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(2) Department of Mathematics of the University of [yviskyld, [yviskyld - Finland.

Résumé : Dans ce travail on étudie le cas de I'identification du domaine dans les problémes, I’état
dont lesquel est décrit par les inéquations variationnelles elliptiques du type de Signorini-Fichera.
En utilisant la méthode de pénalisation, I'inéquation d’état est remplacée par une famille des
équations elliptiques non-linéaires. On démontre que les solutions des problémes de I'identifica-
tion gouvernés par des équations d’état pénalisées sont dans une certaine liaison au probléme

original de I'identification.

Summary : A method of penalization is used to transform an optimal design problem governed
by variational inequalities to the optimal design problem governed by equations. It is shown
that the corresponding optimal designs (associated with penalized problems) are in an appropriate

sense close to the optimal design of the original problem.

1. - INTRODUCTION

Many practical problems lead to finding an optimal design of a mechanical system,
the behaviour of which is described by equations, corresponding to some law of physics. In recent
years much attention has ben given to this type of the design optimization - from the computatio-
nal point of view as well as from the theoretical point of view ([1], [5], [6], [13], [14], [15]and
bibliography therein).
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On the other hand, there are many physical situations described by variational inequa-
lities (unilateral of free boundary value problems, see for example [2], [8], [9]). A relatively small
amount of papers is devoted to optimal control problems governed by inequalities. Moreover,
most of them analyse the case when the control variables appear on the right hand side of inequa-
lities ([10] , [11], [12] ). Recently, in [7] the mathematical analysis of design optimization of
systems governed by a unilateral boundary value problem is given.

In the present paper the same type of problem of optimal design as in [7] is conside-
red. HlaviCek and Ne€as give in [7] a proof of existence of a solution for different cost functio-
nals and for one common state problem, which is formulated in terms of variational inequality
on a variable domain. In this paper a different approach is used. The variational inequality is
replaced by a family of the penalized problems, each of them is given by the classical elliptic
boundary value problem. We show that the corresponding optimal designs (associated with the
penalized problems) are close (in an appropriate sense) to an optimal design of the original pro-
blem. _

The main advantage of the approach of this paper consists in the fact that only a
small modification of existing algorithms enables us to apply them for solving numerically the

problem in question. In [4] numerical realization of methods presented here is given.

2. - SETTING OF THE PROBLEM

Let @ C IR? be a domain with Lipschitz boundary 9$2. By Hk(Q) (k =0, integer)
we denote the classical Sobolev space of functions, the generalized derivates of which up to order
k are square integrable in & (LQ(Q) 1= HO(Q)). The norm on Hk(Q) will be denoted by Il . I K
H_k(Q) (k >0, integer, i.e. k € IN) is the dual space to Hk(Q). Furthermore, Hk(F) (r non-em{)ty
open set of d2) denotes the Sobolev space of functions, whose domain is I" ; . Il [ is the
corresponding norm in Hk(F). By E£(2) we mean the set of all infinite times continuous Ziifferen-
tiable functions, which can be continuously extended with all their derivatives, up to the bounda-
ry. The set of all functions from E(£), vanishing in some neighbourhood of 9 will be denoted
by D(R2).

In this paper we shall study the problem :

Find w e Uad such that

J(w)</(v) forall vEU,,.

Here U, is the set of admissible functions (controls), defined by
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dv
U, :={vec®1([0,1]) 10<a<v(x,)<B, | —I<C;,
ad 2 ax2 1

1
j v(x2)dx2 =C,, &, B, C4, C, > 0 given constants .
0
The cost functional / is given by
J(v) = ly(v) —z 12 dxqdx =ly(v)—z 12
d'” dxqdxy d "0,2(v)’
Q(v)
where z; is an element of L2(Q’E),
Q= (0F) X (0,1), 5>
and y = y(v) is the solution of the unilateral boundary value problem (the state inequality) :
Find y = y(v) €K(v) such that
(2.1)
(grad y, grad (€ —y))g q(y) = (£~ Y)o,q(v) for all £ EK(v).
Here f€ L2(S2’E) and (see Figure 2.1)
Q) := {(x,x) €IRZ Iy €(0,1), 0<x; < v(x,y), vEU 4},
L) := {(x1,x2) €IrR?2 Ix5 €(0,1),xq = v(x5),vE Ung },
V(Qv) := fweH(QV)) lw=00n0Q(v) \TW) }
K(v) :={weV(QV) lw> 0on ()} .

lX2

Figure 2.1
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Remark 2.1. By applying the Green’s formula to (2.1) one can easily prove that y € K(v) satis-
fies in ©(v) the Poisson equation with the boundary conditions of Signorini’s type. On a given
part of the boundary the homogeneous Dirichlet condition is prescribed and the remaining part

- with unilateral conditions - has to be determined :
—-Ay=f in Q(v)
y=0 on 0 \T'(v)

oy 0
y=0, —>0, y — y=0 on TI(v)
on an
As the solution y of ( .1) depends on £2(v), among others, i.e. v € U,q » we shall
write y = y(v) to emphasize this dependence. Thus, (P) is the problem on optimal shape of S,
minimizing the cost functional /. The existence of a solution for Problem (P) is proved in [7] .
It is well-known that the penalty method enables us to replace the unilateral boundary

value problem (2.1) by a family of classical elliptic boundary value problems. Let
P:H(Q(v) > HT(Q(v))
be a penalty operator, that is

Ker(P) = kernel of P=K(v)
(2.2) P is Lipschitz continuous

P is monotone.
Instead of (2.1) we shall consider a family of problems :

Find y, =y,(v) € V((v)) such that
(2.1),

1
(grad v, , grad Elg () + —(Plye), 8y = (RElg ) for all £ € VIR(V).
The symbol (. , .), denotes the duality pairing between Hl (£2(v)) and H1(Q(v)), It is known
(see [3]and [9] ) that y(v) > y(v), e > 0 in the H! (£2(v))-norm.

The above given penalty approach suggests us the following idea : Let us study the
optimal design problem, in which the state inequality (2.1) is replaced by a family of state equa-

tions (2.1) .. More precisely :

Find we € U such that
(P)e
J(wg) <J(v) forall ve Uy s
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where
J0) =1y =24 15 o)

and y,(v) is the solution of (2.1 )e-

A natural question arises : What is the relation between solutions for Problem (P) and
Problem (P)e if € >0, ? Before going closer to this question we prove that Problem (P)e has a

solution for any € > 0.

3. - ANALYSIS OF PROBLEM (P)e

Henceforth, we shall assume that the penalty operator P : H](Q(v)) > H! (2(v)) is

of the form
1
(31) Pty == @ vixgxy) Elvixy)xy)dx,
0
where w  denotes the negative part of w (a~ : = (lal—a)/2). It is easily seen that operator P,

defined by (3.1), has the properties (2.2). The main result of this section is
THEOREM 3.1. For any € > 0 there exists a solution we € U, 4 of Problem (P)e .

Proof. To simplify notations we set € = 1 and we shall write y instead of Ye - Let{ i }, vh € Uad’

be a minimizing sequence for the cost functional /, i.e.

q:= inf  Jv)=lim Jlv)=lim ly,-z412
VEUy n - oo n - oo on

wherey :=y(v )€ Vi, =VI(Q,), 2, :=8(v,), is the unique solution of the equation
(3.2) (grad Y » 8rad E)O,Qn + (P(yn), s)vn = (f’s)O,Qn forall (€V .
We first prove that { Fyg, I 1,9, } is bounded. By setting & = Yp in (3.2) we obtain
(3.3) lgrad y, I g’Qn = (grad y,, , grad yn)O,Qn
<(grad Y, » grad Yn)O,Qn + (P(yn),yn)vn

= (f’yn)O,Qn < " f ” O;Q’E " yn " O,Qn .
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According to the Poincaré-Friedrichs inequality

Ty, | 0,9, <Blgrady, I 0,92, forally €V, .
Thus, by (3.3) there exists a positive constant C such that
(3.4) I Yn I 1,9, <C.

Taking into account the definition of U,  we see that there exists a subsequence

v, t Civ_tandanelement w € U_, such that
n n ad
Vo 3 w (uniformly) in [0,1] .

To simplify the notations, we shall write { vn% instead of {vn»}. Let m € IN be fixed. Then there

exists ny = nO(m) such that for any n > ng(m)

where (Figure 3.1)

G, 3=¥(X1»X2)€ IR2 Ix5 €(0,1),0<xq <w(x2)—1/m}.

Figure 3.1
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As

(1)
yalig, <Ivalig <C

one may extract a subsequence {yn] } C {yn} such that

Yoy Y™ (weakly) in H (G,y),

where y(m) en! (Gm) and y(m) =00n 3G, \ Ly Ty = Wixg) = 1/m.

Similarly, as G 41 2 G , there exists a subsequence {yn } C {yn1} and an ele-
ment y(m+1)€H1(Gm+1) (m+1) 00n 3G, 41 — T 4q such that

Yo, ~ Y™ ) i WG L),

2

Evidently,

y(m) =y(m+1) in Gm

Proceeding in this way for any m, m — o, we can construct a subsequence

gynk} {yn } such that

+k-1) .
(3.5) Yo, YT in WG ), k=12,
where y(m+k—1) eH! (Gm+k—1) , y(m+k_]) =0on aGm+k_] \ L +k—1 and

(3.6) \ y(m+k 1= (J) in G i<m+k-1.

Let {yn } be a diagonal sequence, constructed by means of {yn } ,k=12,...
From (3.5) and (3.4) it follows that for any m,

(3.7) yD -~y G, i H(G, ),
where y lG- 1= y(m). Clearly,
m

y €H(Q(w)) and y = 0 on 32(w) \ T'(w).

(1) In what follows, C will denote a generic strict positive constant with different values on different Pplaces.

Moreover, C will be independent on nand M.
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We shall show that y = y(w), i.e. y solves the equation

(3.8) (grad y, grad E)O,Q(w) +(P(y), &), = (f’S)O,.Q(w) for all £ € V(2(w)).

Next, we shall write shortly y, and v instead of y,? and Vr? .lLet§ € H(])(Q ) be

[

an arbitrary element. From the definition of {yn} it follows that

(3.9) (grad yp grad Elg g + (Plyy) By = (kg g forall £ Hp(Cy).

Passing to the limit on the right hand side of (3.9) we have

(3.10) (f’E)O’Qn - (f’E)O,Q(w) for n—> oo,

Let m be fixed and n > no(m) (that is, let n be such that Q, Dam ). Then

(3.11)  (grady,, grad E)O,Qn = (grad y,), grad E)O,Gm + (grad y,, grad E)O’Qn \ Q(w)
+ (grad yy, grad £ (g(w) \ G, ) N Q-

Now, by virtue of (3.7), it holds that

(3.12) (grad Y,y grad E)O,Gm - (grad vy, grad ‘E)O,Gm , for n > oo,

Furthermore, we have that

(3.13) | (grad y,,, grad E)O’Qn \ Q(w) I<ly, I 19, gl 1,2, \ Q(w) -0,

for n -0 and by (3.4) that

(3.14) | (grad y,,, grad E)O,(Q(w) \Gm) na, I<ly, | ]’inls I 1,2(w)\ G, <

By applying in turn (3.12), (3.13) and (3.14) to decomposition (3.11) we obtain that the conver-

gence

(3.15) (grad y,, grad E)O,Qn > (grad y, grad £)g ()

holds for m = o (and, consequently, for n = o).
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For a moment, let us suppose that
(3.16) (Plyn), E)vn - (P(y), &), , for n > e,
This will be proved in Lemma 3.2. Then, by (3.10), (3.15) and (3.16) y satisfies the equation

(3.17) (grad v, grad £) () * (P(Y), £, = (F.£)g o) For all E EHY(., ).

B
Let £ € V(2(w)), and let £ € HE)(Q ) be its continuous prolongation. Then there

) such that
[

(3.18) T ~>Fin H1(Q,E).

Replacing in (3.17) £ by E'n and passing to the limit for n - o0 we obtain

existsasequence{?n} C D(&

(3.19) (grad v, grad E)g ) + (P, F),, = (, F)g o) for all € HE)(QH),

or equivalently, (3.8) holds for any £ € V(Q2(w)). In other words, we have y = y(w). Consequently,

it remains to verify that w € Uad is a minimizer of / on Uad'
Let {vn % V€ U, 4 » be a minimizing sequence of /, i.e.

q= inf  J(v)= lim /(vn);
vEUad n —> oo

Then

- _ 2 - _ 2 _ 2 _ 2
/(Vn) " yn Zd " O,Qn “ yn Zd " O,Gm +" yn Zd " O;Qn \ Gm > " yn Zd " O,Gm
holds for any m and n > nO(m) (the meaning of no(m) and G is the same as before).

If we restrict to diagonal sequences { yr[]) } and {vr[]) % , denote them again by {yn} and
by fvn }, and take into account the convergence (3.7), we finally obtain

(3.20) . q:=lim Jv)=>lim Iy -z, 02 . =: lyw)-z4 12 |
o n oo n “d "0,Gp, d 0,Gp,
for any m. By taking the limit m - o in (3.20), we get the assertation of Theorem 3.1. o

To complet the proof of the previous Theorem, it remains to verify (3.16).

LEMMA 3.2. /It holds that
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(Plyq) £),_~ (P(y), &), , forn >,

Proof. To simplify the notations we shall write instead of

1 1
/ y—(w(xz), X9)E(w(x,), x2)dx2 etc.., shortly/ y—(w)s(w)dxz , etc..
0 0

Let m € IN be fixed. Then

1 1
f y (W)E(w)dx, — f ¥ (Vp)E(v,)dxy
0 0

1
< [ ly (wg(w) —y (L )E(w) ldxy +
0

(3.21)

1
" / |y (0 W)~y (T JE(v,) Tdxy +
0

1
+ / 1y (T )E(vy) = v (v )E(v,) Tdx,
0

We shall estimate each term on the right hand side of (3.21). Firstly,

1 1 1/2
(3.22) ly (w) —y_(Fm) [1&(w) |dx2<C<f Iy(w)—y(Fm) 12 dx2>
0 0 :

( 1[ W gy 2 1/2 2
< C — (Xq,X)dx dx <Cm "4yl .
oL g™ 2 1] 2) Y11 Q(w)

Secondly,

1
(5.23) / Ly (T JEW) — ¥ (T ey, v,y
0
1
< Iy;(l‘m) —y_(I‘m) | LE(v,) ldx,
0

1
+ / 1y (Cy) HE(v,) —£(w) Tdxy 0,
0

if n = oo Indeed, by virtue of (3.7) and by the compactness of the trace mapping
y:H(G,,) > LA(T,), it holds that
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1
/ V() =Y (Ty) 11E(v,) dx,y
0

1 1/2
<C ( lyp(Tp) =y~ (T,,) 12 dxz>
0
1 1/2
<c ( 1Y(C) = ¥(Tp) lzdxz> <Cly,=ylop =0,
0

if n > oo, Furthermore,

1 1 1/2
/ ly™(Tpy) HE(v,) (W) ldxy < Clly I ( / IE(vn)—E(w)lzdxz)
0 m 0

< Clyl ( | | v ( )d 12 d "2
< — (x1,X9)dx X
4 1’Gm 0 E)x] P72 2
Yn

1/2
<C ( max Ivn(xz) —w(x,) |> -0,
X2€[O;1]

for n > o Thus, (3.23) holds.

Finally,

1 1 | 1/2
(3.24)[ lyg(l‘m)—y;(vn) I |£(vn) |dx2 <C (/ Iy;(I‘m) —y;(vn) |2dx2 >
0 0
1 1/2
<cC ( (Y (To) = ¥ (v,)) dx2>
0
T (v, 9, 2 1/2
C ( [ _— (x],xz)dx]] dx2>
o L/r,

C < max lvn(xz)—w(xz) +1/m ,>1/2.
X2 (S [0,1]

]

N

Letn > 0 be an arbitrary number. By (3.22) there exists mq with

1
(3.25) / ly"(w) =y (Ty) 11E(w) 1dxy <n/3
0

forall m> mg. Choosing n > m sufficiently large we find by (3.23) that
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1
(3.26) [ 1y (C)W) = y(TElyy) Ty <3
0
and by (3.24) that
1
(3.27) lyg(l"m) —y¥nvy) TE(v,) ldx, <n/3.
0
By (3.21) the assertion of Lemma 3.2 follows from (3.25) - 3.27). o

4. - THE RELATION BETWEEN PROBLEM (P)e AND PROBLEM (P)

For a given sequence {ek } of positive numbers with € >0, k >, we consider a

family of problems :

Find w €U 4 such that
P
(I )Gk

Jy (W )) <Jly, (v)) forall vEU, 4,

where

W) =1y, ) =24 15 o)
and yk(v) € V(£2(v)) is the solution of the penalized problem

1
@) (grad ), grad 8lg )+ — (P €)= (g ) Forall £ € V).
k

According to Theorem 3.1 there exists for any € at least one optimal solution for

Problem (P)ek which will be denoted by w;_and the corresponding state by yk(wk).

In the next theorem we show that some solutions of Problem (P)ek are close to a
solution of Problem (P). Indeed, it holds :

THEOREM 4.1. There exist a subsequence {w, .y, (W, )} of {wy, (W)} and clements
W EU,y, Y(W) EK(W) such that D

wk.:;\;v (uniformly) in [0,1], for j—>
J

yk_(wk.) -~ y(w) (weakly) in H! (Gm), for j = o, and for any m,
J J
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where

G = {(x1.x9) €IRZ 1x, € (0,1), 0 < x; <wixp) ~ 1/m},

w is a solution of Problem (P) and y(w) is the corresponding state, solving the unilateral boundary

value problem (2.1) in (w).
Proof. The proof will be given in several steps.

1) If we take &£ = yk(wk) in (4.1), we especially have by the Poincaré-Friedrichs ine-
quality that

1
Clly,(w,) I agk < (grad yiwy) grad vy wilo g, +— Py Wi Wiy
k

=(fy, (w,)) < Ifll Iy, (w,) | ,
(Eyiwidlo,o, 082, i 0,
where the abbreviation Qk 1= Q(wk) is used. This implies the existence of C > 0 such that
(4.2) I yk(wk) I 1,9, < C.

Having in mind the definition of Uad , We can extract a subsequence from {wk } (and denoted

again by { W) }) such that
(4.3) w3 weU,yin[0,1].

Exactly the same procedure as was used in Section 3 leads to the existence of a subsequence
{ ykj (wkj) } - {yk(wk) } and of an element y € Hl(Q(w)), y € H1(Q(w)), y =0 on

082(w) \ I'(w) such that
4.4) we)=yl~ in H(G_ ), forj—oo
( Yk‘_( kj) Y G, ( m) J
and for any m € IN.
2) Let us show that y € K(w). For £ € Hg)(QF), (4.1) and (4.2) imply that
(4.5) HP(y,.(w, ), E)wk I< Ce >0, forj— oo
i : j

J
On the other hand, (4.3), (4.4) and Lemma 3.1 yield

(4.6) PO, 8y = tim - (Plyy (), By,

j
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By comparing (4.5) with (4.6) we find that y € K(w).

3) We now prove that y = y(w) (defined by (4.4)) solves the unilateral boundary
value problem (2.1) in (w). Let § €K, where

= {oeH)@, ) l¢>0 in Q \G_}.

[ [

Then £ € K(wk ) for sufficiently large j. By abbreviating yk k-(wk-) we can write due to the
monotonicity o% P that b

(grad ij:grad(ykj - E))O"Qk <
j
1
< (grad y, grad(y, —£))g o +-— (P(y, ) ~P(), v, —8),,
j j ki ekj j j k;

1
= (grad y, ,grad - +— (P YL —
(8 ijg (yki E))O,ij e ( (ij) ij E)wk
J

= (fy. — &) )
(i, 0

(grad ykl_,grad(g’ - ykj))O’Qk > (f.§ —ykj)O’Qk , forall E€K.
j j

The next considerations proceed in the same way as the proof of Lemma 1.2 in [7]:

(4.7) (grad yki,grad(s - Yki))olgk' = (grad ykj,grad(é - ykj))O»Gm +
j

+ (grad yki,grad(‘é - yk]))O'Qk \ Q(w) +
j
+ (grad y, ,grad(£ - vy, ) <
K ki’0,(2(w) \ Gpy) ﬁﬂkj

< (grad ij,grad(i - ykj))O’Gm + (grad ij:grad E)O"Qk \ Q(w)
j

+ (grad y, ,grad &)
(erad vy 8r2d £ o(w) \ G,
From this, (4.2) and from (4.4) we have
(438) lim_sup (grad vy 8 vy Do g,
j UK
J

< (grad y,grad(¢ —y)) +Clgl
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In a similar way as above we find that
f) - = f;E_Y ) +(f:£_y ) +
(F ij)o,szkj £y, 502\ ()

tEydo@wey,) ng, -
j

Making use of (4.2) and (4.4) this implies that
49) lim inf(f,& - > (fg— —C(Ifl +lEl ).
( )i*°° (Fe ij)o,ij ®£ =Yl g, ~ <1 loam e, * 1€ To.am 6,

A combination of (4.8) and (4.9) gives

(4.10)(grad vy, grad(s — y))O,Gm > (fg— Y)O,Gm —-C(llgl 1,9(w)\ Gy, + I fl 0,2(w) \Gm)

forany ¢ € Km .
Let a £ € K(w) be given. Then we can construct a function Y E H1(QB,) such that
Visaw) =¢
and
v=0in Q_.
4

Clearly,n:=¢ -y € H(])(Q(w)) and there exists a sequence { ng }; g € D((w)) such that
ng~>n in H1(Q(w)) for € > oo,

Let us define function EQ as follows

(4.11) g =

v in 2\9(w).
From (4.11) it is readily seen that
(4.12) Eo> ¥ +n=:£ in H(Q(W)) for 2 oo,

Moreover, EQ are non-negative in a neighbourhood of ['(w), i.e.

(4.13) ng Km,
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provided that £ is sufficiently large. Thus, writing & instead of £ in (4.10) (this is justified accor-
ding to (4.13) and letting £ - = we obtain that

(4.14) (grad y, grad(£ - y))o,Gm

> (vl ~CUEl g6+ 1Tlo,0m)\ 6 )

holds for any £ € K(w). Finally, taking the limit m = oo, we find that y = y(w) is the solution of

the unilateral boundary value problem (2.1) in (w).

4) It remains to show that w is a solution of Problem (P) and that y(w) is the corres-
ponding state. Let % w* y*(w*) } €U 4 X K(w*) be a solution of Problem (P) and let

g* :=/(y*(w*))= inf  J(v).
VGU‘,‘ld

As is proved in [7], Problem (P) has at least one solution. Since y*(w*) is a solution of the unilate-

ral boundary value problem, we can write

y¥(w*) = lim yk(w*) in H](Q(w*))-topology.

k > oo

Here yk(w*) denotes the solution of (4.1) on §(w*). From the definition of wy it follows that
(4.15) Sy ) < Sy, (W) = F(y*(w¥)) = ¥, for ke,
On the other hand, as a consequence of (4.4) we have
Sy W ) =y ) =zg 136 +ly w ) -24 120 (g
| | m [ ! k] m
>y, W )-zg 13 > lylw) -z 125,
i m "°m
for j > oo, This implies that

(4.16) lim inf /(yk.(wk.)) = lly(w) —z4 I (% Qw) -
. ] ) ] ) ’
Since w € U, 4 and since y = y(w) € K(w) is a solution of (2.1) in 2(w) it follows from (4.16) that
fim inf /(y, (w ) >
{— o0 J ]
l >

This together with (4.15) gives the assertation of Theorem 4.1 . a
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