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Positive solutions of some coercive-anticoercive

elliptic systems

GIOVANNI MANCINI(1) AND ENZO MITIDIERI(1)

Annales Faculte des Sciences de Toulouse VoI.VIII, n°3, 1986-1987

Dans ce travail nous traitons des résultats d’existence ou non-
existence pour une classe de systemes elliptiques semi-linéaires, avec des
nonlinearites critiques, en connexion avec un principe de maximum pour un
systeme elliptique associe.

ABSTRACT.2014 In this paper we discuss existence-nonexistence results for a
class of semilinear elliptic systems with critical nonlinearities in connection
with a maximum principle for a related elliptic system.

o. Introduction

In dealing with elliptic systems,

where H is a smooth bounded domain and f, 9 : R x R -~ R are given
mappings, we must face [2,7-11,15,17,18,21,24] all the typical problems as-
sociated with the scalar case, like nonuniqueness, nonexistence, breaking of
symmetries, lack of compactness related to critical growth of the nonlinea-
rities f and g, as well as some specific features, mainly the lack of a general
maximum principle.
We will investigate in this paper existence and nonexistence results for

a special class of systems of the type (0.1) in connection with a kind of
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"maximum principle" and critical nonlinearities. Namely we concentrate
our attention on the problem

(here a, ~y, S are real constants).
Special cases of (0.2)-(0.3) (e.g. h = 0) were considered previously in

[8,13,15-17,21] where those authors treat essentially sublinear nonlinearities
(i.e. f sublinear).

Here we are concerned with the problem of existence and non-existence
results for (0.2)-(0.3) for nonlinearities of the type,

i.e. for systems which are sublinear in v, but superlinear with limiting growth
in u. The main motivation of our study is the following nonexistence result :

Let ~~ be the first eigenvalue of --L~ with Dirichlet b.c.

PROPOSITION 0.1. Assume ( f ) and (h)1, and let S2 be a smooth

starshaped domain contained in RN (N > 3).

then (0. ~~-(0. ~3~ has no positive solutions (u, ~0, 0~ provided

In contrast, we can prove the following existence result.

Let A, be j-th eigenvalue of -0 with Dirichlet boundary condition.



THEOREM I.-Let SZ ~ RN be a smooth bounded domain (N > 4).
Assume that ( f) (hi) - (1~2 ) hold and

Then there exists a non trivial solution (u, v) to (0.1)-(0.2).
If, furthermore

holds, then (0.2)-(0.9) has a solution (u, v) E (Ha n with u > v > 0.

As far as the nonexistence result is concerned, we have to point out that
while the inequality A > Ai + is sharp, we don’t know wether the
inequality ~y + 2b  ~  0 can be improved. This is because the argument
a la "Pohozaev" we use, requires a kind of maximum principle which in
general does not hold without some restrictions on the parameters ~, ~y and
~.

Because of this we obtain different bounds on A, in Theorem 1, as far as
existence and, respectively, non existence of positive solutions are concerned.

The paper is organized as follows :

In Section 1. we recall some kind of maximum principle for an integro-
differential operator related to (0.2)-(0.3) and we prove radial properties of
positive solutions in case n is a ball.

In Section 2. we prove some non existence results, first analyzing the
case of a general starshaped domain, secondly concentrating our attention
to the special case S2 = and N = 3.

In Section 3. following Brezis-Kato [5], we prove L°°-regularity and
obtain L°°-bounds for solutions of an approximate problem related to (0.2)-
(0.3).

In Section 4. we prove some existence results in the case of ~2 C RN
with N > 4.

Finally Section 5. deals with the special case of h = Q, ^~ = 0 and TV = 3.

Notations. Throughout the paper wTe will use standard notations for
Sobolev spaces HJ and corresponding norms



 -, - > will denote the scalar product in while (-, -) will be the scalar
product in R~ .

1. A maxiinum principle and radial properties
of solutions

Let us first consider the linear system,

Throughout this Section we will always assume

For completeness, we present here some results contained in [13].

PROPOSITION 1.1. 2014 Assume (Ai) - (A2) and

If ~ 0 ~ f(x), f,h E and (u, v) E Ha X solves (1.1)-
(1.2), then u is non negative.

Proof. . Let us denote by G the Green operator

If (u, v~ E H© x H~ solves (1.1~-(1.~), then

Setting B = the system rewrites

So it is enough to prove that the operator



is order preserving. But A > -y + 28 implies L = o- - ~(I - - ~3B)-1
where , ,Q"1 are the two positive solutions of c~2x2 + (-y - a)~ + 1 = 0. So
that = ~~ , a -f- ,(3 = a - ^y and hence a + $2cY-~ _ ,Q + b~,~3-1 == a - .~, 
al - ~ + ~ ~- This implies oe  -y, ,t3  -y, because the function
t -4 t + S2 t-~ is convex, with minimum value at t = a given by 2r, and

> 8. In turns, this implies ~~a~3~~ = -y)-1  1,  1 and
hence (I - (I - are order preserving.

Remark.- is a necessary condition for the validity of Prop. i . l,
because it is necessary for L, B to be order preserving. In fact (Ai) just
means that the positive eigenfunction for LB corresponds to=the largest
eigenvalue of LB, since the spectrum of LB is given by (03BBj - 03B3 + 03B42(03BBj -
03B3)-1 - (03BBj - 03B3)-1, (-039403C6j = 03BBj 03C6j, 03C6j E and if > S, it is no
longer true, in general, that al -y-~-S2(~1-y)-1  a? -y-f-S2(a? -~y)-1 j > 1.

PROPOSITION 1.2. - Assume f, h E C’1 satisfy the following assumption : :

Then, if (03B4, 03B3, 03BB) satisfy (1)-(2)-(3), every Ho -solution (u, v) of (0.1)-
(0.2) satisfies

Proof - Let (u, v) be a solution of (0.1)-(0.2).

Using Prop. 1.1 with f (x) := f (u(x)), := 1a(v(x)) we easily see that
u~ 0.

Setting

equation (0.2) gives



and since a E a > 0, the weak maximum principle implies v > 0.

Finally, if fi is a solution of (i = 1.2) 
’

we have

which implies in particular

We end this Section with a result concerning symmetry properties of
solutions, which seems to be new and of interest in itself.

PROPOSITION 1.3. If in addition to the assumptions in Prop, 1.2 ~ve

assume

an SZ = BR(o), then the solutions of (0.1~-(D.,~~ are radially symmetric.

Proof . - After introducing the new variable w := u - v we see that
(u, v, w) is a positive solution of the system

Since ~f 2 
. 

> - 0 ( far i ~ ~ ) we can apply a result by Troy [24], to infer that

(u, v, w) is radial and w’(r) = ~c’ (r) - v’ (r)  0, r E (0, R).

Remark 1.4. As one easily sees the above result can be used to obtain
L~-bounds of positive solutions to (0.2)-(0.3) in the same spirit as Cosner
~9~. .

2. Some non existence results

In this Section we first give a general result concerning non existence of

positive solutions for (0.1)-(0.2) in a starshaped domain contained in RS.



In case .1V = 3 we will sharpen our result, following BREZis-NIRENBERG
[6] in case 11 is a ball. In both cases our technique heavily relies on the
maximum principle for (0.1)-(0.2) given in Section 1, and consequently we
restrict our attention to parameters (A, 6,,) satisfying (1~1 ) - (A2) - (A3).

Nevertheless, we don’t know whether our limitations an (À, 6, -~) are sharp
or not.

POHOZAEV identity for (0.1)-(0.2). (see [13]). Let (u, v) be a smooth
solution of (0..~~-~D.,~,, then

PROPOSITION 2.1. Let S2 c N > 3) be a smooth bounded domain.
Assume that (t~~ ) - (~12) - (A3 ) and ( f ), (~1 ) ‘ (h2) hold. Then (D.1~-(D.,~~
has no positive solutions provided either

Proof. - The proof of case (i) is straighforward and will be omitted. To
deal with the case (ii), we use (P) together with the assumptions on f ~ ~ )
and h(.).

It is easy to see that (Ai) - (A2 ) - (A3 ) imply that the right hand side
of (P) is non positive, while by Prop. 1.2, the left hand side is positive in
view of (1.4) and the starshapeness of ~.

Remark 2.2. It is not difficult to check that the above Proposition holds
under the more general assumptions on the non linearities :

We now show, as in the case of a single equation considered by BREZIS-
NIRENBERG [6], we have a more delicate situation in case N = 3 and n is a



ball. For simplicity, we will limit ourselves to the case 1 = 0, h(.) = 0 and
n = Bi(0).

PROPOSITION = {x E R3 : ~x~  1~, and let (u,v) be a
C2-solution of

Assume that 0  s C / 16, and let

be the lowest solution of

in such an interval. Then

Remark 2.4. Let 0  03B4  03C02 16 the function L(s) is positive in (203B4, 03C0/2)
and becomes negative for s = 1r, hence there is a lowest solution of L(s) = 0
in (2B/o, Jr) . If we denote by ~(b~ such a solution, clearly ~(b) = ~ ;
thus, "in the limit" we get a non existence interval for values of A, given by
(0, ~r2 /4) , which is the one obtained by BREZIS-NIRENBERG in the case of a
single equation.

Nevertheless we don’t know if 03C32(03B4) 4 
+ 

4S2 
is a sharp bound for non-

existence, as well as our method, relying on a maximum principle, doesn’t
apply (in the case / = 0) to negative and hence it is an open question
to know whether non-existence results hold true in this case.

Proof . Thanks to Prop. (1.3), we are reduced to prove that our system

has no positive radial solutions for a e 2S 03C32(03B4) 4 + 
4S2 

. Again, our
proof relies on a appropriate :



POHOZAEV identity for (radial) solution of (2.1)-(2.2).
Let (u, v) E be a radial solution to (2.1)-(2.2). Let 03C8 E C‘°°(R)

be such that ~(0) = 0 and ~( 1 ) > 0. Then,

Proof o f (PR ) . - The radial solution (u, v) of (2.1)-(2.2) satisfies

Following BREZIS-NIRENBERG [6], we first multiply the first equation
(respectively the second equation) by and by (1/2r203C8’ -

((1/2r203C8’ - r03C8)v). After integration by parts we obtain

and

Taking (2.3)-(2.4), after integration by parts we get (PR).
Now using Prop. 1.2 we get,



with strict inequality if (i.c, v) is not identically zero.

Dur claim is that if 03BB E 2S 03C32(03B4) 4 4S2 
we can choose (.) to etOur claim is that if A ~ (203B4, 03C32(03B4) 4 + 403B42 03C32(03B4) ) we can choose 03C8(.) to get

A ~ 0, which will imply t? ~ 0 . We among the solutions

(~, cp) of the Q.D.E. system :

with such a choice of ~~, 5p~ we have the following :

LEMMA 2.5. Zet 03BB > 203B4, and set 0 = 03BB2 - 403B42, c = 2 
. Then

Proof. 2014 Since c(a - c) = fi2, we have

Thus

because 03C6’  0. Hence using (2.5) ;

Remark 2.6. Let ~~, ~) be a solution to (2.5) ; then



Conversely if cp solves (x), the pair (~, with

solves (2.5).
Assuming A > 2S and denoted by the roots of the characteristic

equation of (x), we have the following relations

Since a~ > 4!), we also have p2  4b  r~. Now assuming as above A > 2b,
let us choose the following solution p) to (2.5)

~ = ~(a, ~), p = b), being given as in (2.6).

Remark 2.7. It is clear that cp chosen as above, satisfies cp’  0 in (0,1 ),
provided ~  ~r, because

 u.and 2014 T.

We want also to emphasize that, in view of the existence result; which
we will give later, and which holds true if

(here obviously Ai = ~r2 ), we have to assume 7-  ~’. In fact by (2.6)

and the necessary assumption (in order to get non existence)



yields u  7r.

To complete the Proof of the Proposition 2.3, we need some simple
estimates which we collect in a lemma whose proof can be obtained by
direct calculation.

LEMMA 2.8. Let o(&#x26;~ be the lowest solution of

in Let (~, ~p) be given by (,~.8~. Then

Completiton of the Proof of Proposition ~.,~.

Now the result follows, using Lemma 2.5 and Lemma 2.8, taking into
account that by (1.3) and (1.4) we have u > a~2~ v and u’(r) - v’(r) 
0, re (0,1).

3. Regularity and L°°-estimates

The main purpose of this section is to get some uniform L°°-estimates
for weak solutions of families of elliptic systems of the type

where (~, -y, s~ E R3, -y  ~1 (the first eigenvalue of -0 with Dirichlet
boundary conditions) and f ( ~ ), are allowed to have "limiting growth".
More precisely we will assume that :

There exist positive constants a, b, aR, bR, such that for every t E R v~Te
have

Our argument follow closely the work of BREZIS-KATO [5] devoted to a
single equation. In what follows we deal with a given system, so that we
drop subscript R.



PROPOSITION (u, v) E Ho be a solution of

where (a, b, e, d) E R~, f, h E C1 satisfy (~.1~ and f (0) = f’(0) = h(0) -
h’(0). Then (u, v) E LOO.

For convenience of the reader we state here some facts which are essen-

tially contained in .

LEMMA 3.2. Let a~ E LN~2, (j E N) be such that :

Then there exists  E R such that for every f E each equation

has a unique solution u~ E . Furthermore  and

y~ 0 ===~ 0.

Proof . Using (3.4) we see that,

which implies

Thus, the bounded selfadjoint linear operators in Hi given by

are (uniformly) positive definite : taking f = 1 /2, we find K, independent
of j, such that



Hence, for such K, and any given f E the equations

are uniquely solvable for every j E N and

implies

Finally, if f > 0, multiplying (3.5) by 0) (dropping subscript j) )
and using again (3.6), we get 0) = 0.

LEMMA 3.3. Let a E and f ~ LP with p > 2* Let u E Ha be a
weak solution of

Then u E LP ~ u E (with T = N/N - 2~, and

~’roo f . Set

Lemma (3.2) applies, to find K E R such that the equations (omitting
subscript j )

have a unique solution = u respectively. Furthermore,

so that we can assume zj H10 ’2’, for some z. Clearly z = ’H, because ajLN/2 a
and for every E ~o, and then ~ve can pass to the limit in



Now, let us fix q  p. To estimate first notice that taking eventually
the positive and negative part of f + Ku, it is enough to estimate 
assuming z; > 0. Dropping subscript j, , let us consider z,~ = min(z, n).
Since |zn|q-1 E H10, denoting f = f + Ku, we get from (3.7) :

and hence,

Using (3.6), with u = zn~2 we finally get

Takin g E = 2~q q2 1~ and using Sobolev inequality we obtain,

sending n to infinity and using Fatou lemma we get

with Cq and k independent on j. .

Using lemma 3.2 and taking q = 2* in (3.8) we get

Iterating this procedure, we get, up  p  r’2*

and then



with c and K independent on j. Passing to the limit (as j 2014~ +00) in (3.9)
we set

Combining Lemma (3.3) and elliptic regularity applied to both equations
(3.1)-(3.2), we obtain the claim of Proposition 3.1.
We are now in position to give L~-estimates for solutions of (0.1)-(0.2)R. .

PROPOSITION 3.4. Let f, h R satisf y ~~.1~ and

Let vR~ be solutions of (0.1~-(0.,~~R such that,
(i) {ur} is precompact in L2*, , and supR ~vR~  + Then,

Proo f . According to Proposition 3.1, we know that (u R, vR) E L°° . Set
aR(x) := A + where

It is easy to see, using the compactness assuptions, that

So that, by Lemma 3.2, there exists p E R, independent on R, such that
uR(.) is the unique H10-solution of

To get a uniform bound we first prove LP-estimates. To this

extent, let us introduce z~, wR, solutions of (3.12) corresponding to right
hand side 6v R)+ and respectively : they exists and
are unique because of Lemma 3.2. We claim that, setting T = N/N - 2, we
have 

, ,



where Cp is independent on R.
Since for p = 2, the right hand side in (3.13) are bounded with respect

to R, we will get

because obviously u R = w R + zR In turn this implies supR |uR|2 2  +00,
and thus, by iteration, we will get

To prove (3.13) for, say zR (the same procedure works as well for wR) we
first need

where Dp does not depend on R. Let us prove (3.15) with vR replaced by
vR, solution of

A similar argument, taking instead uR, will give (3.15). If uR >
o is the solution of (3.16), multiplying the equation by vR 1, we get
(observe that (vR (x))  0) .

and using Poincare, inequality,

Since I  Ai, if p > 2 is sufficiently close to 2, we get

Starting with such a p, and using Sobolev inequality, we have



and hence

which implies By iterating the above procedure, we thus

get ~p > 2, ~ Cp > 0 : Cp|u+R|p (uniformly in R) .
We now go back to the proof of (3.13). Multiplying the equation

we get as above

Now, in view of (3.11) we can apply (3.6) to get, with a suitable choice
of E and using Sobolev’s and Holder’s inequalities :

for some positive constants C7p, kE independent on R.

Using (3.15), we finally get

Now, elliptic regularity, Sobolev imbedding and (3.14)-(3.15) applied to
(O.l)R give uniform (w.r. to R) ~°°-bound for u,R.

Finally, if sup R  M, setting

we get,

and multiplying the above inequality by VR = max~vR - ~, 0~, we obtain

Thus (u~ - = 0, i.e.  ~ E Q, VR.



Similarly we get a uniform lower bound for VR. .

4. The variational principle and
existence results

In this section we first consider system (0.1) (0.2) for some classes of
superlinear-sublinear nonlinearities, reducing our system to an integrodiffe-
rential equation of variational type. The early stage, when we consider f(. )
of the type ( f) and h(.) satisfying (hl ) - (h2 ~ and asymptotically linear we
already deal with the main difficulty, i.e. a "mountain pass" situation with
the lack of .P. 5’., which we over come in the spirit of ~6~ .

Nevertheless, while the existence technique is quite the same as in [19]
(see also [3]), due to the lack of a general maximum principle, we are able
to produce two quite different existence results, as far as we are concerned
with existence and with existence of positive solutions respectively.
We believe that this is a peculiar difference between anticoercive-coercive

systems considered by us and elliptic equations.
Our first result is the following :

THEOREM C RN (N > 4) be a smooth bounded domain.

Assume

and

Then, there exists a non-trivial solution (u, v) E H10 x Ho to

provided,



If, in addition, we assume

then (1.1~-(1.,~~ has a solution (u, v) satisfying u > v > 0.

In what follows (see Th. 4.9 below), we will improve our result, as far as
growth conditions on 1~~ ~ ~ are concerned, making use of the a priori estimates
and the results of Section 3.

Finally, we will see that a more delicate situation occours if N = 3 (see
Section 5 and [6] for the scalar case).

In order to prove th. 4.1 we first state a variational principle and we
analyse its geometric features.

Setting,

one can easily see, using assumptions ( h 1 ~ - ( h2 ) and -y  that U ( ~ ~ is a
strongly monotone operator. In addition using standard tools one can easily
find that the operator T = U-1 G with

satisfies the following properties ; which we collect in

LEMMA 4.2. -

Now, let us denote

Notice that


