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Asymptotic analysis of incompressible and
viscous fluid flow through porous media.

Brinkman’s law via epi-convergence methods.

ALAIN BRILLARD (1)

Annales Faculty des Sciences de Toulouse Vol.VIII, n°2, 1986-1987

On étudie le comportement asymptotique, lorsque E tend vers
0, d’un fluide visqueux et incompressible, s’ecoulant lentement dans un
milieu poreux contenant une repartition ~-périodique d’inclusions identiques
et de taille re = 0). Une nouvelle justification de la loi
de Brinkman est obtenue k l’aide des techniques d’epi-convergence. Les
fonctions test construites apportent quelques precisions sur le comportement
asymptotique de la pression interne du fluide.

ABSTRACT.2014The asymptotic behaviour, when E converges to 0, of a vis-
cous and incompressible fluid, slowly flowing in a porous medium containing
an E-periodic distribution of identical inclusions of size re =

0), is described. An improved justification of Brinkman’s law is obtained,
via epi-convergence methods. Some indications concerning the behaviour of
the internal pressure of the fluid are derived from the given test functions.

§ 1. Introduction

The purpose of this work is to give a mathematical justification via epi-
convergence methods, of Brinkman’s law which describes the asymptotic
behaviour of a viscous and incompressible fluid flowing through porous
media with periodic structures. Let t~ be an open bounded and smooth
subset of RN (N = 2 or 3) and T be a smooth subset of the unit ball
B(l) of RN. The porous medium t~E is defined, for E strictly positive by

= 03A9BUI(~)i=1T~i, where Ui TEi is’ a cloud of ~-periodically distributed
identical rE-homothetics of T(0  rE  E/2)
(1) Faculty des Sciences et Techniques, 4 rue des Frères Lumiere - 68093 Mulhouse C~dex



A) Fluid flow through porous media

An incompressible and viscous fluid flows slowly in the porous medium

OE under the action of external forces ( belongs to (L2(03A9))N) . Moreover,
the fluid is supposed to stick to the fixed boundary afl and to the boundary
of the inclusions ~T~i. Therefore, the velocity uE of the fluid is the solution
of the Stokes equation in OE’ with Dirichlet boundary conditions on a~E

(for simplicity, the viscosity coefficient has been normalized to 1)

In ~10~, Marchenko and Hrouslov proved the following result concerning
the behaviour of uE, when the para,meter E goes to 0 (see also ~8,9J ) . .

THEOREM 1.1. Suppose E = 0. Then the sequence of
canonical extensions of uE (taking the value 0 on the inclusions), converges
in the weak topology of to the solution uo of Brinkman’s law



where M is the positive symmetric matrix defined by :
for every k, l in {1, ..., N}

being the solution of the local problem

Marchenko and Hrouslov’s proof consists essentially to build, for every
smooth divergence-free function v in (Ho a divergence-free function

~ in such that

i) the sequence of canonical extensions of taking the value 0
on the inclusions, converges to v in the weak topology of (Ho 

and then to use the density of smooth divergence-free functions in the closed
subspace V (fZ) of (Ho (~)) ~ containing the divergence-free functions. (See
Remark 2.11. later on). .

The purpose of the first part of this work is to prove this Theorem 1.1.
by means of epi-convergence theory. Let us now present this variational
convergence.

B) Epi-convergence

DEFINITION 1.2 [2], [6]. - Let (X, T) be a metric vector space and (FE)E
a sequence of functionals from X into R. Then, epir-converges to a
f unctional F from X into . R if



This equality (5) is satisfied if and only if the two assertions are fullfilled

This variational convergence is well-fitted to the asymptotic analysis of
minimization problems, since we have the following result.

T HEOREM 1.3. Theorem 1.10). Suppose (FE)E epi-converges to
F. Let (OE)E be a sequence converging to 0 and for every E, ~E a oE-minimizer
of FE, that is

Then, for every T-conuerging subsequence (ZE’ )E’ of (x~), with x = lim E’ -+0

and moreover

Notice that the topology T is not a priori imposed but must be choosen
so that the sequence is 1’-relatively compact.

The next result shows the stability of epi-convergence with respect to
continuous perturbations.

PROPOSITION 1.4.- Theorem 2.15~. Suppose (FE)E epir-converges
to F and G is -continuous on X. Then (FE + G)E epi-converges to F + G.

Our approach improves on Marchenko and Hrouslov’s proof in two
directions :

i) The test function ~ appearing in (6) is a little simpler than their test
function, when T is equal to B(1). This is a consequence of the explicit



computation of the solution (wE , qE ) of the local problem (4) given in the
Appendix.

ii) The use of this theoretical framework, that is epi-convergence, which
is related to the G-convergence of the linked operators (see [2,6]), simulta-
neously furnishes : :

1) the behaviour of the kinetic energy of the fluid,

2) the convergence of the solution of the Stokes evolution problem in
porous media,

3) the convergence of the spectra of the linked operators,
4) some indications about first-order correctors. (see [4] for these results).

C) Convergence of the internal pressure
Theorem 1.1 asserts the convergence of a trivial extension P~u~ of the

solution uE of (1) in the fixed space equiped with its weak

topology. Then, the problem, which immediately raises is : does there exists
an extension of the dual variable gradpE, (gradpE belongs to 
which converges to grad po in the fixed space (B~ (~))~ ?

In [13], Tartar solved this problem in the case : rE = Ae (0  A  1/2).
His proof is based on the explicit construction of a linear, continuous,
restriction operator RE from into such that, for every
v in 

Then R" (grad which is still a gradient (see theorem 3.1. later on), ,
converges in the weak (and in fact strong) topology of (H-1(fZ))r’. .

In the present case, that is when = 0, we did not succeed in
such a construction nevertheless, we shall present in part III of this study,
two operators RJ (j = 1, 3)

such that for every v in X; ( j = 1, 3~ :



Hence, the extension (grad pe) (which is not yet a gradient) converges
to grad po in the fixed space X;, (X;, is the dual space of X~). .

The proofs crucially require the smoothness of v in X~ .

D) Notations
The following spaces or notations are used throughout this study

is the space of continuous functions in fl,
is the subspace of consisting of all functions whose first

partial derivatives are bounded and uniformly continuous in fl [1], ,
Co°(St) is the space of smooth functions in fl. These functions have

continous partial derivatives of any order in f1 and a compact support in St,
is the space of Lebesgue measurable vector-valued functions

whose components are square-integrable in 0, ,
is the Sobolev space of Lebesgue measurable vector-valued

functions in with derivatives (in the distributional sense) in

[1], ,
is the Sobolev space of functions in with derivatives in 

L1(0) [1], its dual space is denoted by 
is the set of smooth, divergence-free vector-valued functions in ft : :

Y(n) is the completion of with respect to the strong topology of

Y is the unit cube of RN : -- , Z , , while YE is its E-homothetic.
The characteristic function of a set A is denoted by x A :

The indicator function of a set A is a denoted by IA :



Let H be a convex function defined on a locally convex space V (with
dual space V’), the sub differential operator 3~T is defined by

Let me finally express my thanks to H. Attouch for his constant encour-
agement and more specially for the duality approach in part III, and to F.
Murat for stimulating discussions.

§ II. Brinkman’8 law

We suppose here that the common size rE of the identical inclusions TEi
satisfies

If PE is the canonical imbedding from into :

the extension P~u~ of uE, solution of (1), satisfies

LEMMA 2.1. - a) P~u~ is the solution of :

where FE is defined on by

b) The sequence ia bounded in (Ho and relatively com-
pact in the weak topology of (Ho (f1))N. .

Proof of Lemma Q.1. - a) is an immediate consequence of (I).
b) From a) we infer



Poincare’s inequality [1] implies the existence of a constant C ( f ,1Z) such
that

Our main result is

THEOREM 2.2.- a) The sequence defined by (9) 
converges to the functional F defined on (Ho by

where M is the matrix given by (8~.
b) Let f be any element of then the sequence where

P~u~ is the canonical extension of the solution uE of (1), converges in the
weak topology of (Ho (5~~~~’ to the solution uo of the minimization problem

that is, the solution uo of Brinkman’s law (,~~.

Moreover, the sequence ( grad u~|2dx) E of kinetic energies of the

fluid, converges to |grad uo|2 dx + 03A3kl 03A9 Mkl(uo)k(uo)ldx .

Let us precise the limit problem (2) . .

Remark 2.3. Trivially the matrix M, given in (3), depends on the size
rE and the shape of the inclusions. Indeed, there exists a critical size rE of
the inclusions

such that

1) if = 0, the matrix M is null and Jo is the solution of the
Stokes problem in H. The inclusions are too small to perturb the fluid

flow;

2) = +00, t?o is equal to 0. In this case, converges

to 0 in the strong topology of Notice that the present
condition on r~ is fulfilled when r~ is equivalent to ~ (for a detailed
study of this important case, which leads to Darcy’s law, we refer to

1



3) if belongs to R+*, the limit law (2) contains a "strange
term", in the terminology of ~5~, which takes the more precise values :

where w k is the solution of

. if N = 2 and if rE = there exists a constant C~
depending only on p such that Mkk = Ck (see the computation
of the local solution in the Appendix and Lemma 2.4. of ~3~). .

Proof of Theorem 2.Q. - Assertion b) is a consequence of assertion a)
thanks to : :

i) the continuity, for the weak topology of (Ho at least, of the
"perturbation"

ii) the strict convexity and the coerciveness of the functional F (which
imply that : :

. the solution Jo of the limit minimization problem (2) is unique,

. the whole sequence (PEuE)E converges to uo, in the weak topology
of 

iii) the properties of the epi-convergence recalled in Theorem 1.3.
For the proof of assertion a), notice first that V (IZ) is a closed subspace

of for the weak topology of Then for every v in

(Ho which is not divergence-free in f~, one derives

where r denotes the weak topology of (Ho (tl))r’. .



Hence, one has only to deal with divergence-free functions and more
precisely to prove the special form of assertions (6) and (7)

Before introducing the appropriate test function o~ satisfying (11), we
need the following property of divergence-free functions

THEOREM 2.4.- See Theorem g.9. of [10] p. QS6 (see also flgJ). Let
fl be any bounded open and smooth subset of R~ and tY be any divergence-
free function in (L2(03A9))3. Then, there exists a divergence-free function li# in
(H~ (n)) ~ such that

li#.£ = 0 on an, (£ is the outer normal to the boundary an)
,

curl w = tY in n,

where C(ft) is a constant independant of w in (LZ(~~)3. .

When ft is a ball we have the more precise estimates on the
divergence-free function w defined in the Theorem 2.4.

PROPOSITION 2.5.- If N = 3 for every divergence-free function w in
(L2(B(r)))3, there exists a divergence-free function w in (H1(B(r)))3 such
that 

_

where C is a constant independant of rand w.

If N = 2 for every divergence-free function w in (L2 (B(r)))2, there ezists
a function w in H1 (B(r)) such that



Proof of Proposition 2.5. - Suppose N = 3. Consider : = 

for y in B(l). wr is divergence-free in B(l) and belongs to (L2(B(1)))3. .
From theorem 2.4., there exists a function t?r such that

Then take t? defined by : w (~) = tv,. ( r ) r. Suppose N = 2. Consider the
function (w, 0) and apply the preceding argument.

The proof of the assertion a) of the Theorem 2.2. will be divided in three
steps : :

1rst step - Verification of (11) when aN is finite, with

2nd step - Verification of (12) when aN is finite.
3rd step - aN is equal to 

1rst step

Let us first suppose that v is in and denote

where

a:~t is the center of the ball Bi(E/4) and the center of YE~,
?Ei is the function associated to v(.) - v xEi ) 

by Proposition 2.5

is a cut-off function with support in B= (rE ~3~
and equal to 1 in B’(rE) : : (15)
= with

~~E in C °° ( (o,1 ~ ; ~0,1 ~ ) , ,
~~ has its support in ~0, rE ~3~,
~E is equal to 1 in ~0, 



The properties of vE are summarized in the following proposition.

PROPOSITION 2.6. For any v in v (~), , let v~ be the function defined
by (1,~~. Then, vE belongs to .

If aN is finite, where aN is given by (ls~, then

converges to v in the weak topology of (Ho (~)) N . Moreover
lim~~0F~(vo~) = F(v’), where F is the limit functional given by (10).

Let us admit, for a while, these properties and show how (11) may be
proved. For a smooth divergence-free function v in v (~), (14) furnishes a
test function v~ such that (11) is fulfilled.

If u belongs to choose any sequence (vn)n of smooth divergence-
free functions converging to v in the strong topology of (Ho (~))~. For every
n, (14) furnishes a divergence-free function such that

Therefore

since F is continuous, for the strong topology of (Ho (tZ) ) N . .
The diagonalization argument of Corollary 1.16. of [2] implies the exis-

tence of a subsequence such that

(11) is proved, taking vE = (vn(E) ) E , for this general divergence-free function
V.

Proof of Proposition ,~.6. A trivial computation proves that vE belongs
to Not ice, moreover, that

From Lemma 4.1. of [12], one derives that converges in

the weak topology of L2(n) to the non null constant Vol(YBB(1/4)). Then,



as soon as is bounded in (16) implies the convergence
mentionned in Proposition 2.6. In order to prove that is bounded

in (Ho we first deduce from the estimates of Proposition 2.5. the
convergence .

(notice that this term guarantees that v~ belongs to Then we

use the properties of the solution given in Proposition A.1. (see the
Appendix). .

From the convergence (17), we derive

.

Thanks to the regularity of y, one derives

and Proposition 2.6. is proved.
2nd step: Verification of (12) when aN is finite.

Let us first study the case: T = B(1).

P ROPOSITION 2.7. Suppose that T is equal to B (1 ) and aN is finite.
Then, there exists a constant C such that, for every v in "1! (~), for every u
in V (t’Z) and for every sequence (PEuE)E converging to u in the weak topology
of with uE in V (SZE)

w -

(12) is a trivial consequence of Proposition 2.7. Indeed, choose v in (V ,

a sequence (Vn) n of smooth functions in converging to v in the strong



topology of and a sequence converging to v in the weak

topology of with ~ in V(iZE).

where is associated to v,~ by ( 14) and

Proposition 2.6. and Proposition 2.7. imply

Let n go to +0o : (12) is proved.
Proof of Proposition ,~.7. - Thanks to (17), one proves

with lim~~0 oE = 0, and, in fact

where v is the outer normal to In order to pass to the limit in the

last term of the preceding equality ( 18) , we first use an idea suggested to
me by H.Attouch and based on the following interpolation Lemma, whose

proof is immediate.

LEMMA 2.8. For every function v in C1(03A9), there exists a function
vE in C 1 (~) (at least) such that



~ grad  C(N) ~ grad is a constant in-

dependant of v in and e but depending on the dimension N),
converges in the strong topology of to v.

Hence (18) may be written in the following form

J grad v . grad~dx = J n grad J grad udz +

where (vk ) E is associated to vk by Lemma 2.8.

Therefore, Proposition 2.7. is a consequence of the convergences men-

tionned in Lemma 2.8. and Proposition A.1.

Remark 2.9. The proof of Theorem 2.2., which is actually complete
for the case T = B(l) (and aN finite) is partially based on the convergence
of the term 

,

for the strong topology of (F ~(H))~. This convergence is obtained in the
Appendix thanks to the explicit computation of the solution of (4). .
In the study of the asymptotic behaviour of the solution ue of the Laplace
problem [5], , 

’

the convergence, in the strong topology of H-1 (fZ), of the boundary term

03A3i~w~/~v| , where wE is the solution of the corresponding local
aBi(e/4)

problem

was proved for any smooth subset T . of B(l). ..
The case of a general inclusion T was deduced of the case T = B(l),

through a maximum principle argument and Lemma 2.8. of [5]. .



In the present case of the Stokes system, a maximum principle seems
unavailable. This is the reason why, for a general inclusion T, we have to
slightly modify the test function vE .

Let us introduce for v in the function v:

where is a cut-off function with support in B: ( 4 - z ) and equal to 1 in
,,g= ( g E _ r~ 2).

wk E= is the function associated to ek - wkE in Bt ( E - 4 r~ 2) by Proposition
2.5.

vE is a slight modification of vE in the sense that

PROPOSITION 2.10. vE belongs to 
Suppose that aN is finite. Then for every v in 

converges, in the weak topology of (Ho (~)) N, to v,

There exists a constant C such that for every u in and every

sequence converging to u in the weak topology of (Ho (~~)N, , with
uE in V(nE)

The proof of (12) when T is a subset of B(l) is easily deduced of
Proposition 2.10.



Proof of Proposition 2.10 . The first three assertions of Proposition
2.10. may be proved in the same way as the corresponding assertions of
Proposition 2.6.

Let us prove the last assertion concerning .

with lim~~0 oE = 0 (17).
The original point in this proof is to pass to the limit in the last term of

the preceding equality. Denote AE this term, which may be written, thanks
to (4) and the estimates of Proposition 2.5. as

where C« is the set B’(~ - ~)BB~ - ~). .
The pointwise estimates obtained by Marchenko and Hrouslov on g*

and the derivatives of wk~ (see Proposition A.1.) imply the existence of a
constant C independant of 6, v and u such that

and Proposition 2.10. is proved.

3’’d step = +00.

For every ? in (Ho ( tZ ) ) N , one observes that



where FK is the functional defined by (9) in the case aN = K and T = B(l). .
Therefore, for every K in R+ and for every v in 

and for every v in V(H)

From Remark 2.3. one derives

If V is equal to 0, then

It v is different from 0 (almost everywhere) then

Remark 2.11. - The convergence of to the solution uo of (2) ,
may be obtained without epi-convergence methods. For v in V (0) and aN
finite, one immediately proves



where vo~ (resp. is associated to v by (14) (resp. (19)). .
However, we pointed out, in the introduction, the advantage of epi-

convergence methods.

Remark 2.12.- In the constructions (14) or (19~, the values (or
may be changed into

§ III. Convergence of the internal pressure

When re = Ae(o  A  1 /2) , Tartar proved in [13] the following result :

THEOREM 3.I. - There exists a linear operator R~ from into
such that:

Rl) For every J in J,

Rh) For every J in V (fl) belong8 to V (fle) ,
RS) There exists a strictly positive constant C such that for every J in

(Hl (n))N

Let (uE,pE) the solution of the Stokes problem (1) with rE = aE.
Let p~ be the element of such that for every v in (Ho (S~))r’,

 grad p~, R~v > (this is justified by R2)). Then (grad p~)~
converges in the strong topology of (03A9))N to grad po and con-

verges in the strong topology of to po.

Notice that for every v in (Ho (n~)r’ : :

In this case RE* (grad p~) is an extension .of grad p~ (R1)) and is still a
gradient ! The construction of RE, given in [13], Lemma 3, is made through
the change of scale x = ~:/, and then requires the equality rE = Ae, for some
A in ]0,1/2[.



In the present case, that is when 0, such a construction
seems impossible. Nevertheless, the purpose of this paragraph is to present
two restriction operators RJ defined on two subspaces X; of (jH~(H))~, ,
consisting of sufficiently smooth functions in (Ho (~))~, such that for every
v in X; :

A) T is equal to B(1), , Xi = n (C1(tt))r’, , aN is finite
One of the main difficulties in the construction of the test function v~

(14), was to preserve the divergence-free condition. In the present study,
this condition has no more to be satisfied. A first idea is to simplify the last
term of (14) and will be used later on. But, following Murat’s sugestion,
[11], a simpler expresssion may be used.

THEOREM 3.2.- Let R~1 be the linear operator from Xl into (Ho (tZE))N
defined by

Then,

a) for every v in 

6~ for every v in Xl :

Proof of Theorem s.2.

a) is a consequence of Proposition A.I.

b)



An integration by parts in the right term of the preceding equality implies
using (4)

An appropriate choice of qE (so that converges to 0, in
the weak topology of L2 (H) (see Lemma A.4)), Theorem 2.2’ and Proposition
A.1 imply

Remark 3.3. 1) In the construction (21) of Rf the preservation of the
divergence-free condition is violated. Indeed, the following choice of space
and restriction operator preserves this condition

where proj denotes the usual projection on a closed subspace of a Hilbert
space. Nevertheless, from a physical viewpoint, it seems unnecessary to
extend grad pE into a gradient (or something close to a gradient) sincethe fluid fills ttE only.

2) In fact, from the construction (21) of the restriction operator Rf oneobtains the following result : 
.

If there exists pE in such that p~|03A9~ = pE (in and 
is bounded in then (pE)E converges to po in the weak topology of



However, we did not yet obtain such uniform estimates on the pressure
Pe. .

B) T is the ball B(1), X3 = (Ho (ft))N n and aN is finite

THEOREM 3.4.- Let R3 be the linear operator from X3 into (Ho (fZE))N
defined by

where 03C6~i is the cut-off function defined in (15) (03C6~i has its support in
Bt and is equal to 1 in Bs (rE ) ) .

Then

Proof of Theorem S.g. - Let us first suppose that J belongs to Xi Then

LEMMA 3.5.- For every Y in Xi, f.

There exists a quantity oe which converge8 to 0 when e goes to 0 such
that for every F in Xi

Proof of Lemma 9.5. - As in Prop. 2.6., we only need to show that
is bounded in (Ho Using the regularity of v (in X1) and

Prop. A.1, we have only to study the last term of (22). .
One immediately verifies :

and also



A trivial computation of the last term in the preceding inequality ends
the proof of Lemma 3.5.

Let us come back to the proof of Theorem 3.4.

If v belongs to . Xl,. one derives, using -(4), Proposition A.1 and Lemma
3.5.

with + 

For v in Xl, (23) gives

where Mk is the kth column vector of the matrix M (3). .
If v belongs to X3, there exists a sequence of functions in Xl

converging to v in the strong topology of (Ho and the topology of
Then

And one immediately verifies that

C) T is a general subset of B(1) and aN is finite

THEOREM 3.6.- The conclusions of Theorems 8.2 and 8.,~ are valid in
this case, simply changing or the second term of into

where is the cut-off function defined in 



Appendix
Properties of the solution (wE , gE ) of (4)

The solution wk~ of (4) may be extended by k on and then .

e-periodically in RN. The function obtained in this way will be still denoted
by Trivially, the function wk~ restricted to H is in .

We have summarized in the next Proposition the properties of this

(extended) function 

PROPOSITION A.1.- al If aN is finite (see ~18~~, then the sequence
converges to ek in the weak topology of 

aN is finite and if T is equal to B(1~, then the sequence

converges in the strong topology of to the kth column vector of
the matriz M defined by (~~e

c) [10] If cxN is finite but if T is a general model inclusion, then there
exists an appropriate choice of qE (so that qE , which is defined up to
an additive constant, vanishes at one point (at least) in C~i = B‘ ( 4 -
r~ 2) /Bi(~ 8 - r~ 2)) such that the following pointwise estimates are true : for
every s~(s~  ~) and for every c(c > 0), there ezists a constant C such that

if N = 3 : for every x in verifying : T~) > c r~,

if N = 2 : for every x in verifying : : d(z,TE) > 

Proof of Proposition A.1. = a) From the definition of the (extended)’ 
.

function one derives



Then, as soon as the sequence is bounded in. (H1 (fl~~r’, and then
relatively compact in the strong topology of the convergence
announced in a) is proved, since 

e 
converges in the weak

topology of to the non null constant Vol(YBB(1/4)). Moreover, from
(4), one deduces

where is the solution of the same local problem (4) but for T = B(l). .
Therefore, we have only to prove that if T is equal to B(l) and if aN is
finite, then is bounded in As in (5~ (Theorem 2.2.), this
is a consequence of the explicit computation of given in the following

PROPOSITION A.2.- Suppose that N = 3 and denote by p the quantity
(x2 + y2 + . Then

AE, BE, CE and DE being four positive quantities.
Moreover, AE is equivalent to rE E-3 (in the sense that ~3A~/r~ converges

to a constant in R+*, when E goes to 0~, BE is equivalent to rE , CE is
equivalent to rE and DE is equivalent to 1. The two solutions wE * and wE *
are given by

Suppose N = 2 and let p be the quantity (~2 + y2~1/2, . There exist four
positive quantities aE, bE, cE and dE such that



Moreover, aE is equivalent to , be is equivalent to
cE is equivalent to and dE is equivalent to

e(rE~-3. . The function wE * is defined by

Proof of Proposition A.l. see - Let us come back to the proof of
Proposition A.1.

b) is the consequence of the above computations through the following
Lemma, extending a result of ~5~ (Lemma 2.3.) and proved in the same way.

LEMMA A.3.- Let 6E be the Dimc mass uniformly distributed on

8Bt(e/4). Then

If N = 3, denote 03C1~i = ((x - + (y - + (z - then the

three sequences

converge in the strong topology of to ~r~3. The three sequences

converge to 0 in the strong topology .

If N = 2, denote pE= = ((~ - + (y - i~2, then the two sequences

converge in the strong topology of to. ~rf 2.- The .sequence



converges to 0 in the strong topology of .

Finally, we mention the following result concerning the pressure qE in (4). .
This result is useful in the study of the behaviour of the internal pressure
of the fluid (Theorem 3.2) . .

LEMMA A.4. Suppose T is equal to B(1) and aN is finite. Then the
sequence 

, , 
which is bounded in LZ (~), converges in the

weak topology of this space to a constant.

Proof of Lemma A.. Take v in (Co°(i~))N and compute, using (4)

From the regularity of v and the definition of the matrix M(3), one
derives, using Proposition A.1.

where ~ is a limit point of the sequence (xu.B’(6/4)Br~) , in the weak
topology of L~(H) (the existence of ~ is a consequence of the computations
given in Proposition A.2).
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