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THE SEGRE IMBEDDING AND ITS CONVERSE
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Vol V I I,1985, P. 1 a 28

(1) (2) Department of Mathematics Michigan State University, East Ml 48824 - 

Resume : En utilisant les coordonnees homogenes des espaces projectifs complexes, C. Segre a

construit, en 1891, un plongement ka ehlerien de ~ P a1 X... X dans CP ~1’"’~n~ 

N(al,...,an) _ (1 + a1) ... (1 + an) -1. Dans cette Note, nous considerons le problème inverse,
et nous obtenons le résultat suivant :

Si Mi ’ X ... X M est une sous-variété produit de C Pm, et est (e produitde n varie-
tes kaehleriennes, alors m > N(a..,...,a ). De plus, si m = N(a ,...,a ), alors Mi ’ X ... X M03B1nn est
un ouvert de ~P 1 X ... X et !’immersion consideree est le plongement de Segre.

Summary : Using homogeneous coordinates of complex projective spaces, C. Segre constructed

in 1891 a Kaehler imbedding of C P03B11 X... X CP an ’ in C PN(03B11,...,03B11) where N (al,..., a - n) =
(1 + a1) ... (1 + an) -1. In this paper, we consider the converse problem to the Segre imbedding
and obtain the following result : If Ma1 X ... X M03B1nn is a Kaehler submanifold of C Pm which is

the product of n Kaehler manifolds, then m  N(03B11,...,03B1n). And if m = then

X... X is an open portion of C P03B11 X ... X and the immersion is obtained by the

Segre imbedding.
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0. - INTRODUCTION

Let C Pn be a (complex) n-dimensional complex projective space with the Fubini-

Study metric of constant holomorphic sectional curvature 4. Using homogeneous coordinates,

C. Segre [4] constructed in 1891 an imbedding from the product variety C P°~ into

C (°~~~), N = a + ~i + as follows

l t is well-known that S ~ is a Kaehler imbedding which is known as the Segre imbed-
ding from C P" X C Pinto C ("’~~’I

In 1 981 , Chen [2] had considered the «converse» problem to the Segre imbedding
and obtained the following.

THEOREM A. If C admits a Kaehler submanifold M/§ X M] which is the product of two
Kaehler manifolds of (complex) dimension a and fl, respectively, then m > N (a,fl). In particular,
if m = N (a,@), then (a) M/§ X M] is an open portion of c P" X C P* and (b ) the immersion is obtai-
ned by the Segre imbedding S03B1,03B2 up to holomorphic and isometric transformations of C 

For the product variety C P"~ 1 X ... X C using homogeneous coordinates, C. Segre

defined the following imbedding

where

n

where Si 
= 03A3 a. s2 

= 03A3 03B1i03B1j,...,sn = 

03B11 ... 03B1n. It is clear that S03B11 ... 03B1n 
is also a Kaehler

i=1 ij 
~1 c~ 

~ 

N(c~i...c~) ’" " 
imbedding. We call it the Segre imbedding from C P ’X...X(!:P n into C P .

!n view of Theorem A~ it is natural and interesting to consider the following two

problems:



Problem 1. Is N(al,...,an) the smallest possible dimension of a complex projective
space to admit a Kaehler submanifold M03B111 X ... X M03B1nn which is the product of n Kaehler mani-

folds ?

. 

Problem 2. If N(al,...,an) is the smallest possible dimension of a complex projective

space to admit such a product submanifold, does this product submanifold have to the obtained

from the Segre imbedding ?

In this paper we will solve these two problems completely. More precisely, we will

obtain the following.

a a 
’

THEOREM 1. If C Pm odmits a Kaehler submanifold M11 X ... X Mn n which is the product of
n Kaehler manifolds Mal,...,Man of complex dimensions a ,...,a respectively, then we have

(1 ) m > N(al,...,an),

(2 ) if m = N (a1,...,an ), then

(2.1 ) M a 1 1 X ... X M03B1nn is an open portion a 1 X ... 
a 

n, and

(2.2) the immersion is given by the Segre imbedding Sa 1 .., a n up to holomorphic
and isometric transformations of ~ Pm. 

""’1 ... ""’n

Let h denote the second fundamental form of the immersion and Oph the p-th cova-
riant derivative of h. Then we also have the following best possible inequalities.

THEOREM 2. Let Ma1 X ... X M03B1nn be a Kaehlersubmanifold Then we have

for Q = 2,3,...,n. The equality of (0.4) holds for some Q if and only if M03B111 X ... X is an open

portion of C P03B11 X ... X C P03B1n and the immersion is given by the Segre imbedding S03B11 ... 03B1n 
up to

holomorphic and isometric transformations of ~ Moreover, in this case, the equality of (0.4)
holds for all ~ Q = 2,3,...,n.

It seems to be interesting to point out that N(al,...,an) _ (1 + a1) ... (1 + an) - 1 is

much biger than the dimension of M in general. For example, Theorem 1 shows that if C Pm
contains a Kaehler submanifold M which is the product of twenty 3-dimensional Kaehler mani-

folds, then M is only 60-dimensional, however, is at least 1 ,099,5 1 1 ,627,776-dimensional ! ! !
Moreover, if m is 1,099,511,627,776, M has to be obtained by the Segre imbedding ! !



1. - BASIC FORMULAS

Let M be a submanifold of a Riemannian manifold M with Riemannian metric  , >
and Riemannian connection V’. Denote by V the induced connection on M. The second funda-
mental form h of the immersion is given by

where X and Y are vector fields tangent to M. For a vector field $ normal to M and X tangent to

M, we put

where -A~X and DX~ denote the tangential and normal components of respectively. We
have

For the second fundamental form h, we define its first covariant derivative Vh to be a

normal-bundle-valued tensor of type (0,3) given by

Let R’, R and RD denote the curvature tensors associated with V’, V, and D, respec-
tively. The equations of Gauss, Codazzi, and Ricci are then given respectively by

for vector fields X,Y,Z,W tangent to M and ~,r~ normal to M.

If we define the p-th (p ~ 1) covariant derivative of h by



then VPh is a normal-bundle-valued tensor of type (0,p+2). Moreover, it can be proved that VPh

satisfies

We put V~h = h.

Let M be a Kaehler manifold with the complex structure J and M be a complex sub-

manifold of M with the induced Kaehler metric. Then we also have the following

Let R denote the curvature tensor of C Pm. Then it is well-known that R takes the

following form :

In particular, if M is a complex submanifold of (1.6) and (1.12) imply

In section 2, we also denote



2. - PRODUCT OF 3 KAEHLER MANIFOLDS

Throughout this section we shall assume that M = M? X M~ X M? is the Riemannian
product of three Kaehler manifolds and M? of (complex) dimensions ~ ~ and % respecti-
vely. Let x : M -~ ~ be a Kaehler immersion from M into the m-dimensional complex projecti-
ve space 

In the following, we assume that I (respectively,

{Y1,...,Y03B2,JY1,...,JY03B2} I and {z1,...,Z03B3,JZ1,...,JZ03B3}) forms an orthonormal basis for M03B11 (respec-
tively, for M03B22 and for M03B33). We regard these vector fields as vector fields in M in a natural way.

We need the following results for the proof of the Main Lemma.

LEMMA 1. . Let M M03B22X M03B33 be a Kaehler submanifold of C Pm. Then

are orthonormal local vector fields in .

Proof. Let X and W be any unit vectors tangent to Ma and Ma X M~, respectively. Then by (1.S)
we have

Combining (1.10), (2.2), and (2.3) we find

where K denotes the sectional curvature of C Pm. Since X A W is a totally real section, i.e.,
 X,W > =  X,JW > = 0, this implies that the length of h(X,W) satisfies

Therefore, by linearity, we obtain



where we put Xa+k - k = 1,...,a. Let W 1 ,W 2 be any two of the orthonormal vectors

Y1,...,Y~,Z1,...,Z~. Then we find from (2.5) that

On the other hand, because ,W~) = 0, (1.5) and (1.12) imply

Combining (2.6) and (2.7) we get  > = 0. From this, together with (2.4),
we conclude that

are orthonormal. Applying the same argument to h(Y,W) for unit vectors Y,W tangent to M~ 2
and M~ X M3 , respectively, we obtain Lemma 1.

LEMMA 2. Let M = M« X M03B22 X M7 be a Kaehler submanifold of C Pm and X,Y, and Z unit vector
fields tangent to Ma , and M~, respectively. Then we have

Proof. The first equation of (2.8) follows from (1.4) and the identities = ~XZ = 0 and
Ilh(Y,Z) II = 1.

The second equation follows from the first equation and equation (1.14).

LEMMA 3. Under the hypothesis of Lemma 2, we have

Proof, Let U be any unit vector tangent to M, Lemma 1 implies



This prove (2.9).

LEMMA 4. Let M = M« X M~ X M7 be a Kaehler submanifold Then we have

for any unit vector fields X Y and Z tangent to M?, M’ and M~ respectively.

P/-oo/: From the hypothesis, we have R(XJX)Y = R(XJX)Z = 0. Thus (1.9), (1.11) and (1.12)
imply

by virtue of Lemma 3. On the other hand, (1.8) and Lemma 2 give

Thus, by (2.11), (2.12) and Lemma 2 we find

by virtue of (1.13). From this we obtain (2.10).

In the following, we put



Then V is a complex (03B103B2 + 03B203B3 + 03B103B3)-dimensional holomorphic subbundle of the normal bundle
T*M. Moreover, the vector fields given by (2.1) form an orthonormal local basis ofV.

We need the following.

LEMMA 5. Under the hypothesis of Lemma 2, we have

(2J4) ) is perpendicular to V. .

Proof. Let Y and Y’ (respectively, Z and Z’), be two unit vector fields tangent to M’ (respectively,
Then, for any unit vector field W tangent to M?, Lemma 2 implies

On the other hand, from (1.4), (1.13), and Lemma 1, we get

Consequently, we have

Combining (2.15) and (2.17) we obtain



By linearity, (2.18) implies

Therefore, (2.17) and (2.19) give

Since (Vyh)(X,Z) = a similar argument yields
 (VXh)(Y,Z),h(X’,Y’) > =  (OXh)(Y,Z),h(X’,Z’) > = 0 for any unit vectors X, X’ tangent to
M~ . These proves Lemma 5.

LEMMA 6. Let M = M~ X M~ X M~ be a Kaehler submanifold Then

1
are orthonormal local vector fields in T M. .

Proof. From (1.9), (1.12), Lemmas 1 and 3 we have

On the other hand, (1.8) and Lemma 5 imply



Hence, (2.22) and (2.23) give

From Lemma 4 and linearity we also have

Thus, by using linearity again, we find

Combining (2.24) and (2.26) we obtain

Thus, by applying linearity, (2.24), (2.27) and Lemma 4, we obtain Lemma 6.

Combining Lemmas 1, 5 and 6, wP obtain the following.

LEMMA 7. Let M = M°~ X M~ X M~ be a Kaehler submanifold Then

are orthonormal local vector fields in .



3. - MAIN LEMMA

Q Q 
Let M = Ma1 X ... X M03B1nn be the Riemannian roduct of n Kaehler manifolds

Ma1 ... M«n of complex dimensions a ... a respectively. Assume that M is a Kaehler submani-
fold of C Pm.

In the following, we denote by etc. (with super-index i~ vector fields

tangent to We shall also regard them as vector fields tangent to M = M03B111 X ... X M03B1nn in a

natu ral way. M oreover, we assume that Xi1 ,...,Xi03B1i, Xi03B1i+1 = JXi1,...,Xi203B1j = JXi03B1j form an ortho-
normal basis for M03B1ii.

We need the following Main Lemma.

LEMMA 8. Let M = M«1 X ... X Man be a Kaehler submanifold of CPm. Then the following
vectors

are 2 (s2 + s3 + ... + sn) orthonormal vectors normal to M .

Proof. We will prove this lemma by induction.

If n = 3, this lemma is just Lemma 7. Now we assume that this lemma holds for

n  ~ - 1, Q > 4, we want to prove that it is also true for n = Q.

Let M = Ml1 X ... X MQQ be a Kaehler submanifold We put

We consider M03B111 X ... X M03B1l-1l-1. Then Xl-11 ,...,Xl-103B1l-1, X§ ,...,X/$ , ,...,JXl-103B1l-1, JX§,..., JX/$£-I £ £-I £

form an orthonormal basis for Ml-1. Thus by induction, we know that



are orthonormal vectors normal to X ... X Applying the same argument to all other

possible similar cases and by induction, we obtain the following.

Statement 1. The following normal vectors ;

are orthonormal.

We need the following.

Statement 2. For i~ i  ...  it+2, and i ~ i~,...,it+2, and any permutation Q of (i~,...,it+2~, we



have

Proof. First we mention that Lemma 3 implies the following

If k =~= i, then Statement 1 yields

Hence, in order to prove (3.1 ), it suffices to prove

: ~’

for any vector Y tangent to 

and unit vector Y’, we have



This proves (3.1) for t = 1.

For (3.2), if t = 1, (3.2) follows from (1.13). Now, we assume that both (3.1) and

(3.2) are true for t  r - 1, r > 2, that is we have

for t ~ r - 1. Then we have from Statement 1 and (3.7) that



If i  i2, then from Statement 1, we obtain (3.5) and hence (3.6) for t = r.

If i > i2, then (3.8) implies

Thus, by (1.8), (1.12), and (3.7) we find

where is  i  is+1. Thus by Statement 1, we obtain (3.5) and hence (3.6) for t = r.

Now, we shall prove (3.7) for t = r.

Let $ be any normal vector field normal to M. Then by (1.9), (3.7) and induction
we have



This shows that

If 1  s, then we also have from induction

Consequently, (3.9) and (3.10) imply (3.7) for t= r. Thus, by induction, we obtain (3.6) and (3.7)
for any t. This proves Statement 2.

Statement 3. For unit vectors ,...,X ~p+2 , i1  ...  ’ ip+2 , 1 ~  s ~  p + 2, we have

Proof. If p = 0, (3.7) follows from (1.10). If p = 1, we obtain from (1.4) and (1.13) that



Similar argument also yields

These proves (3.11 ) for p = 1.

Now, assume that (3.11 ) holds for 1  p ~ t-1. If s > 1, then, by (1.9) and induction,
we have

If s = 1, then by (1.9), Statements 1 and 2, we find that for any unit normal vector field $, we

have



Since this is true for any $, we obtain = J (0 _t h)(X i 1 ,...,X i t+2 ). Conse-
quently, we obtain (3.11 ) for p = t. Thus by induction, we obtain Statement 3.

Statement 4. For unit vectors X 1,...,Xn, we have

Proof, We have

On the other hand, we also have

Combining (3.12) and (3.13), we obtain Statement 4.



Statement 5. The following vectors

are orthonormal.

Proof, From (1.7), ~1.9), (1.12), and Statements 1 and 2, we find

Hence, by using (1.8) and Statement 1, we may obtain

By continuing this process sufficient by many times, we will obtain

where i =1,...,n. Thus, by using linearity, (3.15), and Statement 4, we may
conclude that

are orthonormal. Therefore, it suffices to prove that



If ai 
= bi for all i, then (3.16) is trivial. Suppose that there is an i such that ai ~ bi,

then we just replace by and applying the previous case, we obtain (3.16). Consequently,
we obtain Statement 5.

In the following, we put

for r =1,...,n-2. .

Statement 6. We have

for t = 0,1 ,...,n-3.

Proof, If n = 3, this statement is already proved in Lemma 5. Now, assume that n > 4.

If t  n-4 and i1  ...  it, then we may find one j such that j ~ i1,...,it. Using State-
ments 1 and 5, we have



Consequently we have N -~ 1 Nt for t= 0,1,...,n-4.

Now, we want to prove that N n2 1 Nn-3- . be unit vector fields. Then

we obtain from Statement 1 that

Thus, by (1.8), we have

Hence, by linearity, we get

On the other hand, using Statements 1 and 5, we also have



Combining this with (3.19), we obtain

Continuing this process n-1 times, we will find

Therefore, by using Statement 6, we conclude that is perpendicular to N _~. Thus State-
ment 6 is proved.

From Statements 1, 5, and 6, we obtain Lemma 8.

(Q.E.D.)

4. - PROOF OF THEOREM 1

Let M = X ... X be a Kaehler submanifold of ~ which is the product of
n Kaehler manifolds. Then by the Main Lemma, we see that m > N(c~...~ ).

Now, we assume that m is the smallest possible dimension N(03B11,...,03B1n). We want to
prove that each M03B1ii is an open portion of a ~P ’.

Let be any two unit vector fields tangent to We need the following
Lemmas.

LEMMA 9. For any X’.Y’ ! ! tangent fo M03B1ii, we have

where No is defined b y (3 , 1 7 ) .

Proof. Let Xi, Yi, and Zi be tangent to M03B1ij and Wj tangent to # I Then from (1 5) of



Gauss, (1.10) and (1.12), we find

Hence, we have  h(X~,Y~~,h(X~,W~) > = 0. By applying linearity and using the equation of Gauss
again, we obtain

If j,k ~ i, then Main Lemma and equation (1.5) of Gauss also yield

Combining (4.2) and (4.3) we obtain (4.1 ). This proves Lemma 9.

.. a.

LEMMA 10. For X~ and Y~ tangent to Mi ~, we have

Proof. Let jl,j2,j3 be distinct. Then i is distinct from at least two of say i ~ j2,j3. Then
from Lemmas 9 and 10, we have .

then (4.5) and Lemma 8 imply that



Assume that i = 1. Then using the same method as the proof of (4.6), we may find

On the other hand, Lemma 9 implies

Combining (4.7) and (4.8), we get

Therefore, by (4.6) and (4.9) we obtain (4.4). This poves Lemma 10.

LEMMA 11. For Xi and Yi tangent to Mi 03B1ii, we have

Proof. We shall prove this lemma by induction. Assume that h(X~,Y~) 1 N t for t  Q-1. We want
to prove that N Q for £ = 2,...,n-2.

be distinct. Then we may assume that i ~ j2,...,IQ+2~ Then by Lemma 9
and induction we have

i, this implies



= i, then we have

On the other hand, because h(X~,Y~) -L we also have

Thus, we find Nn. Consequently, by induction, we obtain Lemma 10.

: : ~:
From Lemmas 9,10, and 11, we conclude that h(X,Y’) = 0. Since M,’ 1 is totally

geodesic in M = M03B111 X... X We see that M; ’ I is also totally geodesic in C 

m = N(ai,...,c~ ). Therefore, M. ’ 1 is an open portion of a linear subspace ~ P ’. Consequently,

M = X ... X is an open portion of CP03B11 X ... X (FP " . This proves statement (2.1)

of Theorem 1. Statement (2.2) then follows by local rigidity theorem of Kaehler submanifolds.

This proves Theorem 1. (Q.E.D.)

5. - PROOF OF THEOREM 2

(0.4) follows immed iately from Lemma 8. Moreover, it is clear that if we have

for some Q, 2  Q  n, then

whenever two or more of are equal.

If Q = 2, (5.2) implies



for any Xi,Yi tangent to M03B1ii. Because I sits in M = M03B111 X... X as a totally geodesic

sub manifold, (5.3) shows that is totally geodesic in CP . Thus, each is an open portion

Therefore, M is an open portion of C P03B11 X... By applying Calabi’s rigidity

theorem, we see that the immersion is obtained by the Segre imbedding S03B11...03B1n.

Now, assume that (5.1) holds for some Q with Q = 3,4,..., or n. Then we have (5.2)
whenever two or more of jl,...,jQ are equal.

If two or more of are equal then we may choose one i with i ~ °

From (1.8) and (5.2) we find

Thus, by using (1.7), (1.9), (1.12) and (5.4), we get

where $ = (~l-3h)(Xk1a1,...,xkl-1al-1 ). Therefore, we find

whenever two or more of k~,...,k~ are equal . Continuing this process ~-2 times, we obtain (5.3)
for X’.Y’ tangent to M; ’. Applying the same argument as before, we conclude that M is an open

portion of C P ’ X ... X ~ P -’ and the immersion is obtained by the Segre imbedding. Moreover,
if this is the case, we can see that the equality of (0.4) holds for all ~, ~ = 2,...,n. (Q.E.D.)
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