(f, ~, v) is descrete in E for all (f, 0, ~) in 0. Since by (PS), S(f, ~, v) is compact in E, it is finite.

The proof of openness of 0 and the last part of the theorem can be given in this case

by easily extending the proof given in [4] , p. 161-162.
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