Annales de la faculté des sciences de Toulouse

LUC PAQUET

Problèmes mixtes pour le système de Maxwell

Annales de la faculté des sciences de Toulouse 5^e série, tome 4, n° 2 (1982), p. 103-141 http://www.numdam.org/item?id=AFST_1982_5_4_2_103_0

© Université Paul Sabatier, 1982, tous droits réservés.

L'accès aux archives de la revue « Annales de la faculté des sciences de Toulouse » (http://picard.ups-tlse.fr/~annales/) implique l'accord avec les conditions générales d'utilisation (http://www.numdam.org/conditions). Toute utilisation commerciale ou impression systématique est constitutive d'une infraction pénale. Toute copie ou impression de ce fichier doit contenir la présente mention de copyright.

PROBLEMES MIXTES POUR LE SYSTEME DE MAXWELL

Luc Paquet (1)

(1) Université d'Etat de Mons, 15 avenue Maistriau, Faculté des Sciences, Département de Mathématiques, 7000 Mons - Belgique.

Résumé : On introduit le système de Maxwell classique sur une variété riemanienne orientée C^{∞} compacte à bord et l'on étudie les conditions au bord «définissant» des générateurs de semigroupe à contraction. A cette fin nous développons les théorèmes de trace adéquat sur les formes différentielles. Dans le cas particulier de la boule ouverte de IR^{n} , utilisant la méthode de séparation des variables développée dans [P1], on précise le résultat.

Summary: One defines the classical Maxwell's system on a C^{∞} compact Riemanian manifold with boundary and one characterizes those boundary conditions defining generators of contraction semi-groups. For that purpose we state and prove the adequat trace theorems for differential forms. In the particular case of the open ball of IR^n , using the method of separation of variables worked out in [P1], one precises the result.

0. - INTRODUCTION

On introduit le système de Maxwell classique sur une variété riemanienne orientée C^{∞} compacte à bord et l'on étudie les conditions au bord «définissant» des générateurs de semi-groupe à contraction. A cette fin, nous développons les théorèmes de trace adéquat sur les formes différentielles (vaguement parlant). Enfin le cas de la boule ouverte (de centre 0 et rayon 1) de IR^{n} est traité plus à fond, utilisant la méthode de séparation des variables pour des formes différentielles, introduite dans [P1]. Ces résultats ont été annoncés dans [P2].

Je voudrais, pour terminer cette introduction, remercier Monsieur R. Temam de ses remarques critiques constructives.

1. - THEOREMES DE TRACES

Rappelons tout d'abord un résultat de [D-L] (p. 337) : Soit Ω un ouvert borné régulier de IR³, n le champ normal unitaire sortant le long de $\partial\Omega$. L'application de $(C^1(\overline{\Omega}))^3 \to (C^1(\partial\Omega))^3$: $u\mapsto n$ Λ u, se prolonge par continuité en une application linéaire (1) continue de $H(Rot;\Omega)=\left\{u\in (L^2(\Omega))^3 ; \text{rot } u\in (L^2(\Omega))^3\right\} \to (H^{-1/2}(\partial\Omega))^3$.

L'inconvénient majeur de ce résultat est que l'application trace (1) n'est pas surjective. Identifiant un champ de vecteurs au-dessus de Ω à la 1-forme différentielle qui lui est canoniquement associée, nous sommes ramenés à l'étude de traces de formes différentielles.

Traitons tout d'abord le cas du semi-espace, plus précisément $IR_{\underline{\ }}^{n}$ désignera dans toute la suite $\left\{x\in IR^{n}; x_{1}<0\right\}$. Nous identifierons sa frontière à IR^{n-1} .

1.1. LEMME. Soit $u \in C_{00}^{\infty}(\stackrel{p}{\Lambda} T^* \overline{IR_{-}^{n}})^{(1)}$, $(u_{j_1...j_p})$ ses coefficients dans la carte identité. Considérons $tu = \sum_{1 \le j_1 \le ... \le j_p \le n} u_{j_1...j_p}(0,.) dx^{j_1} \Lambda ... \Lambda dx^{j_p}$, i.e. l'image réciproque de u par l'injection canonique $IR^{n-1} \longrightarrow IR^n : x \mapsto (0,x)$. Alors il existe C > 0 tel que pour tout $1 < j_1 < ... < j_p \le n$:

$$\|u_{j_{1}...j_{p}}(0,.)\|_{H^{-1/2}(IR^{n-1})} \leq C(\|u\|_{L^{2}(\Lambda T*IR_{-}^{n})}^{p} + \|du\|_{L^{2}(\Lambda T*IR_{-}^{n})}^{(2)}.$$
(2)

Preuve.
$$\int_{IR^{n-1}} \frac{1}{(1+|\xi|^{2})^{1/2}} d\xi = \int_{J-\infty,o[\times IR^{n-1}]} |u_{j_{1}...j_{p}}(0,.)(\xi)|^{2} e^{x_{1}(1+|\xi|^{2})^{1/2}} dx_{1} \otimes d\xi$$

$$\leq 2 \int_{J-\infty,o[\times IR^{n-1}]} |u_{j_{1}...j_{p}}(x_{1},.)(\xi)|^{2} e^{x_{1}(1+|\xi|^{2})^{1/2}} dx_{1} \otimes d\xi$$

$$+ 2 \int_{J-\infty,o[\times IR^{n-1}]} |u_{j_{1}...j_{p}}(x_{1},.)(\xi)|^{2} e^{x_{1}(1+|\xi|^{2})^{1/2}} dx_{1} \otimes d\xi$$

$$\leq 2 \|u_{j_{1}...j_{p}}\|_{2}^{2} + 2 \int_{J-\infty,o[\times IR^{n-1}]} |x_{1}| \int_{x_{1}}^{o} \left|\frac{\partial u_{j_{1}...j_{p}}(0,.)(\xi)}{\partial x_{1}}|^{2} dt e^{x_{1}(1+|\xi|^{2})^{1/2}} dx_{1} \otimes d\xi$$

$$\leq 2 \|u_{j_{1}...j_{p}}\|_{2}^{2} + 2 \int_{J-\infty,o[\times IR^{n-1}]} |x_{1}| \int_{x_{1}}^{o} \left|\frac{\partial u_{j_{1}...j_{p}}(t,.)(\xi)}{\partial x_{1}}|^{2} dt e^{x_{1}(1+|\xi|^{2})^{1/2}} dx_{1} \otimes d\xi$$

$$\leq 2 \|u_{j_{1}...j_{p}}\|_{2}^{2} + 2 \int_{J-\infty,o[\times IR^{n-1}]} |x_{1}| \int_{x_{1}}^{o} \left|\frac{\partial u_{j_{1}...j_{p}}(t,.)(\xi)}{\partial x_{1}}|^{2} dt e^{x_{1}(1+|\xi|^{2})^{1/2}} dx_{1} \otimes d\xi$$

$$\leq 2 \|u_{j_{1}...j_{p}}\|_{2}^{2} + 2 \int_{J-\infty,o[\times IR^{n-1}]} |x_{1}| \int_{x_{1}}^{o} \left|\frac{\partial u_{j_{1}...j_{p}}(t,.)(\xi)}{\partial x_{1}}|^{2} dt e^{x_{1}(1+|\xi|^{2})^{1/2}} dx_{1} \otimes d\xi$$

$$\leq 2 \|u_{j_{1}...j_{p}}\|_{2}^{2} + 2 \int_{J-\infty,o[\times IR^{n-1}]} |x_{1}| \int_{x_{1}}^{o} \left|\frac{\partial u_{j_{1}...j_{p}}(t,.)(\xi)}{\partial x_{1}}|^{2} dt e^{x_{1}(1+|\xi|^{2})^{1/2}} dx_{1} \otimes d\xi$$

⁽¹⁾ Soit M une variété de classe C^{∞} (éventuellement avec bord). $C_{oo}^{\infty}(\overset{p}{\Lambda}$ T*M) désigne l'espace des formes différentielles de degré p, C^{∞} à support compact. Sauf mention expresse du contraire, p désigne un nombre entier compris entre o et dim M.

⁽²⁾ d désigne l'opérateur dérivée extérieure : voir [Sch] p. 344 et (dans ce texte) alinéa suivant 1.8.

• D'autre part quel que soit $2 \le k \le n$ et $1 \le i_1 \le ... \le i_p \le n$:

$$\int_{]-\infty,o[\times IR^{n-1}} |x_1| \int_{x_1}^o \left| \frac{\partial u_{i_1\cdots i_p}}{\partial x_k} (t,.)(\xi) \right|^2 dt e^{x_1(1+|\xi|^2)^{1/2}} dx_1 \otimes d\xi$$

$$\leqslant \int\limits_{]-\infty,o[\times IR^{n-1}} |x_1| \int_{x_1}^o |\xi_k \widehat{u_{i_1...i_p}}(t,\xi)|^2 \, dt \, e^{x_1(1+|\xi|^2)^{1/2}} \, dx_1 \otimes d\xi$$

$$\leq \int_{1-\infty,0[\times |R|^{n-1}} \frac{\xi_k^2}{1+|\xi|^2} |\widehat{u_{i_1...i_p}}(t,\xi)|^2 dt \otimes d\xi \leq ||u_{i_1...i_p}||_2^2.$$
 (4)

• Par (3) et (4),

$$\begin{split} \| u_{j_{1} \dots j_{p}}(0,.) \|_{H^{-1/2}(IR^{n-1})}^{2} &\leq C \| u \|_{2}^{2} + 4 \int_{]-\infty,o[\times IR^{n-1}} |x_{1}| \int_{x_{1}}^{o} \left| \frac{k_{i_{1} \dots i_{p}}}{\epsilon_{1j_{1} \dots j_{p}}} \frac{\partial u_{i_{1} \dots i_{p}}}{\partial x_{k}} \right|^{2} (t,\xi) dt \\ & e^{x_{1}(1 + \|\xi\|^{2})^{1/2}} dx_{1} \otimes d\xi \leq C \| u \|_{2}^{2} + 4 \| du \|_{2}^{2}. \end{split}$$
 Q.E.D.

Bien entendu dans 1.1 « Λ » désigne la transformée de Fourier par rapport aux variables $x_2,...,x_n$. Posons

$$\|\mathbf{t}\mathbf{u}\|_{\mathbf{H}^{-1/2}(\Lambda T^* \mathbf{IR}^{n-1})} = \left(\sum_{1 < j_1 < \dots < j_p \le n} \|\mathbf{u}_{j_1 \dots j_p}(0, \cdot)\|_{\mathbf{H}^{-1/2}(\mathbf{IR}^{n-1})}^2\right)^{1/2}.$$
 (5)

De 1.1 et (5) suit :

1.2. COROLLAIRE. Il existe C > 0 tel que pour tout $u \in C_{oo}^{\infty}(\stackrel{p}{\Lambda} T^* \overline{IR_{-}^n})$:

$$\|\operatorname{tu}\|_{H^{-1/2}(\Lambda T^{*} \operatorname{IR}^{n-1})}^{(3)} \leq C(\|\operatorname{u}\|_{L^{2}(\Lambda T^{*} \operatorname{IR}^{n}_{-})}^{p} + \|\operatorname{du}\|_{L^{2}(\Lambda T^{*} \operatorname{IR}^{n}_{-})}^{p+1}. \tag{6}$$

Dans la suite de cette section, « Λ » dénotera toujours la transformée de Fourier partielle (par rapport aux variables $x_2,...,x_n$); pour ce qui est de sa définition nous renvoyons à [Hö], p. 24.

1.3. LEMME. Il existe C > 0 tel que pour tout $u \in C_{00}^{\infty}(\stackrel{p}{\Lambda}T*\overline{IR_{-}^n})$:

$$\|dtu\|_{H^{-1/2}(\stackrel{p+1}{\Lambda} T^* IR^{n-1})} \leq C(\|u\|_{L^2(\stackrel{p}{\Lambda} T^* IR^n)} + \|du\|_{L^2(\stackrel{p+1}{\Lambda} T^* IR^n)}.$$

⁽³⁾ Pour la définition de tu se reporter à l'énoncé du lemme 1.1.

Preuve. • Soit
$$2 \le j_1 < ... < j_{p+1} \le n$$
.

$$\left\| \epsilon_{j_{1} \dots j_{p+1}}^{ki_{1} \dots i_{p}} \frac{\partial u_{i_{1} \dots i_{p}}(0,.)}{\partial x_{k}} \right\|_{H^{-1/2}(IR^{n-1})}^{2}$$

$$= \int_{IR^{n-1}} \left| \epsilon_{j_{1} \dots j_{p+1}}^{ki_{1} \dots i_{p}} \xi_{k} \underbrace{u_{i_{1} \dots i_{p}}(0,.)}_{i_{1} \dots i_{p}}(0,.)}(\xi) \right|^{2} \frac{d\xi}{(1 + |\xi|^{2})^{1/2}}$$

$$= \int_{J^{-\infty},0[\times IR^{n-1}]} \left| \epsilon_{j_{1} \dots j_{p+1}}^{ki_{1} \dots i_{p}} \xi_{k} \underbrace{u_{i_{1} \dots i_{p}}(0,.)}_{i_{1} \dots i_{p}}(0,.)}(\xi) \right|^{2} e^{x_{1}(1 + |\xi|^{2})^{1/2}} dx_{1} \otimes d\xi$$

$$\leq 2 \int_{J^{-\infty},0[\times IR^{n-1}]} \left| \epsilon_{j_{1} \dots j_{p+1}}^{ki_{1} \dots i_{p}} \xi_{k} \underbrace{u_{i_{1} \dots i_{p}}(x_{1},.)}_{i_{1} \dots i_{p}}(\xi) \right|^{2} e^{x_{1}(1 + |\xi|^{2})^{1/2}} dx_{1} \otimes d\xi$$

$$+ 2 \int_{J^{-\infty},0[\times IR^{n-1}]} \left| \epsilon_{j_{1} \dots j_{p+1}}^{ki_{1} \dots i_{p}} \xi_{k} \underbrace{\int_{X_{1}}^{0} \frac{\partial}{\partial t} \underbrace{u_{i_{1} \dots i_{p}}(t,.)}_{\partial x_{1}}(\xi) dt} \right|^{2} e^{x_{1}(1 + |\xi|^{2})^{1/2}} dx_{1} \otimes d\xi$$

$$\leq C \|du\|_{2}^{2} + 2 \int_{J^{-\infty},0[\times IR^{n-1}]} \left| \epsilon_{j_{1} \dots j_{p+1}}^{ki_{1} \dots i_{p}} \xi_{k} \underbrace{\int_{X_{1}}^{0} \frac{\partial}{\partial t} \underbrace{u_{i_{1} \dots i_{p}}(t,.)}_{\partial x_{1}}(t,\xi) dt} \right|^{2} e^{x_{1}(1 + |\xi|^{2})^{1/2}} dx_{1} \otimes d\xi$$

$$\leq C \|du\|_{2}^{2} + 2 \int_{J^{-\infty},0[\times IR^{n-1}]} \left| \epsilon_{j_{1} \dots j_{p+1}}^{ki_{1} \dots i_{p}} \xi_{k} \underbrace{\int_{X_{1}}^{0} \frac{\partial}{\partial t} \underbrace{u_{i_{1} \dots i_{p}}(t,.)}_{\partial x_{1}}(t,\xi) dt} \right|^{2} e^{x_{1}(1 + |\xi|^{2})^{1/2}} dx_{1} \otimes d\xi .$$

$$\leq C \|du\|_{2}^{2} + 2 \int_{J^{-\infty},0[\times IR^{n-1}]} \left| \epsilon_{j_{1} \dots j_{p+1}}^{ki_{1} \dots i_{p}} \xi_{k} \underbrace{\int_{X_{1} \dots X_{p}}^{0} \frac{\partial}{\partial t} \underbrace{u_{i_{1} \dots i_{p}}(t,.)}_{\partial x_{1}}(t,\xi) dt} \right|^{2} e^{x_{1}(1 + |\xi|^{2})^{1/2}} dx_{1} \otimes d\xi .$$

$$\leq C \|du\|_{2}^{2} + 2 \int_{J^{-\infty},0[\times IR^{n-1}]} \left| \epsilon_{j_{1} \dots j_{p+1}}^{ki_{1} \dots i_{p}} \xi_{k} \underbrace{\int_{X_{1} \dots X_{p}}^{0} \frac{\partial}{\partial t} \underbrace{u_{i_{1} \dots i_{p}}(t,.)}_{\partial x_{1} \dots x_{p}}(t,\xi) dt} \right|^{2} e^{x_{1}(1 + |\xi|^{2})^{1/2}} dx_{1} \otimes d\xi .$$

• Montrons que

$$\epsilon_{j_{1}j_{2}...j_{p+1}}^{ki_{1}...i_{p}} \xi_{k} \frac{\partial u_{i_{1}...i_{p}}}{\partial x_{1}} = \epsilon_{j_{1}...j_{p+1}}^{ki_{1}...i_{p}} \xi_{k} (du)_{1i_{1}...i_{p}}.$$
(9)

En effet:

$$\frac{ki_{1}...i_{p}}{\varepsilon_{j_{1}j_{2}...j_{p+1}}} \xi_{k} \underbrace{(du)_{1i_{1}...i_{p}}} = \varepsilon_{j_{1}j_{2}...j_{p+1}}^{ki_{1}...i_{p}} \varepsilon_{1i_{1}...i_{p}}^{sl_{1}...l_{p}} \xi_{k} \underbrace{\frac{\partial u_{l_{1}...l_{p}}}{\partial x_{s}}}$$

$$= \varepsilon_{j_{1}j_{2}...j_{p+1}}^{ki_{1}...i_{p}} \xi_{k} \underbrace{\frac{\partial u_{l_{1}...l_{p}}}{\partial x_{s}}} + i \xi_{k} \xi_{s} \varepsilon_{j_{1}j_{2}...j_{p+1}}^{ki_{1}...i_{p}} \varepsilon_{1i_{1}...l_{p}}^{sl_{1}...l_{p}} \underbrace{u_{l_{1}...l_{p}}}_{u_{l_{1}...l_{p}}}.$$
(10)

Eu égard à (10), il suffit de montrer que :

quel que soit
$$(k,s) \in \{2,...,n\}^2$$
, $\begin{cases} ki_1...i_p \\ \epsilon_{11}^i j_2...j_{p+1} \end{cases}$ $\epsilon_{11}^{sl_1...l_p} = -\epsilon_{11}^{sl_1...l_p} = -\epsilon_{11}^{sl_1...l_p} \epsilon_{11}^{sl_1...l_p}.$ (11)

Observons que dans (11), $2 \le j_1 < ... < j_{p+1} \le n$, $2 \le i_1 < ... < i_p \le n$, $2 \le k,s \le n$; par contre $1 \le i_1 < ... < i_p \le n$. (k,s) étant fixé, chaque membre de (11) représente au plus un terme. Le membre de gauche (resp. de droite) de (11) est égal à moins la signature de la permutation appliquant (k,s,i_2,...,i_p) (resp. (s,k,i_2,...,i_p)) dans l'ordre strictement croissant. D'où la différence de signe dans (11).

• De (8) et (9) suit :

$$\| (\mathrm{dtu})_{j_{1} \cdots j_{p+1}} \|_{H^{-1/2}(\mathrm{IR}^{n-1})}^{2} \leq C \| \mathrm{du} \|_{2}^{2}$$

$$+ 2 \int_{]-\infty,o[\times \mathrm{IR}^{n-1}} \left| \epsilon_{j_{1}j_{2} \cdots j_{p+1}}^{ki_{1} \cdots i_{p}} \xi_{k} \int_{x_{1}}^{o} \widehat{(\mathrm{du})_{1i_{1} \cdots i_{p}}(t,\xi)} \mathrm{dt} \right|^{2} e^{x_{1}(1+|\xi|^{2})^{1/2}} \mathrm{d}x_{1} \otimes \mathrm{d}\xi$$

$$\leq C \| \mathrm{du} \|_{2}^{2} + C \int_{]-\infty,o[\times \mathrm{IR}^{n-1}} \frac{|\xi|^{2}}{1+|\xi|^{2}} \sum_{1 \leq k_{1} < \cdots < k_{p+1} \leq n} |\widehat{(\mathrm{du})_{k_{1} \cdots k_{p+1}}}|^{2} \mathrm{d}t \otimes \mathrm{d}\xi$$

$$\leq C \| \mathrm{du} \|_{2}^{2}.$$

$$\leq C \| \mathrm{du} \|_{2}^{2}.$$

$$O.E.D.$$

Considérons $H_p(d;IR^n_-) = \left\{ u \in L^2(\stackrel{p}{\Lambda} T*IR^n_-) ; du \in L^2(\stackrel{p+1}{\Lambda} T*IR^n_-) \right\}$ et $H_p^{-1/2}(d;IR^{n-1}) = \left\{ \varphi \in H^{-1/2}(\stackrel{p}{\Lambda} T*IR^{n-1}) ; d\varphi \in H^{-1/2}(\stackrel{p+1}{\Lambda} T*IR^{n-1}) \right\}$, ces espaces étant munis de la topologie définie par la norme du graphe. 1.2 et 1.3 montrent que l'application de $C_{oo}^{\infty}(\stackrel{p}{\Lambda} T*IR^n_-) \to H^{-1/2}(\stackrel{p}{\Lambda} T*IR^{n-1}) : u \to tu$ est continue, $C_{oo}^{\infty}(\stackrel{p}{\Lambda} T*IR^n_-)$ étant muni de la topologie induite par $H_p(d;IR^n_-)$. Nous allons montrer dans ce qui suit qu'elle se prolonge par continuité de manière unique en une application de $H_p(d;IR^n_-)$ sur $H_p^{-1/2}(d;IR^{n-1})$.

1.4. LEMME. Soit $\varphi \in H_p^{-1/2}(d; |R^{n-1})$. Quel que soit $2 \le i_1 < ... < i_p \le n$ et $2 \le j_2 < ... < j_p \le n$ posons :

$$\widehat{u_{i_1...i_p}}(x_1,\xi_2,...,\xi_n) = \widehat{\varphi_{i_1...i_p}}(\xi_2,...,\xi_n) \exp\left[x_1\sqrt{1+\xi_2^2+...+\xi_n^2}\right]$$
 (12)

et

$$\widehat{u_{1j_2...j_p}}(x_1,\xi_2,...,\xi_n) = \frac{(\delta\varphi)_{j_2...j_p}(\xi_2,...,\xi_n)}{\sqrt{1+\xi_2^2+...+\xi_n^2}} \exp\left[x_1\sqrt{1+\xi_2^2+...+\xi_n^2}\right].$$
(13)

Alors

$$\mathsf{u} = \sum_{1 \le k_1 < \ldots < k_p \le n} \mathsf{u}_{k_1 \cdots k_p} \, \mathsf{dx}^{k_1} \, \Lambda \ldots \Lambda \, \mathsf{dx}^{k_p} \in \mathsf{H}_p(\mathsf{d}; \mathsf{IR}^n_-)$$

et l'application $\varphi \to u$ est continue de $H_p^{-1/2}(d; |R^{n-1})$ sur $H_p(d; |R^n)$.

Preuve. • Par (12), $\| u_{i_1 \dots i_p} \|_2 = \frac{\sqrt{2}}{2} \| \varphi_{i_1 \dots i_p} \|_{H^{-1/2}}.$ (14)

• Par (13),
$$\| u_{1j_2...j_p} \|_2 = \frac{\sqrt{2}}{2} \| (\delta \varphi)_{j_2...j_p} \|_{H^{-3/2}} \le \text{cste } \| \varphi \|_{H^{-1/2}}. \tag{15}$$

• Soit $2 \le k_1 \le k_2 \le ... \le k_{p+1} \le n$.

 $^(^4)$ δ désigne l'opérateur codifférentielle : [R] p. 125 et alinéa de ce texte suivant 1.8.

$$(du)_{k_1...k_{p+1}} = \sum_{\nu=1}^{p+1} (-1)^{\nu-1} \frac{\partial^{u} k_1...\hat{k}_{\nu}...k_{p+1}}{\partial x_{k_{11}}},$$

d'où par (12):

$$\begin{split} \| \left(\mathrm{du} \right)_{k_{1} \dots k_{p+1}} \|_{2}^{2} &= \int_{\mathrm{IR}^{n-1}} \ \left| \ \sum_{\nu=1}^{p+1} \left(-1 \right)^{\nu-1} \, \xi_{k_{\nu}} \, \widehat{\varphi_{k_{1} \dots k_{\nu} \dots k_{p+1}}} (\xi) \, \right|^{2} \frac{\mathrm{d} \xi}{2 (1 + |\xi|^{2})^{1/2}} \\ &= \frac{1}{2} \, \| \left(\mathrm{d} \varphi \right)_{k_{1} \dots k_{p+1}} \|_{H}^{2} - 1/2 (|\mathbf{R}^{n-1}|) \, ; \end{split}$$

 ξ désigne la variable duale de $(x_2,...,x_n)$ (« Λ » désigne la transformée de Fourier sur les variables $x_2,...,x_n$). D'où

$$\| (du)_{k_1 \dots k_{p+1}} \|_2 = \frac{\sqrt{2}}{2} \| (d\varphi)_{k_1 \dots k_{p+1}} \|_{H^{-1/2}(IR^{n-1})}.$$
 (16)

• Soit $2 \le j_2 < ... < j_{p+1} \le n$.

$$(du)_{1j_2\cdots j_{p+1}} = \frac{\partial u_{j_2\cdots j_{p+1}}}{\partial x_1} + \sum_{\nu=2}^{p+1} (-1)^{\nu-1} \frac{\partial u_{1j_2\cdots \hat{j_{\nu}}\cdots j_{p+1}}}{\partial x_{j_{\nu}}} .$$

D'où par (12) et (13) :

$$\begin{split} \widehat{(\mathsf{du})_{1j_2\cdots j_{p+1}}} &= \frac{\exp[\mathsf{x}_1\sqrt{1+\xi_2^2+\ldots+\xi_n^2}]}{\sqrt{1+\xi_2^2+\ldots+\xi_n^2}} \, [(1+\xi_2^2+\ldots+\xi_n^2)\widehat{\varphi_{j_2\cdots j_{p+1}}}] \\ &+ \sum_{\nu=2}^{p+1} \, (-1)^{\nu-1} \, \mathrm{i} \mathsf{x}_{j_{\nu}} \, \widehat{(\delta\varphi)_{j_2\cdots j_{\nu}\cdots j_{p+1}}}] \\ &= \frac{\exp \, \mathsf{x}_1\sqrt{1+\xi_2^2+\ldots+\xi_n^2}}{\sqrt{1+\xi_2^2+\ldots+\xi_n^2}} \, [\varphi_{j_2\cdots j_{p+1}} + (\triangle\varphi)_{j_2\cdots j_{p+1}} - (\mathsf{d}\delta\varphi)_{j_2\cdots j_{p+1}}]^{\wedge} \\ &= \frac{\exp \, \mathsf{x}_1\sqrt{1+\xi_2^2+\ldots+\xi_n^2}}{\sqrt{1+\xi_2^2+\ldots+\xi_n^2}} \, [\, ((1+\delta\mathsf{d})\varphi)_{j_2\cdots j_{p+1}}]^{\wedge} . \end{split}$$

D'où:

$$\| (du)_{1j_{2}...j_{p+1}} \|_{2} \leq C \| ((I+\delta d)\varphi)_{j_{2}...j_{p+1}} \|_{H^{-3/2}}$$

$$\leq C (\| \varphi \|_{H^{-3/2}} + \| d\varphi \|_{H^{-1/2}}) \leq C (\| \varphi \|_{H^{-1/2}} + \| d\varphi \|_{H^{-1/2}}).$$
 (17)

De (14)-(17) suit l'assertion. Q.E.D.

1.5. COROLLAIRE. Considérons u définie par (12) et (13). Alors $\delta u = 0$.

Preuve. • Soit $2 \le k_1 \le k_2 \le ... \le k_{p-1} \le n$. Par [R] (3), p. 129 :

$$\begin{split} \overbrace{\left(\delta u\right)_{k_{1}\dots k_{p-1}}} &= -\Bigg(\frac{\partial u_{1}k_{1}\dots k_{p-1}}{\partial x_{1}} + \sum_{s=2}^{n} \frac{\partial u_{s}k_{1}\dots k_{p-1}}{\partial x_{s}}\Bigg)^{\bigwedge} \\ &= -\Bigg(\frac{\partial u_{1}k_{1}\dots k_{p-1}}{\partial x_{1}} + i\sum_{s=2}^{n} \frac{\xi_{s}u_{s}k_{1}\dots k_{p-1}}{\xi_{s}u_{s}k_{1}\dots k_{p-1}}\Bigg). \end{split}$$

D'où par (12) et (13):

$$\overbrace{(\delta u)_{k_1...k_{p-1}}}(x_1,\xi_2,...,\xi_n) = -(\delta \varphi)_{k_1...k_{p-1}}(\xi_2,...,\xi_n) \exp \left[x_1 \sqrt{1+\xi_2^2+...+\xi_n^2}\right]
- i \sum_{s=2}^{n} \xi_s \overbrace{\varphi_{sk_1...k_{p-1}}}(\xi_2,...,\xi_n) \exp \left[x_1 \sqrt{1+\xi_2^2+...+\xi_n^2}\right] = 0$$
(18)

• Soit $2 \le k_2 \le ... \le k_{p-1} \le n$.

$$(\delta u)_{1k_{2}...k_{p-1}}(x_{1},\xi_{2},...,\xi_{n}) = -\sum_{s=2}^{n} i \xi_{s} u_{s1k_{2}...k_{p-1}}(x_{1},\xi_{2},...,\xi_{n})$$

$$= \sum_{s=2}^{n} i \xi_{s} \frac{(\delta \varphi) sk_{2}...k_{p-1}(\xi_{2},...,\xi_{n})}{\sqrt{1+\xi_{2}^{2}+...+\xi_{n}^{2}}} \exp \left[x_{1} \sqrt{1+\xi_{2}^{2}+...+\xi_{n}^{2}}\right] = 0 \operatorname{car} \delta^{2} = 0.$$
(19)

De (18) et (19) suit l'assertion.

Q.E.D.

1.6. LEMME. $C_{00}^{\infty}(\stackrel{p}{\Lambda}T^* \overline{IR_{-}^n})$ est dense dans $H_{p}(d;IR_{-}^n)$.

• Soit $\theta_t \in C^{\infty}(IR;[0,1])$ tel que $0 \le \theta_t \le 1$, $\theta_t \Big|_{]-\infty,t/2[} = 1$ et supp $\theta_t \subset]-\infty,t[$. Désignons par $(\tau_t u)^{\sim}$ le prolongement de $\tau_t u$ par 0, dans le complémentaire de $]-\infty,t[\times IR^{n-1}]$ et considérons $\theta_t(\tau_t u)^{\sim}$, θ_t étant regardée comme fonction des n variables $(x_1,x_2,...,x_n)$. Il est clair que $\theta_t(\tau_t u)^{\sim} \in H_p(d;IR^n)$ et que $[\theta_t(\tau_t u)^{\sim}]\Big|_{IR^n} = (\tau_t u)\Big|_{IR^n}$. En particulier

$$[\theta_t(\tau_t u)^{\sim}]\Big|_{IR^n} \to u \text{ dans } H_p(d;IR^n_-). \tag{20}$$

• Soit (φ_{ϵ}) une suite régularisante et posons $u_{\epsilon,t} = [\theta_t(\tau_t u)^{\sim}] * \varphi_{\epsilon}$. Soit $\delta > 0$. Choisissons tout d'abord t > 0, tel que

$$\| (\tau_t \mathbf{u}) \Big|_{\mathbf{IR}_{\underline{n}}^{\underline{n}} - \mathbf{u}} \|_{\mathbf{H}_{\underline{p}}(\mathbf{d}; \mathbf{IR}_{\underline{n}}^{\underline{n}})} \leq \delta/3. \tag{21}$$

Choisissons ensuite $\epsilon > 0$ tel que

$$\|\mathbf{u}_{\epsilon,t}\|_{\mathrm{IR}_{-}^{n}} - [\theta_{t}(\tau_{t}\mathbf{u})^{\sim}]_{\mathrm{IR}_{-}^{n}} \| \leq \delta/3.$$
 (22)

• Considérons $\psi \in D(IR^n)$, $0 \le \psi \le 1$ tel que $\psi \Big|_{B(0,1)} = 1$. Posons $\psi_k = \psi(./k)$ quel que soit $k \in IN^*$ et $u_{\varepsilon,t,k} = (\psi_k \ u_{\varepsilon,t}) \Big|_{IR_n^-}$. De $du_{\varepsilon,t,k} = \psi_k \ du_{\varepsilon,t} + d\psi_k \ \Lambda \ u_{\varepsilon,t}$ suit $u_{\varepsilon,t,k} \to u_{\varepsilon,t} \Big|_{IR_n^-}$ dans $H_p(d;IR_n^-)$. Choisissons k tel que

$$\| \mathbf{u}_{\epsilon,t,k} - \mathbf{u}_{\epsilon,t} \|_{\mathbb{R}_{n}^{-}} \| \leq \delta/3. \tag{23}$$

De (20) à (23) suit $\|\, u_{\varepsilon,t,k} - u\,\, \| \! \leqslant \! \delta.$ D'où suit l'assertion.

Q.E.D.

Dans le cas supp u borné, $u \in H_p(d; IR_-^n)$, pour tout W voisinage de la fermeture du supp u dans $\overline{IR_-^n}$, il existe une suite $u_n \in C_{oo}^\infty(\stackrel{p}{\Lambda} T^* \overline{IR_-^n})$, tels que supp $u_n \subset W$ et $u_n \to u$ dans $H_p(d; IR_-^n)$. En effet, par 1.6, il existe $w_n \in C_{oo}^\infty(\stackrel{p}{\Lambda} T^* \overline{IR_-^n})$ telle que $w_n \to u$ dans $H_p(d; IR_-^n)$. Considérons $\theta \in C_{oo}^\infty(IR_-^n)$, $0 \le \theta \le 1$, θ égal 1 sur un voisinage de $\overline{\text{supp } u}$ et supp $\theta \subset W$. Alors $u_n = \theta \ w_n \to u$ dans $H_p(d; IR_-^n)$ et supp $u_n \subset W$.

1.7. PROPOSITION. L'application $u\mapsto tu$ de $H_p(d;IR^n_-)$ dans $H_p^{-1/2}(d;IR^{n-1})$ est surjective.

Preuve. ullet Désignons par $j: IR^{n-1} \longrightarrow \overline{IR^n}$. Tout d'abord montrons que pour tout $u \in C^{\infty}(\Lambda T * \overline{IR^n}) \cap H_p(d;IR^n)$, tu = j * u.

Soit $\psi \in C_{oo}^{\infty}(\operatorname{IR}^n)$, $0 \leqslant \psi \leqslant 1$, $\psi \Big|_{B(0,1)} = 1$. Posons $\psi_k = \psi(./k)$, quel que soit $k \in \operatorname{IN*}$ et $u_k = \psi_k u$. De $du_k = \psi_k du + d\psi_k \Lambda u$ suit $u_k \to u$ dans $H_p(d;\operatorname{IR}^n)$ lorsque $k \to \infty$ D'où $j^*u_k \to tu$ dans $H_p^{-1/2}(d;\operatorname{IR}^{n-1})$. (24) Mais $j^*u_k \to j^*u$ uniformément sur les compacts de IR^{n-1} , donc dans l'espace $D_p'(\operatorname{IR}^{n-1})$ des p-courants pairs sur IR^{n-1} .

De (24) et (25) suit tu = j*u.

• Désignons par $J: H_p^{-1/2}(d;IR^{n-1}) \to H_p(d;IR^n)$ l'opérateur défini par (12) et (13). Soit $\varphi \in S(\Lambda^nT^*IR^{n-1})$. Par (12), (13) et le théorème de Plancherel,

$$J\varphi \in \bigcap_{m=0}^{\infty} H^{m}(\Lambda T^{*} IR_{-}^{n}) \subset C^{\infty}(\Lambda T^{*} \overline{IR_{-}^{n}}) \cap H_{p}(d; IR_{-}^{n}). \tag{26}$$

Du point précédent suit dès lors $tJ\varphi=j^*J\varphi$. De (12) et $\varphi\in S(\stackrel{p}{\Lambda}T^*IR^{n-1})$ suit pour tout $2\leqslant i_1<...< i_p\leqslant n$:

$$(J\varphi)_{i_1\cdots i_p}(x_1,x_2,\dots,x_n) = (2\pi)^{\frac{1-n}{2}} \int_{IR} e^{i\langle \xi,x'\rangle} \widehat{\varphi_{i_1\cdots i_p}}(\xi_2,\dots,\xi_n) \exp\left[x_1\sqrt{1+|\xi|^2}\right] d\xi, \tag{27}$$

p.p. dans IR_{-}^{n} ; x' dénote $(x_2,...,x_n)$.

Par le théorème de Lebesgue, le membre de droite de (27) est une fonction continue sur $\overline{IR_{-}^{n}}$. D'où par (26), l'égalité dans (27) a lieu partout sur $\overline{IR_{-}^{n}}$. En particulier

$$(\mathsf{J}\varphi)_{\mathsf{i}_1\cdots\mathsf{i}_{\mathsf{p}}}(0,.)=\varphi_{\mathsf{i}_1\cdots\mathsf{i}_{\mathsf{p}}}.$$

D'où j* $J\varphi = \varphi$ et donc

$$(t_0 J)\Big|_{S(\Lambda T^* IR^{n-1})} = I\Big|_{S(\Lambda T^* IR^{n-1})}$$

Par densité suit $t_O J = I$. D'où l'assertion.

Q.E.D.

Nous nous résumons dans le théorème qui suit :

1.8. THEOREME. L'application $u \to tu$ de $C_{00}^{\infty}(\stackrel{p}{\Lambda}\,T^*\,\overline{IR_{-}^n})$ dans $C_{00}^{\infty}(\stackrel{p}{\Lambda}\,T^*\,IR^{n-1})$ $(0 \le p \le n)$ se prolonge continuement de manière unique en une application (continue) de $H_p(d;IR_{-}^n)$ sur $H_p^{-1/2}(d;IR^{n-1})$. De plus $C_{00}^{\infty}(\stackrel{p}{\Lambda}\,T^*\,IR_{-}^n)$ est dense dans ker t.

Preuve. • La première partie suit de 1.2, 1.3, 1.6, 1.4 et 1.7.

• Venons-en à la preuve de la seconde partie. Soit $u \in H_p(d; IR_-^n)$ tel que tu = 0. Considérons \widetilde{u} le prolongement de u à IR^n par 0 dans le complémentaire de IR_-^n . Alors $\widetilde{u} \in H_p(d; IR^n)$ et $d\widetilde{u} = (du)^{\sim}$. En effet quel que soit $\varphi \in \underline{\underline{D}}$ (IR^n) [Sch] (p. 321-353) :

$$< d\widetilde{u}, \varphi> = (-1)^{p+1} \int \widetilde{u} \wedge d\varphi = (-1)^{p+1} \int_{IR_{-}^{n}} u \wedge d\varphi = \int_{IR_{-}^{n}} du \wedge \varphi, car tu = 0$$

(on applique la formule de Stokes à $u_n \wedge \varphi$, $u_n \in C_{oo}^{\infty}(\stackrel{p}{\Lambda} T^* \overline{IR^n})$, $u_n \to u$ dans $H_p(d;IR^n)$). Posons $(\tau_t \widetilde{u})(x_1, x_2, ..., x_n) = \widetilde{u}(x_1 + t, x_2, ..., x_n)$.

De $d\tau_t \widetilde{u} = \tau_t d\widetilde{u}$ suit $\tau_t \widetilde{u} \to \widetilde{u}$ dans $H_p(d; IR^n)$ lorsque $t \to 0^+$. Soit $\delta > 0$ et choisissons t > 0 suffisamment petit pour que

$$\parallel \tau_t \widetilde{\mathbf{u}} - \widetilde{\mathbf{u}} \parallel \leq \delta/3. \tag{28}$$

Soit (φ_{ϵ}) une suite régularisante. Alors $\varphi_{\epsilon} * \tau_{t}\widetilde{u} \to \tau_{t}\widetilde{u}$ dans $H_{p}(d;IR^{n})$ et pour $0 < \epsilon < t$, $supp(\varphi_{\epsilon} * \tau_{t}\widetilde{u}) \subset IR^{n}_{-}$. Choisissons $\epsilon > 0$ suffisamment petit et inférieur à t, tel que

$$\|\varphi_{\epsilon} * \tau_{t}\widetilde{\mathbf{u}} - \tau_{t}\widetilde{\mathbf{u}}\| \leq \delta/3. \tag{29}$$

Soit $\psi \in D(IR^n)$, $0 \le \psi \le 1$, $\psi |_{B(0,1)} = 1$. Posons $\psi_k = \psi(./k)$, $k \in IN^*$. Pour k suffisamment grand,

$$\|\psi_{\mathbf{k}}(\varphi_{\epsilon} * \tau_{\mathbf{t}}\widetilde{\mathbf{u}}) - \varphi_{\epsilon} * \tau_{\mathbf{t}}\widetilde{\mathbf{u}}\| \leq \delta/3. \tag{30}$$

De (28)-(30) suit $\|(\psi_k \cdot (\varphi_\epsilon * \tau_t \widetilde{u}))|_{R} - u \| \le \delta$ et l'on a

$$(\psi_k \cdot (\varphi_{\epsilon} * \tau_t \widetilde{u}))\Big|_{IR_{-}^n} \in C_{oo}^{\infty}(\mathring{\Lambda}_T^* IR_{-}^n).$$

D'où l'assertion.

Q.E.D.

Nous allons maintenant étendre 1.8 aux variétés C^{∞} compactes à bord. Soit $\overline{\Omega}$ une variété C^{∞} compacte à bord. Pour pouvoir introduire les espaces «fonctionnels» convenables sur Ω et $\partial\Omega$ nous aurons besoin de la théorie des courants [Sch], p. 312-353. Rappelons brièvement quelques définitions et notations. Soit E un espace vectoriel réel et Orient (E) = $0_1, 0_2$ l'ensemble des deux orientations de E. Un p-covecteur tordu (encore dit impair) sur E, α , est une application de Orient (E) dans Λ E*, telle que $\alpha(0_1) = -\alpha(0_2)$. Soit M une variété (ici Ω ou $\partial\Omega$) de dimension n. Un p-covecteur tordu au point x est un p-covecteur tordu sur T_X M. On définit alors le fibré des p-covecteurs tordus et une section de ce fibré est appelée une forme tordue (ou impaire). \underline{D} (M) dénote l'espace des p-formes tordues C^{∞} à support compact ; on le munit de la topologie de Schwartz (analogue au cas scalaire). Son dual \underline{D} (M) est appelé l'espace des (n-p)-courants pairs.

Appelons p-forme tordue distribution (appelée dans [Tr 1] p. 96 densité distribution si p=n) toute forme linéaire continue sur $C_{oo}^{\infty}(\stackrel{n-p}{\Lambda}^{}T^*M)$. L'espace vectoriel des p-formes tordues distribution sera noté $\stackrel{p}{\widetilde{D}}$ '(M). Soit $u\in \underline{\underline{D}}(M)$. A u est associé la p-forme tordue distribution :

$$C_{oo}^{\infty}(\stackrel{n-p}{\Lambda}^p T^* M) \ni \theta \rightarrow <\theta, u> = \int_{M} \theta \Lambda u.$$

Ceci permet d'identifier $\underline{\underline{D}}$ (M) au sous-espace de $\widetilde{D}'(M)$ des p-formes tordues distribution C^{∞} à support compact. Etant donné un opérateur différentiel $P:C_{oo}^{\infty}(\overset{p}{\Lambda}\,T^*\,M)\to C_{oo}^{\infty}(\overset{q}{\Lambda}\,T^*\,M)$ il est alors facile de prolonger P à D'(M). Il suffit de considérer $t(tp|_{D})$ que nous noterons encore D'(M) qui applique continuement $D'(M)\to D'(M)$; ce prolongement continu est unique. Dans le cas P=d on retrouve la définition donnée dans [Sch], p. 344. Pour plus de détails, voir [Di], p. 211-218 et dans le cas P=0 [Tr 1], p.92-122.

Les espaces de Hilbert IL $^2(\stackrel{p}{\Lambda}\mathsf{T}^*\,\overline{\Omega})$, IL $^2(\stackrel{p+1}{\Lambda}\mathsf{T}^*\,\overline{\Omega})$, H $_p(\mathsf{d};\overline{\Omega})$, (resp. H $^{-1/2}(\stackrel{p}{\Lambda}\mathsf{T}^*\,\partial\Omega)$, H $^{-1/2}(\stackrel{p+1}{\Lambda}\mathsf{T}^*\,\partial\Omega)$, H $^{-1/2}(\stackrel{p+1}{\Lambda}\mathsf{T}^*\,\partial\Omega)$, H $^{-1/2}(\stackrel{p+1}{\Lambda}\mathsf{T}^*\,\partial\Omega)$, H $^{-1/2}(\stackrel{p+1}{\Lambda}\mathsf{T}^*\,\partial\Omega)$, se définissent par passage aux coordonnées locales de $\overline{\Omega}$ (resp. $\partial\Omega$); plus précisément à tout atlas fini sur $\overline{\Omega}$ (resp. $\partial\Omega$) et à toute partition de l'unité subordonnée est associée une structure hilbertienne sur chacun de ces espaces (comme dans le cas scalaire [Tr 2], p. 232); de plus la structure d'E.V.T. sous-jacente de chacun de ces espaces est intrinsèque. On vérifie aisément que $H_p(d;\overline{\Omega}) = \left\{ u \in IL^2(\stackrel{p}{\Lambda}\mathsf{T}^*\,\overline{\Omega}) : du \in IL^2(\stackrel{p+1}{\Lambda}\mathsf{T}^*\,\overline{\Omega}) \right\}$ (resp. $H_p^{-1/2}(d;\partial\Omega) = \left\{ u \in H^{-1/2}(\stackrel{p}{\Lambda}\mathsf{T}^*\,\partial\Omega) : du \in H^{-1/2}(\stackrel{p+1}{\Lambda}\mathsf{T}^*\,\partial\Omega) \right\}$) et que la norme du graphe est une norme équivalente.

1.9. THEOREME. L'application de $C^{\infty}(\overset{p}{\Lambda}\,\mathsf{T}^*\,\overline{\Omega})\to C^{\infty}(\overset{p}{\Lambda}\,\mathsf{T}^*\,\partial\Omega): u\to j^*u\ (j:\partial\Omega \hookrightarrow \overline{\Omega})$ se prolonge continuement de manière unique en une application linéaire continue de $H_p(d;\overline{\Omega})$ sur $H_p^{-1/2}(d;\partial\Omega)$; sa valeur en $u\in H_p(d;\overline{\Omega})$ sera notée tu. De plus $C_{oo}^{\infty}(\overset{p}{\Lambda}\,\mathsf{T}^*\,\Omega)$ est dense dans ker t (que nous noterons $H_0^p(d;\overline{\Omega})$).

Preuve.

 Montrons que l'application u → j*u de $C^{\infty}(\overset{p}{\Lambda} T^* \overline{\Omega}) \to C^{\infty}(\overset{p}{\Lambda} T^* \partial \Omega)$ est continue, $C^{\infty}(\overset{p}{\Lambda} T^* \overline{\Omega})$ (resp. $C^{\infty}(\overset{p}{\Lambda} T^* \partial \Omega)$) étant muni de la topologie induite par $H_p(d;\overline{\Omega})$ (resp. $H_p^{-1/2}(d;\partial\Omega)$).

Soit $\{(U_i, x_i) : i = 1,...,m\}$ un atlas fini de $\overline{\Omega}$ et $(\theta_i)_{i=1}^m$ une partition de l'unité subordonnée à cet atlas. Par linéarité

$$tu = \sum_{i=1}^{m} t \theta_i u.$$

D'autre part

$$\left[\left(\chi_{i}\middle|_{U_{i}\cap\partial\Omega}\right)^{-1}\right]^{*}t(\theta_{i}u)=t\left[\chi_{i}^{-1}\right]^{*}(\theta_{i}u)$$
(31)

(t() voulant dire «composante tangentielle de»). Par 1.8, il existe une constante C>0 telle que pour tout i=1,...,m, tout $u\in C^{\infty}(\stackrel{p}{\Lambda}T^*\Omega)$:

$$\| \operatorname{t}(\chi_i^{-1})^*(\theta_i \mathsf{u}) \|_{H^{-1/2}_p(\mathsf{d}; \mathsf{IR}^{n-1})} \! \leqslant \! \mathsf{C} \| (\chi_i^{-1})^*(\theta_i \mathsf{u}) \|_{H_p(\mathsf{d}; \mathsf{IR}^n_-)}.$$

D'où par (31):

$$\sum_{i=1}^{m} \| [(x_i |_{U_i} \cap \partial \Omega)^{-1}]^* t(\theta_i u) \|_{H_p^{-1/2}(d; \mathbb{R}^{n-1})}$$

$$\leq C \sum_{i=1}^{m} \| (x_i^{-1})^* (\theta_i u) \|_{H_p(d; \mathbb{R}^n_-)}.$$
(32)

L'application $\mathbf{u}\mapsto(\sum_{\mathbf{i}=1}^{m}\|(\chi_{\mathbf{i}}^{-1})^*(\theta_{\mathbf{i}}\mathbf{u})\|^2 H_p(\mathbf{d};\mathbf{IR}_-^n)^{1/2}$ est l'une des normes équivalentes de $H_p(\mathbf{d};\overline{\Omega})$; de même l'application $\varphi\mapsto(\sum_{\mathbf{i}=1}^{m}\|[(\chi_{\mathbf{i}}|_{U_{\mathbf{i}}}\cap\partial\Omega)^{-1}]^*(\theta_{\mathbf{i}}\varphi)\|^2 H_p^{-1/2}(\mathbf{d};\mathbf{IR}^{n-1})^{1/2}$ est l'une des normes équivalentes de $H_p^{-1/2}(\mathbf{d};\partial\Omega)$. D'où l'assertion par (32).

• Montrons que $C^{\infty}(\stackrel{p}{\Lambda} T^* \overline{\Omega})$ est dense dans $H_p(d; \overline{\Omega})$. Soit $u \in H_p(d; \overline{\Omega})$, $\{(U_i, \chi_i) : i=1,...,m\}$ un atlas fini de $\overline{\Omega}$. Par partition de l'unité et linéarité on peut supposer que $\overline{\sup u} \subset U_1$ (modulo renumérotation des cartes de l'atlas considéré), (« — » désigne ici la fermeture dans $\overline{\Omega}$). Soit $(\theta_i)_{i=1}^m$ une partition de l'unité subordonnée au recouvrement des $(U_i)_{i=1}^m$ telle que pour tout i=2,...,m: supp $\theta_i \cap \overline{\sup u} = \phi$. Soit $\delta > 0$.

Par 1.6 et la remarque qui le suit , il existe $w \in C_{oo}^{\infty}(\stackrel{p}{\Lambda} T^* \overline{IR^n})$ tel que $\|w - (\chi_1^{-1})^*(\theta_1 u)\|_{H_p(d;IR^n)} \le \delta$ et supp $w \cap \text{supp } (\theta_i \circ \chi_1^{-1}) = \phi$ pour i=2,...,m. D'où

$$\begin{split} \| \ (\chi_1)^* \mathbf{w} - \mathbf{u} \ \|_{H_p(\mathbf{d}; \overline{\Omega})} &= (\sum_{i=1}^m \| \ (\chi_i^{-1})^* \ [\theta_i((\chi_1)^* \mathbf{w} - \mathbf{u})] \|^2)^{1/2} \\ &= \| \ (\chi_1^{-1})^* \ [\theta_1((\chi_1)^* \mathbf{w} - \mathbf{u})] \ \| \\ &= \| \ \theta_1 \circ \chi_1^{-1} \ \mathbf{w} - (\chi_1^{-1})^* \ \mathbf{u} \ \| \\ &= \| \ \mathbf{w} - (\chi_1^{-1})^* \ (\theta_1 \mathbf{u}) \| \leqslant \delta. \end{split}$$

D'où l'assertion.

• Montrons que l'application $u\mapsto tu$ de $H_p(d;\overline{\Omega})$ dans $H_p^{-1/2}(d;\partial\Omega)$ est surjective. Considérons $\left\{(U_i,\chi_i):i=1,...,m\right\}$ un atlas fini de $\overline{\Omega}$ et $(\theta_i)_{i=1}^m$ une partition de l'unité subordonnée. Considérons $\varphi\in H_p^{-1/2}(d;\partial\Omega)$. Par 1.8, pour tout $i\in\left\{1,...,m\right\}$ il existe $w_i\in H_p(d;lR_-^n)$ tel que $tw_i=t[(\chi_i|_{U_i})^{-1}]^*(\theta_iu)$. On peut supposer $\overline{\sup w_i}$ compact $\subset \chi_i(U_i)$. Considérons $u=\sum_{i=1}^m [\chi_i|_{U_i}]^*w_i$. $u\in H_p(d;\overline{\Omega})$ et

$$tu = \sum_{i=1}^{m} t[x_i|_{U_i}]^* w_i$$

$$= \sum_{i=1}^{m} (x_i|_{\partial\Omega} \cap U_i)^* tw_i$$

$$= \sum_{i=1}^{m} (x_i|_{\partial\Omega} \cap U_i)^* t[(x_i|_{U_i})^{-1}]^* (\theta_i u)$$

$$= \sum_{i=1}^{m} t(\theta_i u) = tu.$$

• Reste à montrer que $C_{00}^{\infty}(\overset{p}{\Lambda}\,\mathsf{T}^*\,\Omega)$ est dense dans ker t.

Soit $u\in H_p(d;\overline{\Omega})$ tel que tu = 0. Considérons encore un atlas fini $\left\{(U_i,\chi_i): i=1,...,m\right\}$ de $\overline{\Omega}$. Par partition de l'unité et linéarité on peut supposer que $\overline{\operatorname{supp} u}\subset U_1$. On procède alors comme dans le second point à cela près qu'on considère ici $w\in C_{oo}^\infty(\Lambda^nT^*\operatorname{IR}^n)$.

Q.E.D.

A titre d'application de 1.9, on peut déjà donner une généralisation de la formule de Stokes :

1.10. COROLLAIRE. Supposons $\overline{\Omega}$ orientée. Alors pour tout $u \in H_{n-1}(d;\overline{\Omega})$

$$\int_{\Omega} du = \langle tu, 1 \rangle \tag{33}$$

 $\begin{array}{l} \textit{Preuve.} \bullet \text{ Supposons tout d'abord } u \in C^{\infty}(\overset{n-1}{\Lambda} \ T^* \ \overline{\Omega}). \ \text{Alors par la classique formule de Stokes}: \\ \int_{\Omega} du = \int_{\partial\Omega} tu. \ \text{Mais} \int_{\partial\Omega} tu = < tu, 1>. \end{array}$

• (33) suit dès lors de la densité de $C^{\infty}(\stackrel{n-1}{\Lambda} T^* \overline{\Omega})$ dans $H_{n-1}(d;\overline{\Omega})$ et de la continuité de l'application de $H_{n-1}(d;\overline{\Omega}) \to H_{n-1}^{-1/2}(d;\partial\Omega)$: $u \mapsto tu$.

Q.E.D.

Nous supposerons désormais, sauf mention expresse du contraire, $\overline{\Omega}$ variété riemanienne orientée C^∞ compacte à bord.

Suivant l'usage n désignera le champ normal unitaire sortant le long du bord (ceci entraîne quelques confusions d'ordre typographique, mais dont le sens exact est clairement indiqué par le contexte).

Posons nu =
$$(-1)^{n(p+1)} * t * u$$
 quel que soit $u \in C^{\infty}(\Lambda T^* \Omega)$ (34)

(n(.) voulant dire «composante normale de») (dans le 2d membre de (34) n désigne la dimension de $\overline{\Omega}$).

Pour clarifier ce dernier concept, rappelons la notion de carte adaptée au champ normal unitaire sortant [D–S] . Désignons par Γ le bord de $\overline{\Omega}$; soit (W,ψ) une carte de Γ valable en $y_0\in \Gamma$. Restreignant W au besoin, il existe $\alpha>0$ tel que pour tout $y\in W$, la géodésique $t\to v_y(t)$ vérifiant $v_y(0)=y$ et $v_y'(0)=-n(y)$ soit définie dans l'intervalle $[0,\alpha[$ et l'application de $[0,\alpha[$ \times $W\to \overline{\Omega}$: $(t,y)\to v_y(t)$ soit un difféomorphisme sur un ouvert U de $\overline{\Omega}$ tel que $U\cap \Gamma=W$. On définit alors la carte (U,χ) valable en y_0 en posant pour tout $z\in U$,

$$\chi_1(z) = -t, \ \chi_2(z) = \psi_1(y), ..., \chi_n(z) = \psi_{n-1}(y),$$

(t,y) vérifiant $v_{V}(t) = z$. Dans cette carte, pour tout $y \in W$, on a

$$\frac{\partial}{\partial \chi_1}$$
 (y) = n(y) et $(\frac{\partial}{\partial \chi_1}$ (y), $\frac{\partial}{\partial \chi_j}$ (y)) = 0, j = 2,...,n.

1.11. PROPOSITION. [D–S] Soit (U,χ) une carte adaptée au champ normal unitaire sortant le long de Γ . Posons $W = U \cap \partial \Omega$ et $\psi = \chi |_{W}$. Soit $u \in C^{\infty}(\overset{p}{\Lambda} T^* \overline{\Omega})$ et $(u_{\overset{p}{1}}...i_{p})$ $1 \leq i_{\overset{p}{1}} \leq ... \leq i_{\overset{p}{p}} \leq n$ ses composantes lues dans la carte (U,χ) .

Alors nu a pour expression locale dans la carte (W, ψ) :

$$\sum_{2 \le i_2 < \dots < i_p \le n} u_{1i_2 \dots i_p}^{(0,.)} dx^{i_2} \wedge \dots \wedge dx^{i_p}.$$
 (35)

Remarquons quelques divergences (mineures) avec [D-S]. Dans [D-S] nu est défini comme une forme différentielle le long du bord (en particulier du même degré p que celui de u); ici nu est défini comme une (p-1)-forme sur le bord et est donc plus à rapprocher de $\overline{n}u$ défini dans [Du]. De plus dans [D-S] une variété à bord est «modelée» (localement) sur le semi-espace $\{x_n \geqslant 0\}$; ici suivant [B-G] sur le semi-espace $\{x_1 \geqslant 0\}$. Ceci présente l'avantage (par exemple) que dans le cas $\overline{\Omega}$ orientée la restriction d'une carte positive de $\overline{\Omega}$ au bord $\partial\Omega$ est une carte positive de $\partial\Omega$ ce qui est faux si l'on avait choisi le semi-espace $\{x_n \geqslant 0\}$ ([Sp], p. 8-28).

Par dualité avec 1.9. On a alors :

1.12. THEOREME. L'application $u \to nu$ de $C^{\infty}(\stackrel{p}{\Lambda} T * \overline{\Omega})$ $(0 \le p \le n)$ dans $C^{\infty}(\stackrel{p-1}{\Lambda} T * \Gamma)$ se prolonge par continuité de manière unique en une application linéaire continue de $H_p(\delta;\Omega)$ sur $H_{p-1}^{-1/2}(\delta;\Gamma)$; sa valeur en $u \in H_p(\delta;\Omega)$ sera notée nu. De plus $C_{oo}^{\infty}(\stackrel{p}{\Lambda} T * \Omega)$ est dense dans $C^{\infty}(n)$ ker $C^{\infty}(n)$ C^{∞

 $\begin{array}{c} H_p(\delta;\Omega) \text{ désigne } \left\{u \in IL^2(\stackrel{p}{\Lambda}T^*\;\Omega) \; ; \; \delta u \in IL^2(\stackrel{p-1}{\Lambda}T^*\;\Omega) \right\} \text{ et } H_p^{-1/2}(\delta;\Gamma) \text{ désigne } \\ \left\{u \in H^{-1/2}(\stackrel{p}{\Lambda}T^*\;\Gamma) \; ; \; \delta u \in H^{-1/2}(\stackrel{p-1}{\Lambda}T^*\;\Gamma) \right\} ; \text{ ces espaces sont munis de la structure hilbertienne associée à la norme du graphe.} \end{array}$

Q.E.D.

Preuve. ● Par (34), quel que soit $u \in C^{\infty}(\stackrel{p}{\Lambda} T * \Omega)$: $nu = (-1)^{n(p+1)} * t * u$. * défini un topisomorphisme de $H_p(\delta; \Omega)$ sur $H_{n-p}(d; \Omega)$. (5) t est continu de $H_{n-p}(d; \Omega)$ sur $H_{n-p}^{-1/2}(d; \Gamma)$ par 1.9 et * défini un topisomorphisme de $H_{n-p}^{-1/2}(d; \Gamma)$ sur $H_{p-1}^{-1/2}(\delta; \Gamma)$.

• La densité de $C_{oo}^{\infty}(\stackrel{p}{\Lambda}\mathsf{T}^*\Omega)$ dans ker n suit de celle de $C_{oo}^{\infty}(\stackrel{n-p}{\Lambda}\mathsf{T}^*\Omega)$ dans ker t.

Q.E.D.

Dans le cas particulier où Ω est un ouvert borné régulier de IRⁿ, et identifiant un champ de vecteur à la 1-forme qui lui est associé, on retrouve un résultat de [T] (p. 9-13). Celuici s'étend tel quel au niveau riemanien :

1.13. THEOREME. Soit $\overline{\Omega}$ une variété riemanienne orientée C^{∞} compacte à bord. Désignons par $H(\text{div};\Omega)=\left\{X\in\Gamma(T\Omega)\;;\;\int_{\Omega}(X,X)*\;1<\infty\;et\;{}^{(6)}\;\text{div}\;X=\nabla_{j}X^{j}\in L^{2}(\Omega)\right\}$ (muni de la norme $X\to\int_{\Omega}(X,X)*\;1+\int_{\Omega}|\;\text{div}\;X|\;|^{2}*\;1.$ Alors l'application de $C^{\infty}(T\overline{\Omega})\to C^{\infty}(\Gamma):X\mapsto(n,X)$

(«composante normale du champ X sur le bord») se prolonge continuement de manière unique en une application de $H(div;\Omega)$ sur $H^{-1/2}(\Gamma)$.

Preuve. • Soit X un champ de vecteurs sur Ω . Soit $X = X^i - \frac{\partial}{\partial x^i}$ son expression locale dans une carte de Ω . La 1-forme associée φ a pour expression locale dans cette carte $\varphi = X^j$ g_{ij} dx^i . L'expression locale de * φ est :

$$*\varphi = \sum_{j=1}^{n} (-1)^{j-1} \chi^{j} \sqrt{g} dx^{1} \Lambda ... \Lambda dx^{j} \Lambda ... \Lambda dx^{n}.$$
 (36)

D'où

$$\varphi \wedge *\varphi = g_{ij} X^i X^j \sqrt{g} dx^1 \wedge ... \wedge dx^n.$$

D'où

$$\int_{\Omega} \varphi \Lambda * \varphi = \int_{\Omega} (X, X) * 1.$$
 (37)

De plus par (36)
$$\delta \varphi = -\frac{1}{\sqrt{g}} \frac{\partial}{\partial x^{j}} (\sqrt{g} X^{j}) = -\text{div } X. \tag{38}$$

⁽⁵⁾ Dans ce texte, topisomorphisme veut dire isomorphisme d'E.V.T.

^{(6) *} désigne l'opérateur «adjointe de» ([R] p. 121) et alinéa suivant 1.8.

De (37) et (38) suit que l'application $X \mapsto \varphi$ est un topisomorphisme de $H(\text{div};\Omega)$ sur $H_1(\delta;\Omega)$. (39)

• Supposons la carte adaptée au champ normal unitaire sortant, et $X \in C^{\infty}(T\overline{\Omega})$. Alors $(n,X) = X^1$. De $\varphi = X^j g_{jj} dx^i$ et 1.11 suit $n\varphi = X^j g_{1j}$. De $g_{1j} = \delta_{1j}$ suit alors $n\varphi = X^1$. D'où $(n,X) = n\varphi$. (40) De (39), (40) et 1.12 suit l'assertion.

Q.E.D.

Le résultat de [D-L] rappelé au début de ce paragraphe se précise et s'étend au cadre riemannien de la manière suivante : considérons les espaces

$$H(\text{rot};\Omega) = \left\{ X \in \Gamma(T\Omega) ; \int_{\Omega} (X,X) * 1 < \infty \text{ et } \int_{\Omega} \text{rot } X \wedge * \text{rot } X < \infty \right\}$$

(rot X désigne la dérivée extérieure de la 1-forme associée à X, [DEL] p. 100 et est appelé en «calcul tensoriel» le «tenseur rotationnel de X») (en fait il s'agit d'un champ de tenseurs) ainsi que $H^{-1/2}(rot;\Gamma)=\left\{X\in H^{-1/2}(T\Gamma)\; ;\; rot\; X\in H^{-1/2}(\Lambda^2T^*\Gamma)\right\}\; ;$ ces espaces étant munis de la norme du graphe. On a alors :

1.14. THEOREME. Soit $\overline{\Omega}$ une variété riemanienne orientée C^{∞} compacte à bord. Alors l'application $X \mapsto X \big|_{\partial \Omega} - (n, X) n$ de $C^{\infty}(T\overline{\Omega})$ dans $C^{\infty}(T\Gamma)$ se prolonge continuement de manière unique en une application de $H(rot;\Omega)$ sur $H^{-1/2}(rot;\Gamma)$.

Dans une carte adaptée au champ normal unitaire sortant l'expression locale de t φ

$$(\varphi \ \ \text{1-forme associ\'ee à X) est} \ : t \varphi = \sum_{i=2}^n \ \sum_{j=2}^n \ X^j g_{ij} dx^i \ \text{tandis que X} - (n,X) n = \sum_{i=2}^n \ X^i \ \frac{\partial}{\partial x^i} \ .$$

Donc la 1-forme associée à X - (n,X)n sur Γ est $t\varphi$. 1.14 suit dès lors de 1.8.

2. - QUELQUES PROBLEMES AUX LIMITES

Nous étudions quelques problèmes aux limites dont nous aurons besoin dans la détermination des générateurs de semi-groupe à contraction associés au système de Maxwell.

- 2.1. PROPOSITION. Pour tout $\varphi \in H^{-1/2}(d;\Gamma)$ il existe une et une seule solution de $u + \delta du = 0$ et $tu = \varphi$, dans l'espace $H_p(d;\Omega)$.
- Pour tout $\psi \in H_{p-1}^{-1/2}(\tilde{\delta};\Gamma)$ il existe une et une seule solution dans $H_p(\delta;\Omega)$ de $u + d\delta u = 0$ et $nu = \psi$.

Preuve. • Considérons $E = \{ w \in H_p(d;\Omega) : tw = \varphi \}$. Par 1.8, E est non vide et fermé. De plus, E est convexe. Soit u la projection de 0 sur E. Il suffit de vérifier que u + $\delta du = 0$. Quel que soit $\psi \in C_{00}^{\infty}(\stackrel{p}{\Lambda} T * \Omega)$:

119

$$\|\mathbf{u} + \psi\|^2 = \|\mathbf{u}\|^2 + \|\psi\|^2 + 2 \operatorname{Re}(\mathbf{u}, \psi) \ge \|\mathbf{u}\|^2$$
.

D'où

$$\|\psi\|^2 + 2 \operatorname{Re}(u, \psi) \ge 0.$$
 (41)

Substituant $\overline{\lambda}$ w à ψ , $\lambda \in \mathbb{C}$, (41) devient :

$$|\lambda|^2 \|\mathbf{w}\|^2 + 2 \operatorname{Re} \lambda(\mathbf{u}, \mathbf{w}) \ge 0.$$
 (42)

(42) implique (u,w) = 0 quel que soit
$$w \in C_{00}^{\infty}(\mathring{\Lambda} T^* \Omega)$$
. (43)

D'où quel que soit $\theta \in \stackrel{n-p}{\underline{\mathcal{D}}}(\Omega): \int_{\mathbb{D}} du \wedge \theta + (-1)^{p+1} \int_{\mathbb{D}} du \wedge \delta \theta = 0$ i.e. :

$$< u, \theta > + (-1)^{p+1} < du, \delta \theta > = 0.$$
 (44)

Mais $<\delta\omega,\theta>=(-1)^{p+1}<\omega,\delta\theta>$, quel que soit $\omega\in D'$ (Ω). D'où suit de (44) : $u+\delta du=0$.

• Reste à montrer l'unicité de la solution dans $H_p(d;\Omega)$. Soit u une solution dans $H_p(d;\Omega)$. Alors quel que soit $w \in E$, il existe $h \in H_p^0(d;\Omega)$ tel que w = u + h. D'où

$$\| \mathbf{w} \|^2 = \| \mathbf{u} \|^2 + \| \mathbf{h} \|^2 + 2 \operatorname{Re} [(\mathbf{u}, \mathbf{h})_2 + (\mathbf{d}\mathbf{u}, \mathbf{d}\mathbf{h})_2]$$

$$= \|u\|^2 + \|h\|^2 \text{ en vertu de } u + \delta du = 0$$
 et de la densité de $C_{oo}^{\infty}(\overset{p}{\Lambda}T^*\Omega)$ dans $H_{p}^{0}(d;\Omega)$. (45)

Par conséquent u solution dans
$$H_p(d;\Omega)$$
 implique $\|u\| = \inf \|w\|$. (46)

De (45) et (46) suit si u et w sont deux solutions dans $H_p(d;\Omega)$, nécessairement h=w-u doit être nul et donc u=w.

• La seconde partie de l'énoncé suit par dualité de la première : considérons $v \in H_{n-p}(d;\Omega)$ la solution de $v + \delta dv = 0$ et $tv = *\psi$. Posons $u = (-1)^{(n+1)p} * v$. Alors $u \in H_p(\delta;\Omega)$ et est solution de $u + d\delta u = 0$ et $nu = \psi$.

Q.E.D.

Nous étudions maintenant la régularité des solutions des problèmes aux limites posés en 2.1. Nous allons montrer que si $\varphi \in C^{\infty}(\stackrel{p}{\Lambda}T^*\Gamma)$ alors la solution dans $H_p(d;\Omega)$ de $u + \delta du = 0$, $tu = \varphi$ est « C^{∞} jusqu'au bord» i.e. $u \in C^{\infty}(\stackrel{p}{\Lambda}T^*\overline{\Omega})$.

2.2. LEMME. Considérons

$$P: C^{\infty}(\stackrel{p}{\Lambda}T^*\overline{\Omega}) \to C^{\infty}(\stackrel{p}{\Lambda}T^*\overline{\Omega}) \times C^{\infty}(\stackrel{p}{\Lambda}T^*\Gamma) \times C^{\infty}(\stackrel{p-1}{\Lambda}T^*\Gamma)$$

$$u \mapsto ((1+\Delta)u, tu, t\delta u).$$

Alors P est un système frontière elliptique au sens de [Hö], p. 273.

Preuve. • Nous devons tout d'abord vérifier ([Hö], déf. 10.6.2, p. 269-270) que le système $\Delta u = F$ est elliptique au sens de [D−N], p. 505. Suivant les notations de [Hö], p. 268 (à la différence près qu'ici nous travaillons avec des multi-indices) posons pour $1 \le j_1 < ... < j_p \le n$, $1 \le i_1 < ... < i_p \le n$:

$$t_{j_1...j_p} = 2 \text{ et } s_{j_1...j_p} = 0.$$

De la formule de Weitzenböck, [R] p. 131, suit :

$$(\Delta u)_{i_1...i_p} = -g^{jk} \frac{\partial^2 u_{i_1...i_p}}{\partial x^j \partial x^k} + \text{ termes d'ordre} \leq 1.$$

D'où

$$\begin{split} P^{o}_{i_{1}\dots i_{p},j_{1}\dots j_{p}}(z,\xi) &= \delta^{i_{1}\dots i_{p}}_{j_{1}\dots j_{p}} g^{jk}(z)\xi_{j}\xi_{k} \\ &= \delta^{i_{1}\dots i_{p}}_{j_{1}\dots j_{p}} \mid \xi \mid^{2}. \end{split}$$

 $\label{eq:determinant} \text{D'où dét}(P^o_{i_1\cdots i_p,j_1\cdots j_p}(z,\xi)) = |\,\xi\,|^{\,2\,\binom{n}{p}} \neq 0 \text{ si } \xi \neq 0.$

• Calculons le nombre d'équations définies par les conditions frontières tu = $f \in C^{\infty}(\stackrel{p}{\Lambda} T^* \Gamma)$ et $t\delta u = g \in C^{\infty}(\stackrel{p-1}{\Lambda} T^* \Gamma)$.

Celui-ci est égal à $\binom{n-1}{p} + \binom{n-1}{p-1} = \binom{n}{p} = \mu$ avec

$$2\mu = \sum_{1 \leqslant j_{1} < ... < j_{p} \leqslant n} t_{j_{1}...j_{p}} - \sum_{1 \leqslant i_{1} < ... < i_{p} \leqslant n} s_{j_{1}...i_{p}}.$$

D'où la condition i) de la définition 10.6.2, p. 269-270 de [Hö].

• Suivant les notations de [Hö] (condition ii) déf. 10.6.2, p. 269-270) posons :

$$r_{i_1...i_p} = 2 \text{ si } 2 \le i_1 < ... < i_p \le n$$

et

$$r_{k_1...k_{p-1}} = 1 \text{ si } 2 \le k_1 \le ... \le k_{p-1} \le n.$$

On a quel que soit $y_0 \in \partial \Omega$, dans une carte adaptée au champ normal unitaire sortant, valable en y_0 :

$$p_{i_1...i_p,j_1...j_p}(y_o,D) = \delta_{j_1...j_p}^{i_1...i_p} i;$$

$$p_{k_1...k_{p-1},j_1...j_p}(y_0,D) = -g^{sj}(y_0) \epsilon_{sk_1...k_{p-1}}^{j_1...j_p} \partial/\partial x^j + \text{termes d'ordre 0}.$$

D'où

$$\deg p_{i_1 \dots i_p, j_1 \dots j_p}(y_0, D) = 0 \le t_{j_1 \dots j_p} - r_{i_1 \dots i_p} = 2 - 2 = 0$$

et

$$\deg p_{k_1,...,k_{p-1},j_1...j_p}(y_0,D) \leqslant t_{j_1...j_p} - r_{k_1...k_{p-1}} = 2 - 1 = 1.$$

De plus:

$$p_{i_1...i_p,j_1...j_p}^{o}(y_o,D) = \delta_{j_1...j_p}^{i_1...i_p} I$$

et

$$p_{k_1...k_{p-1},j_1...j_p}^{o}(y_o,D) = -g^{sj}(y_o) \frac{j_1...j_p}{\epsilon_{sk_1...k_{p-1}}} \partial/\partial_x j.$$

La condition ii) de [Hö] (déf. 10.6.2, p. 270) est que le système :

$$\begin{cases} g^{jk}(y_{0}) \frac{\partial^{2} u_{i_{1} \dots i_{p}}}{\partial x^{j} \partial x^{k}} = 0 \text{ dans } \overline{IR_{-}^{n}} & (1 \leq i_{1} < ... < i_{p} \leq n) \\ u_{i_{1} \dots i_{p}}(0,.) = 0 \text{ dans } IR^{n-1} & (2 \leq i_{1} < ... < i_{p} \leq n) \\ g^{sj}(y_{0}) \epsilon_{sk_{1} \dots k_{p-1}}^{j_{1} \dots j_{p}} \frac{\partial u_{j_{1} \dots j_{p}}}{\partial x^{j}} & (0,.) = 0 \text{ dans } IR^{n-1} & (2 \leq k_{1} < ... < k_{p-1} \leq n) \end{cases}$$

$$(47)$$

ne possède pas de solution «exponentielle» non triviale bornée avec $\xi \neq 0$ i.e. une solution de la forme

$$u_{i_1...i_p}(z) = e^{i < y, \xi} >_{w_{i_1...i_p}} (x_1) \ (z = (x_1, y), y = (x_2, ..., x_n), \ \xi = (\xi_2, ..., \xi_n)). \tag{48}$$

Vérifions cette condition. De (47) et (48) suit :

$$\begin{cases} \ddot{w}_{i_{1}\dots i_{p}} - g^{jk}(y_{o}) \, \xi_{j} \, \xi_{k} \, w_{i_{1}\dots i_{p}} = 0 & (1 \leqslant i_{1} < \dots < i_{p} \leqslant n) \\ w_{i_{1}\dots i_{p}}(0) = 0 & (2 \leqslant i_{1} < \dots < i_{p} \leqslant n) \\ \dot{w}_{1k_{1}\dots k_{p-1}}(0) = 0 & (2 \leqslant k_{1} < \dots < k_{p-1} \leqslant n) \end{cases}$$

$$(49)$$

 $w_{i_1...i_p}$ $(1 \le i_1 < ... < i_p \le n)$ devant être bornée sur IR_ il suit : $w_{i_1...i_p}(x_1) = w_{i_1...i_p}(0)e^{|\xi|x_1}$ où l'on a posé

$$|\xi|^2 = g^{jk}(y_0)\xi_i \xi_k.$$
 (52)

De (50) et (52) suit
$$w_{i_1...i_p} = 0$$
 pour $2 \le i_1 < ... < i_p \le n$. (53)

De (51) et (52) suit
$$w_{1k_1...k_{p-1}} = 0$$
 pour $2 \le k_1 < ... < k_{p-1} \le n$, car $\xi \ne 0$. (54)

De (53) et (54) suit u = 0.

Q.E.D.

2.3. LEMME. Soient
$$\varphi_1, \varphi_4 \in C^{\infty}(\stackrel{p}{\Lambda} T^* \Gamma)$$
 et $\varphi_2, \varphi_3 \in C^{\infty}(\stackrel{p-1}{\Lambda} T^* \Gamma)$. Alors il existe $u \in C^{\infty}(\stackrel{p}{\Lambda} T^* \Omega)$ tel que $tu = \varphi_1$, $t\delta u = \varphi_2$, $nu = \varphi_3$ et $ndu = \varphi_4$. (55)

Preuve. • Par partition de l'unité et linéarité, on peut supposer, φ_1 , φ_2 , φ_3 , φ_4 à support contenu dans $U \cap \partial \Omega$, U désignant le domaine d'une carte (U,χ) de $\overline{\Omega}$ adaptée au champ normal unitaire sortant.

• Soit $\omega \in C^{\infty}(\stackrel{p}{\Lambda} t^* \overline{\Omega})$ et recherchons l'expression de $t\omega$, $t\delta\omega$, $n\omega$, $nd\omega$ lues dans la carte (U,χ) . Nous supposons supp $\omega \subset U$.

$$\omega = \omega_{i_1 \dots i_p} \, dx^{i_1} \, \Lambda \dots \Lambda \, dx^{i_p},$$

$$t\omega = \sum_{2 \le i_1 < \dots < i_p \le n} \omega_{i_1 \dots i_p}(0,.) \, dx^{i_1} \, \Lambda \dots \Lambda \, dx^{i_p}, \tag{56}$$

$$n\omega = \sum_{2 \le i_2 < \dots < i_p \le n} \omega_{1i_2 \dots i_p}(0,) dx^{i_2} \Lambda \dots \Lambda dx^{i_p},$$
 (57)

$$\operatorname{nd}\omega = \sum_{2 \leq j_{2} < \dots < j_{p+1} \leq n} \left[\frac{\partial \omega_{j_{2} \dots j_{p+1}}}{\partial x^{1}} (0,) + \sum_{\nu=2}^{p+1} (-1)^{\nu-1} \frac{\partial \omega_{1j_{2} \dots j_{\nu} \dots j_{p+1}}}{\partial x^{j_{\nu}}} (0,) \right] dx^{j_{2}} \Lambda \dots$$

$$\dots \Lambda dx^{j_{p+1}}, \qquad (58)$$

$$t\delta\omega = \sum_{2 \leq j_1 < \dots < j_{p-1} \leq n} \left[-g^{sl} \frac{\partial \omega_{sj_1 \dots j_{p-1}}}{\partial x^l} + g^{sl} \Gamma^a_{ls} \omega_{aj_1 \dots j_{p-1}} + \right.$$

$$\sum_{\nu=1}^{p-1} g^{sl} \Gamma_{lj_{\nu}}^{a} \omega_{sj_{1} \dots j_{\nu-1}} a_{\nu+1} \dots j_{p-1} \left[(0,.) dx^{j_{1}} \Lambda \dots \Lambda dx^{j_{p-1}} \right].$$
 (59)

• Construisons u. Eu égard à (56), on pose :

$$u_{i_1...i_p}(0,.) = (\varphi_1)_{i_1...i_p} \text{ si } 2 \le i_1 < ... < i_p \le n.$$
 (60)

Eu égard à (57), on pose :

$$u_{1i_2...i_p}(0,.) = (\varphi_3)_{i_2...i_p} \text{ si } 2 \le i_2 < ... < i_p \le n.$$
 (61)

Eu égard à (58) et (61), on pose pour $2 \le i_1 < ... < i_p \le n$:

$$\frac{\partial u_{i_1 \dots i_p}}{\partial x^1} (0, .) = (\varphi_4)_{i_1 \dots i_p} - \sum_{\nu=1}^p (-1)^{\nu} \frac{\partial (\varphi_3)_{i_1 \dots \hat{i_\nu} \dots i_p}}{\partial x^{i_\nu}}.$$
 (62)

Eu égard à (59), (60), (61), on pose pour $2 \le i_2 < ... < i_p \le n$:

$$\begin{split} \frac{\partial u_{1i_2\cdots i_p}}{\partial x^1} &(0,.) = -\left(\varphi_2\right)_{i_2\cdots i_p} - g^{sl}(0,.) \frac{\partial (\varphi_1)_{si_2\cdots i_p}}{\partial x^l} + g^{sl}(0,.) \Gamma^a_{ls}(0,.) (\varphi_1)_{ai_2\cdots i_p} \\ &+ g^{sl}(0,.) \Gamma^1_{ls}(0,.) (\varphi_3)_{i_2\cdots i_p} + \sum_{\nu=2}^p \Gamma_{1i_{\nu}}(0,.) (\varphi_3)_{i_2\cdots i_{\nu-1}ai_{\nu+1}\cdots i_p} \\ &+ \sum_{\nu=2}^p g^{sl}(0,.) \Gamma^a_{li_{\nu}}(0,.) (\varphi_1)_{si_2\cdots i_{\nu-1}ai_{\nu+1}\cdots i_p} \\ &+ \sum_{\nu=2}^p g^{sl}(0,.) \Gamma^1_{li_{\nu}}(0,.) (-1)^{\nu-1} (\varphi_3)_{si_2\cdots i_{\nu-1}i_{\nu+1}\cdots i_p}. \end{split} \tag{63}$$

Soit $\theta \in C_{00}^{\infty}(\overline{\Omega})$, $0 \le \theta \le 1$, supp $\theta \subset U$ et θ égale 1 sur un voisinage de $\bigcup_{i=1}^{4}$ supp φ_i .

 $u_{i_{1}...i_{p}}(x_{1},.) = \theta \left\{ u_{i_{1}...i_{p}}(0,.) - \int_{x_{1}}^{0} \frac{\partial u_{i_{1}...i_{p}}}{\partial x^{1}}(t,.)dt \right\} \quad (2 \leq i_{1} < ... < i_{p} \leq n), \tag{64}$

$$u_{1i_{2}...i_{p}}(x_{1},.) = \theta \left\{ u_{1i_{2}...i_{p}}(0,.) - \int_{x_{1}}^{0} \frac{\partial u_{1i_{2}...i_{p}}}{\partial x^{1}}(t,.)dt \right\} \quad (2 \le i_{2} < ... < i_{p} \le n). \quad (65)$$

u défini par (60) - (65) répond à la question.

Q.E.D.

2.4. COROLLAIRE. Soit $\varphi \in C^{\infty}(\stackrel{p}{\Lambda} T^* \overline{\Omega})$, $\lambda \in C^{\infty}(\stackrel{p}{\Lambda} T^* \Gamma)$ et $\nu \in C^{\infty}(\stackrel{n}{\Lambda} T^* \Gamma)$ tels que pour tout $u \in C^{\infty}(\stackrel{p}{\Lambda} T^* \overline{\Omega})$:

$$\int_{\Omega} (u + \Delta u) \Lambda * \varphi + \int_{\partial \Omega} tu \Lambda * \lambda + \int_{\partial \Omega} t\delta u \Lambda * \nu = 0.$$

Alors $\varphi = 0$, $\lambda = 0$ et $\nu = 0$.

Posons:

Preuve. • On vérifie de suite que :

$$\Delta u \Lambda * \varphi - \Delta \varphi \Lambda * u = d \left[\delta u \Lambda * \varphi - \delta \varphi \Lambda * u \right] - d \left[\varphi \Lambda * du - u \Lambda * d\varphi \right].$$
D'où
$$\int_{\Omega} \Delta u \Lambda * \varphi - \Delta \varphi \Lambda * u = \int_{\partial \Omega} t (\delta u \Lambda * \varphi - \delta \varphi \Lambda * u) - \int_{\partial \Omega} t (\varphi \Lambda * du - u \Lambda * d\varphi). (66)$$

• De (66) et de l'hypothèse suit $\int_{\Omega} (\varphi + \Delta \varphi) \Lambda * u = 0$ quel que soit $u \in C_{00}^{\infty}(\mathring{\Lambda} T * \Omega)$. D'où

$$\varphi + \Delta \varphi = 0. \tag{67}$$

• De l'hypothèse, (66) et (67) suit :

$$\int_{\partial\Omega} \ \mathrm{tu} \ \Lambda * (\lambda + \mathrm{nd}\varphi) + \int_{\partial\Omega} \ \mathrm{t}\delta \mathrm{u} \ \Lambda * (\nu + \mathrm{n}\varphi) - \int_{\partial\Omega} \ \mathrm{nu} \ \Lambda * \mathrm{t}\delta\varphi - \int_{\partial\Omega} \ \mathrm{ndu} \ \Lambda * \mathrm{t}\varphi = 0,$$

quel que soit $u \in C^{\infty}(\stackrel{p}{\Lambda}T^*\overline{\Omega})$. D'où par 2.3 :

$$\nu + n\varphi = 0 \tag{69}$$

$$\begin{array}{c}
\nu + n\varphi = 0 \\
t\delta\varphi = 0
\end{array} (69)$$

$$t\varphi = 0 \tag{71}$$

De (67) et (70) suit $(I + \delta d)\delta\varphi = 0$ et $t\delta\varphi = 0$. De plus par hypothèse, $\varphi \in C^{\infty}(\stackrel{p}{\Lambda} T^* \overline{\Omega})$ donc $\delta\varphi \in C^{\infty}(\stackrel{p-1}{\Lambda} T^* \overline{\Omega}) \subset H_{p-1}(d;\Omega)$.

D'où par 2.1
$$\delta \varphi = 0$$
. (72)

De (67), (72) et (71) suit $(1 + \delta d)\varphi = 0$ et $t\varphi = 0$.

D'où par 2.1
$$\varphi = 0$$
. (73)

De (73) et (68) suit $\lambda = 0$; de (73) et (69) suit $\nu = 0$.

Q.E.D.

2.5. COROLLAIRE. • P est un topisomorphisme de $C^{\infty}(\stackrel{p}{\Lambda}T^*\overline{\Omega})$ sur

$$C^{\infty}(\stackrel{p}{\Lambda}\mathsf{T}^*\overline{\Omega})\times C^{\infty}(\stackrel{p}{\Lambda}\mathsf{T}^*\Gamma)\times C^{\infty}(\stackrel{p-1}{\Lambda}\mathsf{T}^*\Gamma).$$

- Pour tout $\varphi \in C^{\infty}(\stackrel{p}{\Lambda} T^* \Gamma)$ la solution u dans $H_p(d;\Omega)$ de $u + \delta du = 0$, $tu = \varphi$ est dans $C^{\infty}(\stackrel{p}{\Lambda} T^* \Omega)$.
- Pour tout $\psi \in C^{\infty}(\stackrel{p-1}{\Lambda} T^* \Gamma)$ la solution u dans $H_p(\delta;\Omega)$ de $u+d\delta u=0$, $nu=\psi$ est dans $C^{\infty}(\stackrel{p}{\Lambda} T^* \overline{\Omega})$.

Preuve. Par 2.2, P est un système frontière elliptique, d'où par [Hö] (p. 273), il existe $r \in IN$, $\varphi_j \in C^{\infty}(\stackrel{p}{\Lambda} T^* \overline{\Omega}), \ \lambda_j \in C^{\infty}(\stackrel{p}{\Lambda} T^* \Gamma), \ \nu_j \in C^{\infty}(\stackrel{p}{\Lambda} T^* \Gamma), \ j=1,...,r$ tels que $(F,f,g) \in Im \ P$ ssi

$$(F,f,g) \in C^{\infty}(\stackrel{p}{\Lambda} T^* \overline{\Omega}) \times C^{\infty}(\stackrel{p}{\Lambda} T^* \Gamma) \times C^{\infty}(\stackrel{p-1}{\Lambda} T^* \Gamma)$$

et

$$\int_{\Omega} F \Lambda * \varphi_{j} + \int_{\partial \Omega} f \Lambda * \lambda_{j} + \int_{\partial \Omega} g \Lambda * \nu_{j} = 0, \text{ pour tout } j = 1,...,r.$$

De 2.4, suit $\varphi_j = 0$, $\lambda_j = 0$, $\nu_j = 0$, j = 1,...,r. D'où P est surjectif. Montrons que P est injectif. Soit $u \in \ker P$. Alors $\delta u \in C^{\infty}(\stackrel{p}{\Lambda}^1 T^* \overline{\Omega}) \subset H_{p-1}(d;\Omega)$ et $(I + \delta d)\delta u = 0$ ainsi que $t\delta u = 0$. D'où par 2.1, $\delta u = 0$. D'où suit de $u \in \ker P$, $(I + \delta d)u = 0$. On a également tu = 0, d'où par 2.1 u = 0. P est injectif, continu et surjectif. Donc par le théorème de l'application ouverte, c'est un topisomorphisme de $C^{\infty}(\stackrel{p}{\Lambda} T^* \overline{\Omega})$ sur $C^{\infty}(\stackrel{p}{\Lambda} T^* \overline{\Omega}) \times C^{\infty}(\stackrel{p}{\Lambda} T^* \Gamma) \times C^{\infty}(\stackrel{p}{\Lambda} T^* \Gamma)$.

• Par le premier point, il existe $u \in C^{\infty}(\overset{p}{\Lambda} T^* \ \overline{\Omega})$ tel que $(I + \Delta)u = 0$, $tu = \varphi$, $t\delta u = 0$. D'où suit $\delta u \in C^{\infty}(\overset{p-1}{\Lambda} T^* \ \overline{\Omega}) \subset H_{p-1}(d;\Omega)$, $(I + \delta d)\delta u = 0$ et $t\delta u = 0$. D'où par 2.1, $\delta u = 0$. D'où $(I + \Delta)u = 0$ devient $(I + \delta d)u = 0$.

L'assertion suit dès lors de 2.1 par unicité.

• Ce dernier point suit du précédent par dualité.

Q.E.D.

 $\label{eq:soit} \begin{array}{l} \text{Soit}\ \varphi\in H_p^{-1/2}(d;\Gamma)\ \text{et posons}\ Q\varphi=\text{ndu}_\varphi\ (u_\varphi\ \text{désignant la solution dans}\ H_p(d;\Omega)\ \text{de}\\ u+\delta du=0\ \text{et}\ tu=\varphi).\ \text{Ceci\ a\ bien\ un\ sens\ car\ } du_\varphi\in IL^2(\stackrel{p+1}{\Lambda}\ T^*\ \Omega)\ \text{et}\ \delta du_\varphi=-u_\varphi\in IL^2(\stackrel{p}{\Lambda}\ T^*\Omega)\\ \text{i.e.}\ du_\varphi\in H_{p+1}(\delta;\Omega).\ \ Q\ \text{opère\ de}\ H_p^{-1/2}(d;\Gamma)\ \text{dans}\ H_p^{-1/2}(\delta;\Gamma). \end{array}$

- 2.6. PROPOSITION. Q est un topisomorphisme de $H_p^{-1/2}(d;\Gamma)$ sur $H_p^{-1/2}(\delta;\Gamma)$ et une transformation unitaire de $H_p^{-1/2}(d;\Gamma)$ sur $H_p^{-1/2}(\delta;\Gamma)$ pour leur structure hilbertienne naturelle. De plus $Q[C^{\infty}(\Lambda T * \Gamma)] = C^{\infty}(\Lambda T * \Gamma)$.
- ullet Notons Q(p) l'opérateur Q agissant de $H_p^{-1/2}(d;\Gamma)$ sur $H_p^{-1/2}(\delta;\Gamma)$. Alors

$$Q(p)^{-1} = (-1)^{np} * Q(n-1-p)*.$$
(74)

Preuve. • Soit $\varphi \in H_p^{-1/2}(d;\Gamma)$ et $u_{\varphi} \in H_p(d;\Omega)$ la solution de $(I + \delta d)u = 0$, $tu = \varphi$. Alors $du_{\varphi} \in H_{p+1}(\delta;\Omega)$ et est solution de l'équation $(I + d\delta)w = 0$, $nw = Q\varphi$. D'où

$$\|\|Q\varphi\|\|=\|du_{\varphi}\|_{H_{p+1}(\delta;\Omega)}=\|u_{\varphi}\|_{H_{p}(d;\Omega)}=\|\|\varphi\|\|.$$

Donc Q est une isométrie de $H_p^{-1/2}(d;\Gamma)$ dans $H_p^{-1/2}(\delta;\Gamma)$ pour leur structure hilbertienne naturelle. Montrons que Q est surjectif.

Soit $\psi \in H_p^{-1/2}(\delta;\Gamma)$ et $u_{\psi} \in H_{p+1}(\delta;\Omega)$ la solution de $(I+d\delta)u=0$, $nu=\psi$. $\delta u_{\psi} \in H_p(d;\Omega)$ et considérant $\varphi=-t\delta u_{\psi}$ on vérifie de suite que $Q\varphi=\psi$. Par 2.5, il est clair que Q envoie $C^{\infty}(\Lambda T * \Gamma)$ sur lui-même.

• Montrons que $(-1)^{np} * Q(n-1-p)$ est un inverse à gauche de Q(p). Soit $\varphi \in C^{\infty}(\stackrel{p}{\Lambda} T * \Gamma)$. Soit $u \in C^{\infty}(\stackrel{p}{\Lambda} T * \overline{\Omega})$ la solution de $u + \delta du = 0$, $tu = \varphi$. $* Q(p)\varphi = * ndu = t*du$. $* du \in C^{\infty}(\stackrel{n-p-1}{\Lambda} T * \overline{\Omega})$ et vérifie $(I + \delta d) * du = 0$. D'où $Q(n-1-p) * Q(p)\varphi = nd * du$. D'où $Q(n-1-p) * Q(p)\varphi = 1$ $Q(p)\varphi = 1$

Q.E.D.

Notons S = S(p) la grande restriction de Q(p) qui opère dans $IL^2(\stackrel{p}{\Lambda} T^* \ \Gamma)$. Par 2.6, $D(S) \supset C^{\infty}(\stackrel{p}{\Lambda} T^* \ \Gamma)$ et est donc dense dans $IL^2(\stackrel{p}{\Lambda} T^* \ \Gamma)$. Nous allons montrer que S est un opérateur self-adjoint positif dans $IL^2(\stackrel{p}{\Lambda} T^* \ \Gamma)$. Auparavant un lemme, dont le premier point peut être vu comme une généralisation de la formule de Stokes.

 $\begin{array}{lll} \text{2.7. LEMME.} & \bullet & \textit{Soit} \;\; u \in \mathsf{H}_p(\mathsf{d};\!\Omega) \;\; \textit{et} \;\; v \in \mathsf{H}_{n-1-p}(\mathsf{d};\!\Omega). \;\; \textit{Supposons} \;\; \mathsf{tu} \in \mathsf{IL}^2(\overset{p}{\Lambda} \;\; \mathsf{T}^* \;\; \Gamma), \\ \mathsf{tv} \in \mathsf{IL}^2(\overset{n-1-p}{\Lambda} \;\; \mathsf{T}^* \;\; \Gamma) \;\; (\mathsf{resp.} \;\; \mathsf{tv} \in \mathsf{C}^\infty(\overset{n-1-p}{\Lambda} \;\; \mathsf{T}^* \;\; \Gamma)). \;\; \textit{Alors} \end{array}$

$$\int_{\Omega} \ d(u \ \Lambda \ v) = \int_{\partial \Omega} \ tu \ \Lambda \ tv \quad (\text{resp.} \quad \int_{\Omega} \ d(u \ \Lambda \ v) = < tu, tv >).$$

• La forme bilinéaire de $C^{\infty}(\stackrel{p}{\Lambda} T^* \Gamma) \times C^{\infty}(\stackrel{n-1-p}{\Lambda} T^* \Gamma) \to \mathbb{C}: (\alpha,\beta) \mapsto \int_{\Gamma} \alpha \Lambda \beta$ se prolonge continuement de manière unique à $H^{-1/2}_{p}(d;\Gamma) \times H^{-1/2}_{n-1-p}(d;\Gamma)$ (par abus de notation la valeur de cette forme bilinéaire en $(\alpha,\beta) \in H^{-1/2}_{p}(d;\Gamma) \times H^{-1/2}_{n-1-p}(d;\Gamma)$ sera encore notée $\int_{\Gamma} \alpha \Lambda \beta$).

Preuve. • (i) Supposons $\operatorname{tu} \in \operatorname{IL}^2(\stackrel{p}{\Lambda}\operatorname{T}^*\Gamma)$ et $\operatorname{tv} \in \operatorname{IL}^2(\stackrel{n-1-p}{\Lambda}\operatorname{T}^*\Gamma)$. Soit $(\varphi_n) \subset \operatorname{C}^\infty(\stackrel{p}{\Lambda}\operatorname{T}^*\Gamma)$ (resp. : $(\psi_n) \subset \operatorname{C}^\infty(\stackrel{n-1-p}{\Lambda}\operatorname{T}^*\Gamma)$) telle que $\varphi_n \to \operatorname{tu}$ dans $\operatorname{IL}^2(\stackrel{p}{\Lambda}\operatorname{T}^*\Gamma) \cap \operatorname{H}_p^{-1/2}(\operatorname{d};\Gamma)$ (i.e. $\varphi_n \to \operatorname{tu}$ dans $\operatorname{IL}^2(\stackrel{p}{\Lambda}\operatorname{T}^*\Gamma) \cap \operatorname{H}_{p-1-p}^{-1/2}(\operatorname{d};\Gamma)$) et $\psi_n \to \operatorname{tv}$ dans $\operatorname{IL}^2(\stackrel{n-1-p}{\Lambda}\operatorname{T}^*\Gamma) \cap \operatorname{H}_{n-1-p}^{-1/2}(\operatorname{d};\Gamma)$ (de telles suites sont faciles à construire : grosso modo, par partition de l'unité on se ramène à IR^{n-1} , dans IR^{n-1} on procède par régularisation). En particulier

$$\int_{\partial\Omega} \varphi_{\mathsf{n}} \Lambda \psi_{\mathsf{n}} \to \int_{\partial\Omega} \operatorname{tu} \Lambda \operatorname{tv}. \tag{75}$$

Soit α_n (resp. β_n) la solution dans $H_p(d;\Omega)$ (resp. $H_{n-1-p}(d;\Omega)$) de $(I+\delta d)\alpha_n=0$ et $t\alpha_n=\varphi_n$ (resp. $(I+\delta d)\beta_n=0$ et $t\beta_n=\psi_n$). La suite (α_n) (resp. (β_n)) est de Cauchy dans $H_p(d;\Omega)$ (resp. $H_{n-1-p}(d;\Omega)$). Soit $\alpha=\lim_n \alpha_n$ dans $H_p(d;\Omega)$ et $\beta=\lim_n \beta_n$ dans $H_{n-1-p}(d;\Omega)$.

En particulier

$$\int_{\Omega} d(\alpha_{n} \wedge \beta_{n}) \to \int_{\Omega} d(\alpha \wedge \beta). \tag{76}$$

Par la formule de Stokes et 2.5,

$$\int_{\partial\Omega} \varphi_{n} \wedge \psi_{n} = \int_{\Omega} d(\alpha_{n} \wedge \beta_{n}). \tag{77}$$

D'où suit de (75), (76) et (77) :

$$\int_{\Omega} d(\alpha \Lambda \beta) = \int_{\partial \Omega} tu \Lambda tv.$$
 (78)

Par (78) il suffit pour conclure de montrer que

$$\int_{\Omega} d(\alpha \Lambda \beta) = \int_{\Omega} d(u \Lambda v).$$
 (79)

Ecrivant $\alpha \ \Lambda \ \beta - u \ \Lambda \ v = \alpha \ \Lambda \ (\beta - v) + (\alpha - u) \ \Lambda \ v$, nous sommes ramenés à montrer que $\int_{\Omega} d(\xi \ \Lambda \ \eta) = 0, \ \xi \in H_p(d;\Omega), \ \eta \in H_{n-1-p}(d;\Omega) \ d\text{ès que } t\xi = 0 \ \text{ou } t\eta = 0.$

Supposons par exemple $t\eta=0$. Par 1.9, il existe $(\xi_n)\subset C^\infty$ $(\stackrel{p}{\Lambda} T^* \overline{\Omega})$ (resp. $(\eta_n)\subset C^\infty_{oo}(\stackrel{n-1-p}{\Lambda} T^*\Omega))$ telle que $\xi_n\to \xi$ dans $H_p(d;\Omega)$ (resp. $\eta_n\to \eta$ dans $H_{n-1-p}(d;\Omega)$). Par le théorème de Stokes $\int_{\Omega} d(\xi_n \Lambda \eta_n)=0$. Mais $\int_{\Omega} d(\xi_n \Lambda \eta_n)\to \int_{\Omega} d(\xi \Lambda \eta)$, d'où $\int_{\Omega} d(\xi \Lambda \eta)=0$. D'où suit (79).

(ii) Supposons tv régulier i.e. tv \in C^{∞} ($\stackrel{n-1-p}{\Lambda}$ T* Γ). Par 1.9 il existe $(u_n) \subseteq C^{\infty}(\stackrel{n}{\Lambda}$ T* $\overline{\Omega}$) telle que $u_n \to u$ dans $H_p(d;\Omega)$. Par (i) suit alors : $\int_{\Omega} d(u_{r_1} \Lambda v) = < tu_n, tv >$. Mais $tu_n \to tu$ dans $H_p^{-1/2}(d;\Gamma)$ et $\int_{\Omega} d(u_n \Lambda v) \to \int_{\Omega} d(u \Lambda v)$. D'où $\int_{\Omega} d(u \Lambda v) = < tu, tv >$.

• Supposons $(\alpha,\beta) \in C^{\infty}(\stackrel{p}{\Lambda} T^* \Gamma) \times C^{\infty}(\stackrel{n-1-p}{\Lambda} T^* \Gamma)$. Soit $u \in C^{\infty}(\stackrel{p}{\Lambda} T^* \overline{\Omega})$ (resp. $v \in C^{\infty}(\stackrel{n-1-p}{\Lambda} T^* \overline{\Omega})$) solution de $u + \delta du = 0$, $tu = \alpha$ (resp. $v + \delta dv = 0$, $tv = \beta$). Par la formule de Stokes, on a

$$\int_{\Gamma} \alpha \Lambda \beta = \int_{\Omega} d(u \Lambda v). \tag{80}$$

Mais l'application de

$$\mathsf{H}_{\mathsf{p}}(\mathsf{d};\Omega) \times \mathsf{H}_{\mathsf{n}-1-\mathsf{p}}(\mathsf{d};\Omega) \to \mathbb{C} : (\xi,\eta) \mapsto \int_{\Omega} \mathsf{d}(\xi \,\Lambda \,\eta) \tag{81}$$

est bilinéaire continue. De (80) et (81) suit l'assertion.

2.8. PROPOSITION. • S est un opérateur self-adjoint positif dans $\operatorname{IL}^2(\Lambda \operatorname{T}^*\Gamma)$. De plus la fermeture de S considéré comme opérateur de $\operatorname{H}^{-1/2}_p(\operatorname{d};\Gamma)$ dans $\operatorname{H}^{-1/2}_p(\delta;\Gamma)$ est égale à Q.

• $S^{1/2}$ se prolonge continuement de manière unique en une application unitaire de $H_p^{-1/2}(d;\Gamma)$ muni de sa structure hilbertienne naturelle sur $IL^2(\stackrel{p}{\Lambda}T^*\Gamma)$.

Preuve. • (i) Montrons que S est symétrique. Soient φ , $\psi \in D(S)$, $u, v \in H_p(d;\Omega)$ la solution de $u + \delta du = 0$, $tu = \varphi$ (resp. : $v + \delta dv = 0$, $tv = \psi$).

$$(u,v) = \int_{\Omega} du \Lambda * d\overline{v} - \int_{\Omega} u \Lambda * \delta d\overline{v}.$$
 (82)

$$d(u \Lambda * d\overline{v}) = du \Lambda * d\overline{v} - u \Lambda * \delta d\overline{v}.$$
 (83)

De (82), (83) et 2.7 suit :

$$(u,v) = \int_{\partial \Omega} \varphi \Lambda * \overline{S\psi} \quad i.e. \ (u,v) = (\varphi, S\psi)_2. \tag{84}$$

De (84) suit

$$(\varphi, S\psi)_2 = \overline{(\psi, S\varphi)_2}$$
 i.e. $(\varphi, S\psi) = (S\varphi, \psi)$.

(ii) Par (84), pour tout

$$\varphi \in D(S), (S\varphi,\varphi)_2 = \|\mathbf{u}\|_{H_p(\mathbf{d};\Omega)}^2 = \|\varphi\|^2.$$
 (85)

En particulier, S est un opérateur positif.

(iii) S est un opérateur symétrique, positif, à domaine dense car $D(S) \supset C^{\infty}(\overset{p}{\Lambda}T*\Gamma)$. Soit \widetilde{S} son extension de Friedrichs. \widetilde{S} est un opérateur self-adjoint positif [R-N] (p. 326) prolongeant S. Nous allons montrer que $S=\widetilde{S}$.

 \widetilde{S} est la restriction de S*[Y] (formule (5), p. 318 et suite) à D(S*) \cap (D(S))', (D(S))' désignant le complété de l'espace préhilbertien D(S) muni de la norme : D(S) \rightarrow IR $_+$: $\varphi \mapsto (\|\varphi\|_2^2 + (S\varphi,\varphi)_2)^{1/2}$, identifié à un sous-espace de IL $^2(\Lambda^p T^* \Gamma)$. D'où par (85),

$$D(\widetilde{S}) = IL^{2}(\Lambda^{p} T^{*} \Gamma) \cap H_{p}^{-1/2}(d;\Gamma) \cap D(S^{*}) = D(S^{*}) \cap H_{p}^{-1/2}(d;\Gamma). \tag{86}$$

Il suffit donc pour conclure de montrer que pour tout $\varphi \in D(\widetilde{S})$, $\widetilde{S}\varphi = Q\varphi$.

Soit $\psi \in C^{\infty}(\stackrel{p}{\Lambda} T^* \Gamma)$. Désignons par $u \in H_p(d;\Omega)$ (resp. $: v \in C^{\infty}(\stackrel{p}{\Lambda} T^* \overline{\Omega})$) la solution de $u + \delta du = 0$, $tu = \varphi$ (resp. $v + \delta dv = 0$, $tv = \psi$). $(\stackrel{>}{S} \varphi, \psi)_2 = (S^*\varphi, \psi)_2 = (\varphi, S\psi)_2$. D'autre part $\varphi \in D(\stackrel{>}{S})$, d'où par (86) il existe une suite $(\varphi_n) \subset C^{\infty}(\stackrel{p}{\Lambda} T^* \Gamma)$ telle que $\varphi_n \to \varphi$ dans $\mathbb{L}^2(\stackrel{p}{\Lambda} T^* \Gamma) \cap H_p^{-1/2}(d;\Gamma)$. D'où $< Q\varphi, *\psi>=\lim < Q\varphi_n, *\psi>=\lim (S\varphi_n, \psi)_2=\lim (\varphi_n, S\psi)_2=(\varphi, S\psi)_2$. D'où suit $(\stackrel{>}{S} \varphi, \psi)_2 = < Q\varphi, *\psi>$ quel que soit $\psi \in C^{\infty}(\stackrel{p}{\Lambda} T^* \Gamma)$, d'où $\stackrel{\sim}{S} \varphi = Q\varphi$.

(iv) La seconde partie du premier point est triviale étant donné que Q est borné et que $D(S) \supset C^{\infty}(\stackrel{p}{\Lambda} T^* \Gamma)$, donc est dense dans $H_p^{-1/2}(d;\Gamma)$.

• Montrons que $D(S^{1/2}) \subset H_p^{-1/2}(d;\Gamma)$ et que quel que soit $\varphi, \psi \in D(S^{1/2})$, $((\varphi,\psi)) = (S^{1/2}\varphi,S^{1/2}\psi)_2$. Par (84), pour tout $\varphi,\psi \in D(S)$, $((\varphi,\psi)) = (\varphi,S\psi)_2$, d'où

$$((\varphi, \psi)) = (S^{1/2}\varphi, S^{1/2}\psi)_2. \tag{87}$$

Mais D(S) est un coeur pour S^{1/2} [K] (p. 281). D'où considérant $\varphi,\psi\in D(S^{1/2})$, il existe $(\varphi_n),\ (\psi_n)\subset D(S)$ telles que $\varphi_n\to\varphi,\ S^{1/2}\ \varphi_n\to S^{1/2}\ \varphi,\ \psi_n\to\psi,\ S^{1/2}\ \psi_n\to S^{1/2}\ \psi,\ dans$ $\mathbb{L}^2(\stackrel{\wedge}{\Lambda}\mathbb{T}^*\Gamma)$. Par (87), $\|\|\varphi_n-\varphi_m\|\|=\|S^{1/2}\ (\varphi_n-\varphi_m)\|_2$, $\|\|\psi_n-\psi_m\|\|=\|S^{1/2}\ (\psi_n-\psi_m)\|_2$ i. e. $(\varphi_n),\ (\psi_n)$ sont de Cauchy dans $H_p^{-1/2}(d;\Gamma)$. Mais $\varphi_n\to\varphi$ et $\psi_n\to\psi$ dans $\stackrel{P}{D}(\Gamma)$. D'où par unicité $\varphi_n\to\varphi$ et $\psi_n\to\psi$ dans $H_p^{-1/2}(d;\Gamma)$. Passant à la limite dans (87) (appliqué aux (φ_n,ψ_n)) il suit $((\varphi,\psi))=(S^{1/2}\varphi,S^{1/2}\psi)_2$. D'où l'assertion. D'où suit $S^{1/2}$ est une isométrie de $D(S^{1/2})$ muni de $\|\|.\|$ dans

$$\mathbb{L}^2(\stackrel{\mathsf{p}}{\Lambda}\mathsf{T}^*\Gamma). \tag{88}$$

De plus $D(S^{1/2})\supset D(S)\supset C^{\infty}(\overset{p}{\Lambda}T^*\;\Gamma)$ et est donc dense dans

$$\mathsf{H}_{\mathsf{p}}^{-1/2}(\mathsf{d};\Gamma). \tag{89}$$

De même $R(S^{1/2}) \supset R(S) \supset C^{\infty}(\stackrel{p}{\Lambda} T^* \Gamma)$ et est donc dense dans

$$\mathbb{L}^2(\Lambda \mathsf{T}^* \Gamma). \tag{90}$$

De (88)-(90) suit l'assertion.

Q.E.D.

3. - SYSTEME DE MAXWELL

Nous commençons par un résultat d'Analyse Fonctionnelle. Celui-ci est une variante d'un résultat classique [R-S] (p. 140-141) concernant les extensions antisymétriques et fermées

d'un opérateur antisymétrique et fermé dans un espace de Hilbert H. Comme nous nous en sommes aperçus par la suite celui-ci se trouve énoncé (sous une forme moins précise) dans [Vi] ; comme il n'en est pas donné de démonstration, nous nous permettons d'en donner une.

3.1. THEOREME. [Vi], (p. 96). Soit H un espace de Hilbert, et A_0 un opérateur dissipatif, antisymétrique, fermé, à domaine dense dans H. Soit $K^+ = \ker (1 - A_0^*)$ et $K^- = \ker (1 + A_0^*)$. Alors, il y a correspondance 1 - 1 entre les générateurs dissipatifs A_1 tels que $A_0 \subset A_1 \subset -A_0^*$ et les contractions $U: K^+ \to K^-$ (i.e. $\|U\| \le 1$) $(K^+ \text{ et } K^- \text{ sont fermés dans H})$; plus précisément :

(i) pour tout $U \in \mathcal{B}(K^+; K^-)$ tel que $\|U\| \le 1$, A_1 défini par :

$$D(A_1) = \{ \varphi + \varphi_+ + U\varphi_+ ; \varphi \in D(A_0) \text{ et } \varphi_+ \in K^+ \}, A_1(\varphi + \varphi_+ + U\varphi_+) = A_0\varphi - \varphi_+ + U\varphi_+ \}$$

est générateur d'un semi-groupe (s.g.) à contraction et $A_0 \subset A_1 \subset -A_0^*$;

(ii) réciproquement, étant donné A_1 générateur d'un s.g. à contraction tel que $A_0 \subset A_1 \subset -A_0^*$, pour tout $\varphi_+ \in K^+$ il existe un et un seul élément de K^- , noté $U\varphi_+$ tel que $\varphi_+ + U\varphi_+ \in D(A_1)$.

De plus, l'application de $K^+ \to K^-$: $\varphi_+ \mapsto U\varphi_+$ est une contraction de K^+ dans K^- .

Preuve. (i) Soit U contraction de K^+ dans K^- et soit A_1 l'opérateur associé.

• A_1 est dissipatif. En effet, considérons $\varphi + \varphi_+ + U\varphi_+ \in D(A_1)$ $(\varphi \in D(A_0))$ et $\varphi_+ \in K^+$.

$$Re(A_{1}(\varphi + \varphi_{+} + U\varphi_{+}), \varphi + \varphi_{+} + U\varphi_{+}) = Re(A_{0}\varphi - \varphi_{+} + U\varphi_{+}, \varphi + \varphi_{+} + U\varphi_{+})$$

$$= \operatorname{Re}[(A_0 \varphi, \varphi) + \| U\varphi_+ \|^2 - \| \varphi_+ \|^2] \le \operatorname{Re}(A_0 \varphi, \varphi) \le 0.$$

• $Im(1 - A_1)$ est dense dans H. En effet soit $v \in H$, $v \perp Im(1 - A_1)$. En particulier, $v \perp Im(1 - A_0)$, i.e. $v \in K^+$. De plus, quel que soit $\varphi_+ \in K^+$:

$$(1 - A_1)(\varphi_+ + U\varphi_+) = \varphi_+ + U\varphi_+ - (-\varphi_+ + U\varphi_+) = 2\varphi_+.$$

D'où suit $\nu \perp K^+$ et par $\nu \in K^+$, $\nu \perp \nu$ i.e. $\nu = 0$.

- $\bullet \ \mathsf{D}(\mathsf{A}_1) \ \mathsf{est} \ \mathsf{dense} \ \mathsf{dans} \ \mathsf{H}. \ \mathsf{En} \ \mathsf{effet} \ \mathsf{D}(\mathsf{A}_1) \supset \mathsf{D}(\mathsf{A}_o) \ \mathsf{et} \ \mathsf{ce} \ \mathsf{dernier} \ \mathsf{est} \ \mathsf{dense} \ \mathsf{dans} \ \mathsf{H}.$
- A_1 est fermé. En effet, considérons $(\varphi_n) \subset D(A_0)$ et $(\varphi_n^+) \subset K^+$, telles que $\varphi_n + \varphi_n^+ + U\varphi_n^+ \to f \in H$ et $A_0 \varphi_n \varphi_n^+ + U\varphi_n^+ \to g \in H$. En particulier

$$f \in D(A_O^*)$$
 et $A_O^*f = -g$.

Mais [R-S] (p. 138), D(A_O), K^+ , K^- forment une décomposition orthogonale de l'espace de Hilbert D(A_O*) (muni de la norme du graphe). Soit $f = \varphi + \varphi^+ + \varphi^-$ la décomposition de f, $\varphi \in D(A_O)$, $\varphi^+ \in K^+$, $\varphi^- \in K^-$. On a $\varphi_n \to \varphi$, $\varphi_n^+ \to \varphi^+$ et $U\varphi_n^+ \to \varphi^-$ dans D(A_O*), donc a fortiori dans H. D'où par continuité de U, $\varphi^- = U\varphi^+$.

D'où $f \in D(A_1)$. D'où A_1 est fermé.

- Des points précédents, suit par le théorème de Lumer-Phillips, A₁ générateur d'un s.g. à contraction.
- (ii) Réciproquement, soit A_1 générateur d'un s.g. à contraction tel que $A_0 \subset A_1 \subset -A_0^*$.

 A_1 étant un générateur donc en particulier un opérateur fermé et $A_1 \subset -A_0^*$, il suit $D(A_1)$ sous-espace fermé de $D(A_0^*)$ (ce dernier étant muni de la norme du graphe). Désignons par S_1 le sous-espace fermé complémentaire orthogonal de $D(A_0)$ dans $D(A_1)$.

De $D(A_1) \supset D(A_0)$ et $D(A_0^*) = D(A_0) \oplus K^+ \oplus K^-$ [R-S] (p. 138) (pour la norme du graphe de A_0^*) il suit $S_1 \subset K^+ \oplus K^-$.

• Etant donné $\varphi_+ \in K^+$, il existe au plus un élément $\varphi_- \in K^-$ tel que $\varphi_+ + \varphi_- \in S_1$ (nous n'affirmons rien quant à l'existence d'un tel élément). En effet, soit $\varphi_- \ \psi_- \in K^-$ tels que $\varphi_+ + \varphi_- \in S_1$ et $\varphi_+ + \psi_- \in S_1$. D'où suit $\varphi_- - \psi_- \in S_1 \subset D(A_1)$.

De plus $(1-A_1)$ $(\varphi_--\psi_-)=0$, d'où par dissipativité de A_1 , $\varphi_-=\psi_-$. Remarquons que φ_- est aussi l'unique élément (éventuel) tel que $\varphi_++\varphi_-\in D(A_1)$. En effet $\varphi_++\varphi_-\in K^+\oplus K^-$ et est donc orthogonal pour le produit scalaire associé à la norme du graphe de A_0^* à $D(A_0)$. D'où $\varphi_++\varphi_-\in S_1$. Désignons par U l'opérateur de K^+ dans K^- ainsi défini.

• D(U) est dense dans K^+ . En effet, soit $v \in K^+$ tel que $v \perp D(U)$. Remarquons que $(1 - A_1)S_1 = D(U)$. En effet, considérons $\varphi \in S_1$; φ s'écrit sous la forme $\varphi = \varphi_+ + U\varphi_+$, $\varphi_+ \in K^+$. D'où $(1 - A_1)\varphi = (1 + A_0^*)\varphi_+ + (1 + A_0^*)\varphi_- = 2\varphi_+$.

D'autre part, $v \in K^+$ signifie $v \perp Im(1 - A_0)$. D'où par linéarité,

$$\nu \perp (1 - A_1) [D(A_0) \oplus S_1] = Im(1 - A_1).$$

De A_1 générateur dissipatif suit alors $\nu = 0$.

• Montrons que U est une contraction. Soit $\varphi_+ \in D(U)$. Posons $\varphi = \varphi_+ + U\varphi_+$. $A_1\varphi = -A_0^*\varphi_+ - A_0^*U\varphi_+ = U\varphi_+ - \varphi_+$. D'où

$$\operatorname{Re}(A_{1}\varphi,\varphi) = \operatorname{Re}(U\varphi_{+} - \varphi_{+} , \varphi_{+} + U\varphi_{+}) = \| U\varphi_{+} \|^{2} - \| \varphi_{+} \|^{2}.$$

De la dissipativité de A_1 suit $\| U\varphi_+ \| \leqslant \| \varphi_+ \|$.

• Montrons que D(U) = K^+ . Soit $\varphi^+ \in K^+$. Par D(U) dense dans K^+ , il existe $(\varphi_n^+) \subset D(U)$ telle que $\varphi_n^+ \to \varphi^+$. De U contraction et K^- fermé dans H, il existe $\varphi_- \in K^-$ tel que $U\varphi_n^+ \to \varphi^-$. D'où $\varphi_n^+ + U\varphi_n^+ \to \varphi^+ + \varphi^-$. De plus $A_0^*(\varphi_n^+ + U\varphi_n^+) = \varphi_n^+ - U\varphi_n^+ \to \varphi^+ - \varphi^+ = A_0^*(\varphi^+ + \varphi^-)$.

 S_1 étant un sous-espace fermé de $D(A_0^*), \varphi^+ + \varphi^- \in S_1$. D'où $\varphi^+ \in D(U)$. Q.E.D.

Dans un ouvert de IR³ le système de Maxwell s'écrit :

$$\begin{cases} \frac{\partial E}{\partial t} = \text{rot } H \\ \frac{\partial H}{\partial t} = -\text{rot } E. \end{cases}$$
 (91)

Identifiant le «champ électrique E» à la 1-forme $u=E_1dx^1+E_2dx^2+E_3dx^3$ et le «champ magnétique H» à la 2-forme $v=H_1dx^2$ Λ $dx^3+H_2dx^3$ Λ $dx^1+H_3dx^1$ Λ dx^2 , le système (91) devient :

$$\begin{cases} \frac{\partial u}{\partial t} = \delta v \\ \frac{\partial v}{\partial t} = -du. \end{cases}$$
 (92)

Eu égard à (92), nous appellerons opérateur de Maxwell M sur Ω , $\overline{\Omega}$ variété riemannienne orientée C^{∞} compacte à bord, l'opérateur :

$$\mathsf{M}: \overset{p}{\mathcal{D}'}(\Omega) \times \overset{p+1}{\mathcal{D}'}(\Omega) \to \overset{p}{\mathcal{D}'}(\Omega) \times \overset{p+1}{\mathcal{D}'}(\Omega): (\mathsf{u},\mathsf{v}) \mapsto (\delta \mathsf{v},\!-\!\mathsf{d}\mathsf{u}).$$

3.2. LEMME. Soit A_o la fermeture de $M \mid C_{oo}^{\infty}(\stackrel{p}{\Lambda} T*\Omega) \times C_{oo}^{\infty}(\stackrel{p+1}{\Lambda} T*\Omega)$ dans $IL^2(\stackrel{p}{\Lambda} T*\Omega) \times IL^2(\stackrel{p+1}{\Lambda} T*\Omega)$. Alors $A_o \subset M$ et $D(A_o) = H_p^O(d;\Omega) \times H_{p+1}^O(\delta;\Omega)$. De plus $-A_o^* \subset M$ et $D(A_o^*) = H_p(d;\Omega) \times H_{p+1}(\delta;\Omega)$.

Preuve. • La première partie suit de la densité de $C_{oo}^{\infty}(\overset{p}{\Lambda}T^*\Omega)$ dans $H_{p}^{o}(d;\Omega)$ (théorème 1.9) et de la densité de $C_{oo}^{\infty}(\overset{p+1}{\Lambda}T^*\Omega)$ dans $H_{p+1}^{o}(\delta;\Omega)$ (théorème 1.12).

• En vue du premier point

$$A_o^* = \left(M \middle|_{C_{00}^{\infty}(\Lambda T^*\Omega)} \times C_{00}^{\infty}(\Lambda^{p+1} T^*\Omega)\right)^*. \tag{93}$$

Soit $(\varphi,\psi)\in IL^2(\stackrel{p}{\Lambda}T*\Omega)\times IL^2(\stackrel{p+1}{\Lambda}T*\Omega)$. De la définition de l'adjoint et (93), $(\varphi,\psi)\in D(A_0^*)$ ssi il existe $(f,g)\in IL^2(\stackrel{p}{\Lambda}T*\Omega)\times IL^2(\stackrel{p+1}{\Lambda}T*\Omega)$ tel que pour tout

133

$$(\mathbf{u},\mathbf{v}) \in C_{00}^{\infty}(\overset{p}{\Lambda}\mathsf{T}^{*}\Omega) \times C_{00}^{\infty}(\overset{p+1}{\Lambda}\mathsf{T}^{*}\Omega) : ((f,g),(\mathbf{u},\mathbf{v})) = (\varphi,\delta\mathbf{v}) - (\psi,d\mathbf{u}). \tag{94}$$

(94) est équivalent à :

$$(f,u) = -(\psi,du) \text{ pour tout } u \in C_{\Omega}^{\infty}(\mathring{\Lambda} T * \Omega)$$
(95)

et

$$(g,v) = (\varphi,\delta v) \text{ pour tout } v \in C_{\Omega\Omega}^{\infty}(\overset{p+1}{\Lambda} T * \Omega).$$
 (96)

(95) est équivalent à :

$$\langle f, \xi \rangle = (-1)^p \langle \psi, \delta \xi \rangle$$
 pour tout $\xi \in \stackrel{n-p}{D}(\Omega)$ i.e. $f = -\delta \psi$. (97)

(96) équivaut à :

$$\langle g, \eta \rangle = (-1)^{p+1} \langle \varphi, d\eta \rangle$$
 pour tout $\eta \in D^{-1}(\Omega)$ i.e. $g = d\varphi$. (98)

De (97) et (98) suit l'assertion.

Q.E.D.

De 3.2 suit immédiatement A_0 opérateur antisymétrique fermé à domaine dense. 3.1 lui est donc applicable. De plus, on voit immédiatement que dans le cas présent, par 3.2 :

$$K^{+} = \left\{ (u,du) ; u \in H_{\mathbf{n}}(d;\Omega) \text{ et } (1+\delta d)u = 0 \right\}$$
(99)

et

$$K^{-} = \{ (u, -v) ; (u, v) \in K^{+} \}.$$
 (100)

Raffinant 3.1 dans le cas particulier présent, grâce aux résultats des sections 1 et 2, on obtient :

3.3. THEOREME. Soit A_1 tel que $A_0 \subseteq A_1 \subseteq -A_0^*$. Alors A_1 est générateur d'un s.g. à contraction ssi il existe $U \in \mathscr{B}$ $(H_p^{-1/2}(d;\Gamma))$ avec $\| U \| \leqslant 1$ tel que

$$D(A_1) = \left\{ (u,v) \in H_{D}(d;\Omega) \times H_{D+1}(\delta;\Omega) ; (1-U)tu - (1+U)Q^{-1} |_{nv} = 0 \right\}$$

($\parallel U \parallel \parallel$ désigne la norme de U comme opérateur borné sur $H_p^{-1/2}(d;\Gamma)$ muni de sa structure hilbertienne naturelle).

Preuve. ● Par 3.1, A_1 est générateur d'un s.g. à contraction ssi il existe $T: K^+ \to K^-$ contraction telle que $D(A_1) = \left\{ \varphi + \varphi_+ + T\varphi_+ \; ; \varphi \in D(A_0) \; \text{et} \; \varphi_+ \in K^+ \right\}$.

• Par (99), (100) et 2.1 (voir aussi l'alinéa suivant 2.5) il y a «bijection» (pas n'importe laquelle!, on va préciser tout de suite) entre les contractions $T: K^+ \to K^-$ et les contractions U de $H_p^{-1/2}(d;\Gamma)$ muni de sa structure hilbertienne naturelle; plus précisément:

- a) Soit $T: K^+ \to K^-: (u^+, du^+) \mapsto (u^-, -du^-)$ une contraction ; alors $U: H_p^{-1/2}(d;\Gamma) \to H_p^{-1/2}(d;\Gamma): tu^+ \mapsto tu^-$ est une contraction de $H_p^{-1/2}(d;\Gamma)$ muni de sa structure hilbertienne naturelle ;
- b) réciproquement, soit U une contraction de $H_p^{-1/2}(d;\Gamma)$. Pour $\varphi\in H_p^{-1/2}(d;\Gamma)$, notons u^+ (resp. u^-) la solution dans $H_p(d;\Omega)$ de $(I+\delta d)u^+=0$, $tu^+=\varphi$ (resp. $(I+\delta d)u^-=0$, $tu^-=U\varphi$); alors $T:K^+\to K^-:(u^+,du^+)\mapsto (u^-,-du^-)$ est une contraction.
- Soit (u',v') ∈ $D(A_0)$ et (u^+,v^+) ∈ K^+ . Considérons $(u,v) = (u',v') + (u^+,v^+) + (u^-,v^-)$ où l'on a posé $(u^-,v^-) = T(u^+,v^+)$. $tu = (I+U)tu^+$ et $nv = Q(I-U)tu^+$. D'où

$$(1-U)tu - (1+U)Q^{-1}nv = 0. (101)$$

• Réciproquement, soit $(u,v) \in H_p(d;\Omega) \times H_{p+1}(\delta;\Omega)$, satisfaisant à la relation (101). Soit u^+ (resp. u^-) la solution dans $H_p(d;\Omega)$ de $u + \delta du = 0$ telle que $tu^+ = \frac{1}{2} (tu + Q^{-1} nv)$

(resp.
$$tu^- = \frac{1}{2} (tu - Q^{-1} nv)$$
). (102)

De (101) et (102) suit immédiatement

$$Utu^+ = tu^-. (103)$$

D'où posant $v^{+} = du^{+}$ et $v^{-} = -du^{-}$, il suit de (103) :

$$(u^-,v^-) = T(u^+,v^+).$$
 (104)

Posons $(u',v') = (u,v) - (u^+,v^+) - (u^-,v^-)$. De (102) suit

$$tu' = 0 \text{ et nv'} = 0.$$
 (105)

De (105), (104) et le premier point, suit $(u,v) \in D(A_1)$.

Q.E.D.

Posons $J=(S^{1/2})^-$; par 2.8, J est une transformation unitaire de $H_p^{-1/2}(d;\Gamma)$ sur $IL^2(\stackrel{p}{\Lambda}T^*\Gamma)$ ($H_p^{-1/2}(d;\Gamma)$) étant muni de sa structure hilbertienne naturelle). En particulier U est une contraction de $H_p^{-1/2}(d;\Gamma)$ (pour sa structure hilbertienne naturelle) ssi $J_oU_oJ^{-1}$ est une contraction de $IL^2(\stackrel{p}{\Lambda}T^*\Gamma)$. D'où la variante suivante de 3.3 :

135

3.4. COROLLAIRE. Soit A_1 tel que $A_0 \subset A_1 \subset A_0^*$. Alors A_1 est générateur d'un s.g. à contraction ssi il existe U contraction de $IL^2(\Lambda T * \Gamma)$ telle que :

$$\mathsf{D}(\mathsf{A}_1) = \left\{ (\mathsf{u}, \mathsf{v}) \in \mathsf{H}_\mathsf{D}(\mathsf{d}; \Omega) \times \mathsf{H}_{\mathsf{D}} + 1(\delta; \Omega) \; ; \; (1 - \mathsf{J}^{-1} \mathsf{U} \mathsf{J}) \mathsf{tu} - (1 + \mathsf{J}^{-1} \mathsf{U} \mathsf{J}) Q^{-1} \; \; \mathsf{nv} = 0 \right\}.$$

Remarquons pour terminer cette section que de 3.1 et de [R-S] p. 140-141 suit :

3.5. COROLLAIRE. Il existe A_1 générateur d'un s.g. à contraction, avec $A_0 \subset A_1 \subset -A_0^*$ et A_1 non antisymétrique (resp. antisymétrique mais non self-adjoint).

4. - CAS PARTICULIER DU SEMI-ESPACE, ET DE LA BOULE

Nous déterminons dans ces deux cas particuliers, l'expression explicite de l'opérateur Q. En fait (voir l'alinéa précédent 2.6) nous n'avons défini Q que pour $\overline{\Omega}$ variété riemanienne orientée C^{∞} compacte à bord, mais comme 2.1 s'étend sans difficulté à $\Omega = \overline{IR^n}$, la définition de Q aussi.

4.1. PROPOSITION. Dans le cas du semi-espace $\overline{\Omega} = \{x \in IR^n : x_1 \leq 0\}$, Q est l'opérateur $(I + \Delta)^{-1/2} (I + \delta d) : H_p^{-1/2} (d;IR^{n-1}) \to H_p^{-1/2} (\delta;IR^{n-1})$.

Preuve. Soit $\varphi \in H_p^{-1/2}(d; |\mathbb{R}^{n-1})$ et $u \in H_p(d; |\mathbb{R}^n]$ la solution de $u + \delta du = 0$, tu = φ . Par 1.4, 1.5 et le quatrième point de la preuve de 1.4, suit pour tout $2 \le j_2 < ... < j_{p+1} \le n$:

$$(du)_{1j_2...j_{p+1}} = \frac{\exp\left[x_1\sqrt{1+\xi_2^2+...+\xi_n^2}\right]}{\sqrt{1+\xi_2^2+...+\xi_n^2}} \quad [((1+\delta d)\varphi)_{j_2...j_{p+1}}]^{n}$$

(«^ » désigne la transformée de Fourier partielle «relative aux variables $x_2,...,x_{n-1}$ »). D'où $ndu = (I + \Delta)^{-1/2}(I + \delta d)\varphi$.

Q.E.D.

Remarquons que dans le cas général (i.e. $\overline{\Omega}$ variété riemannienne orientée C^{∞} compacte à bord ou $\overline{\Omega} = \overline{IR^n}$), $(I + \Delta)^{-1/2}(I + \delta d)$ est toujours un topisomorphisme de $H_p^{-1/2}(d;\Gamma)$ sur $H_p^{-1/2}(\delta;\Gamma)$, le topisomorphisme réciproque étant $(I + \Delta)^{-1/2}(I + d\delta)$.

Venons en au cas de la boule. Par 2.8, Q est complètement déterminé par S i.e. sa plus grande restriction qui opère dans $IL^2(\stackrel{p}{\Lambda}\,T^*\Gamma)$ (ici $I^*=S_n$). Nous allons montrer que les formes propres de S sont exactement celles de l'opérateur de de Rham-Hodge dans $IL^2(\stackrel{p}{\Lambda}\,T^*\,S_n)$. Ceci nous permettra d'écrire en particulier une décomposition spectrale de l'opérateur S. A cette fin, nous utilisons la méthode de séparation des variables sur les formes différentielles introduites dans [P1].

4.2. PROPOSITION. Soit $0 \le p \le n-1$ et $\varphi \in Co(p;n;k)$, $k \in IN*$ i.e. une p-forme propre coexacte de S_n de valeur propre (k+p)(k+n-p-1). Alors φ est une p-forme propre de S de valeur propre

$$p + k - 1 + \frac{F(\frac{n+2k}{2} + 1 \mid n+2k+1 \mid 2)}{F(\frac{n+2k}{2} \mid n+2k \mid 2)}$$
 (F désigne la fonction hypergéométrique confluente).

De plus, la solution $u \in C^{\infty}(\stackrel{p}{\Lambda} T^* \overline{B}_{n+1})$ de $u + \delta du = 0$, $tu = \varphi$ est donnée par $u = \frac{h}{h(1)} \Lambda_p \varphi$, où

$$P: IR_+^* \times S_n \rightarrow IR^{n+1}: (x,y) \mapsto xy [P1]$$

et

$$h: x \mapsto (2x)^{k+p} e^{-x} F(\frac{n+2k}{2} \mid n+2k \mid 2x).$$
 (106)

Preuve. • Cherchons $u \in C^{\infty}(\stackrel{p}{\Lambda}T^*\overline{B}_{n+1})$ solution de $u + \delta du = 0$, $tu = \varphi$, sous la forme

$$u = \frac{h}{h(1)} \Lambda_{\mathbf{p}} \varphi, \tag{107}$$

h étant une fonction de $C^{\infty}(IR_{+}^{*};IR)$ à déterminer. Notons bien qu'à priori u est seulement définie (et C^{∞}) dans $IR^{n+1} \setminus \{0\}$; il nous faudra ensuite investiguer le comportement de u au voisinage de l'origine.

• Par [P1] (1.5 (i)) et (107)
$$\delta u = 0$$
 dans $IR^{n+1} \setminus \{0\}$. (108)

- Eu égard à (108) l'équation $(I + \delta d)u = 0$ dans $IR^{n+1} \setminus \{0\}$ est équivalente à $(I + \Delta)u = 0$ dans $IR^{n+1} \setminus \{0\}$. (109)
- Par [P1] (1.5 (i)) et $\varphi \in Co(p;n;k)$, (109) est équivalent (si $\varphi \neq 0$) à :

$$h'' + \frac{n-2p}{x}h' - \left[1 + \frac{(k+p)(k+n-p-1)}{x^2}\right]h = 0 \text{ dans } IR_+^*.$$
 (110)

- Un calcul de routine montre que h défini par (106) satisfait à (110).
- Pour montrer que u est une solution de (107), il suffit alors de montrer que u = $\frac{h}{h(1)} \Lambda_p \varphi$ se prolonge en une forme C^{∞} sur IR^{n+1} .

Ceci suivra de (109) si l'on montre que les composantes de u dans les coordonnées canoniques de IR^{n+1} sont bornées au voisinage de l'origine ce qui est équivalent à |u| borné au voisinage de l'origine. (111)

• Par [P1], * u =
$$(-1)^p x^{n-2p} h_{h(1)} dx \Lambda_p * \varphi$$
.

D'où

$$u \Lambda * u = x^{n-2p}(h_{/h(1)})^2 dx \Lambda_p(\varphi \Lambda * \varphi).$$

D'où

*
$$(u \Lambda * u) = x^{-2p} (\frac{h}{h(1)})^2 \Lambda_p |\varphi|^2$$
, i.e. $|u| = x^{-p} h/h(1) \Lambda_p |\varphi|$,

d'où (111) par (106).

• De l'expression de l'opérateur n en fonction de t et de [P1] (1.1) suit

$$ndu = \frac{h'(1)}{h(1)} \varphi. \tag{112}$$

De (112) et (106) suit l'assertion.

Q.E.D.

Par dualité de 4.2 suit :

4.3. PROPOSITION. Soit $1 \le p \le n$ et $\psi \in Ex(p;n;k)$, $k \in IN*$, i.e. une p-forme propre exacte de S_n de valeur propre (k+p-1)(k+n-p). Alors ψ est une p-forme propre de S de valeur propre

$$\lambda_{k} = \left[n - p + k - 1 + \frac{F(\frac{n+2k}{2} + 1 \mid n+2k+1 \mid 2)}{F(\frac{n+2k}{2} \mid n+2k \mid 2)} \right]^{-1}.$$

Preuve. • Considérons $\varphi = * \psi \in \text{Co}(n-p;n;k)$. Par 4.2, φ est une (n-p)-forme propre de S(n-p) (i.e. S relatif aux formes de degré n-p) de valeur propre $n-p+k-1+\frac{F(\frac{n+2k}{2}+1\mid n+2k+1\mid 2)}{F(\frac{n+2k}{2}\mid n+2k\mid 2)}$

$$S(p)^{-1} = (-1)^{(n+1)p} * S(n-p)*.$$

D'où suit

$$S(p)^{-1}\psi = \left[n - p + k - 1 + \frac{F(\frac{n+2k}{2} + 1 \mid n+2k+1 \mid 2)}{F(\frac{n+2k}{2} \mid n+2k \mid 2)}\right]\psi.$$

D'où la première partie de l'énoncé.

• Soit $v \in C^{\infty}(\stackrel{n-p}{\Lambda} T^*\overline{B}_{n+1})$ la solution de $v + \delta dv = 0$, $tv = \varphi$.

Par 4.2,

$$ndv = \left[n - p + k - 1 + \frac{F(\frac{n+2k}{2} + 1 \mid n+2k+1 \mid 2)}{F(\frac{n+2k}{2} \mid n+2k \mid 2)} \right] \varphi.$$

D'où

$$t*dv = (-1)^{p(n+1)} \left[n-p+k-1 + \frac{F(\frac{n+2k}{2}+1 \mid n+2k+1 \mid 2)}{F(\frac{n+2k}{2} \mid n+2k \mid 2)} \right] \psi \ .$$

De plus, il est clair que $(1 + \delta d) * dv = 0$.

Posons

$$u = (-1)^{p(n+1)} \left[n - p + k - 1 + \frac{F(\frac{n+2k}{2} + 1 \mid n+2k+1 \mid 2)}{F(\frac{n+2k}{2} \mid n+2k \mid 2)} \right]^{-1} * dv.$$

$$(-1)^{p(n+1)} * dv = (-1)^{p(n+1)} * d \left[\frac{h_{n-p}}{h_{n-p}(1)} \Lambda_{p} \varphi \right]^{-1}$$

$$= -\delta \left[x^{2p-n} \frac{h_{n-p}}{h_{n-p}(1)} dx \Lambda_{p} \psi \right]$$

$$= -\delta \left[\frac{h_{p}}{h_{p}(1)} dx \Lambda_{p} \psi \right] = -\delta \left[\frac{h}{h(1)} dx \Lambda_{p} \psi \right].$$
(114)

(h dépend du paramètre entier p ; lorsqu'il est nécessaire d'expliciter cette dépendance, nous avons noté h_n au lieu de h). De (113) et (114) suit l'assertion.

Q.E.D.

4.4. COROLLAIRE. Quel que soit $0 \le p \le n$, les formes propres de S sont exactement celles de l'opérateur de de Rham-Hodge dans $IL^2(\Lambda T^*S_n)$.

Preuve. • Ceci suit de 4.2, 4.3 et des remarques suivantes :

- Soit φ une p-forme propre de S_n de valeur propre $\lambda > 0$, i.e. $\Delta \varphi = \lambda \varphi$. Alors $\varphi = d\delta \frac{\varphi}{\lambda} + \delta d \frac{\varphi}{\lambda}$, avec $\Delta d\delta \frac{\varphi}{\lambda} = \lambda d\delta \frac{\varphi}{\lambda}$ et $\Delta \delta d \frac{\varphi}{\lambda} = \lambda \delta d \frac{\varphi}{\lambda}$, i.e. φ est somme d'une p-forme propre exacte de valeur propre λ et d'une p-forme propre coexacte de valeur propre λ .
- Soit φ une p-forme propre de S_n de valeur propre 0. Alors nécessairement p=0 ou p=n. Si p=0, $\varphi=$ cste. Un calcul de routine montre que φ est une 0 forme propre de S de valeur propre

$$-1 + \frac{F(\frac{n}{2} + 1 \mid n+1 \mid 2)}{F(\frac{n}{2} \mid n \mid 2)}.$$
 (115)

Si p = n, φ = * cste. Par 2.6 (74) et (115) suit φ n-forme propre de S de valeur propre

$$\left[-1 + \frac{F(\frac{n}{2} + 1 \mid n+1 \mid 2)}{F(\frac{n}{2} \mid n \mid 2)}\right]^{-1}.$$

Donc toute forme propre du de Rham-Hodge est forme propre de S.

S étant autoadjoint, par une variante du lemme A.II.1 p. 143 de [B-G-M] il suit de (116) que l'on a ainsi obtenu toutes les formes propres de S.

Q.E.D.

(116)

REFERENCES

- [B-G-M] M. BERGER, P. GAUDUCHON, E. MAZET. «Le spectre d'une variété Riemanienne». Lectures Notes in Math. 194, Springer-Verlag, 1971.
- [B-G] M. BERGER, B. GOSTIAUX. «Géométrie Différentielle». Armand Colin, Paris, 1972.
- [DEL] A. DELACHET. «Le Calcul Tensoriel». Presses Universitaires de France, Paris, 1974.
- [Di] J. DIEUDONNE. «Eléments d'Analyse». Tome 7, Gauthier-Villars, Paris, 1978.
- [D-L] G. DUVAUT, J.L. LIONS. «Les Inéquations en mécanique et en physique». Dunod, Paris, 1972.
- [D-N] A. DOUGLIS, L. NIRENBERG. «Interior Estimates for Elliptic Systems of Partial Differential equations». Communications on Pure and Appl. Math., vol. VIII, 503-538 1955.
- [D-S] G.F.D. DUFF, D.C. SPENCER. *«Harmonic Tensors on Riemannian Manifolds with boundary»*. Annals of Mathematics, vol. 56, no 1, 1952.
- [Du] G.F.D. DUFF. «Hyperbolic Mixed Problems for Harmonic Tensors». Can. J. Math., vol. 8, 1956, 161-179.
- [Hö] L. HORMANDER. «Linear Partial Differential Operators». Springer-Verlag, Band. 116 1969, third revisited Printing.
- [K] T. KATO. "Perturbation Theory for Linear Operators". Springer-Verlag, vol. 132, 1966.
- [P1] L. PAQUET. «Méthode de séparation des variables et calcul du spectre d'opérateurs sur les formes différentielles». Bull. Sc. Math., 2ème série, t. 105, 1981, no 1, 85-112. «Méthode de séparation des variables et calcul du spectre d'opérateurs sur les formes différentielles». C.R. Acad. Sc. Paris, t. 289, Série A, 1979, 107-110.
- [P2] L. PAQUET. «Mixed problems for the Maxwell system». C.R. Acad. Sc. Paris, t. 289, série A, 1979, 191-194.
- [R] G. de RHAM. «Variétés différentiables». Hermann, Paris, 1973, 3ème édition revue et augmentée.
- [R-S] M. REED, B. SIMON. «Fourier Analysis, Self-Adjointness». Academic Press, 1975.
- [R-N] F. RIESZ, B. Sz. NAGY. *«Leçons d'Analyse Fonctionnelle»*. Gauthier-Villars, 1972, sixième édition.

[Sch] L. SCHWARTZ. «Théorie des distributions». Hermann, Paris, 1966, nouvelle édition, entièrement corrigée, refondue et augmentée.

- [Sp] M. SPIVAK. «Differential Geometry». Volume I, Publish or Perish, Inc., 1970.
- [T] R. TEMAM. «Navier-Stokes Equations». North-Holland, 1977.
- [Tr 1] F. TREVES. «Linear Partial Differential Equations with Constant Coefficients». Gordon and Breach, 1966.
- [Tr 2] F. TREVES. "Basic Linear Partial Differential Equations". Academic Press, 1975.
- [Vi] N. Ya VILENKIN et al. «Functional Analysis». Wolters-Noordhoff, The Netherlands, 1972.
- [Y] K. YOSIDA. «Functional Analysis» Third Edition, Band 123, Springer-Verlag, 1971.

(Manuscrit reçu le 23 mai 1981)