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Continuity of spectrum and spectral radius
in algebras of operators

LAURA BURLANDO(1)

Annales Faculte des Sciences de Toulouse Vol. IX, nOl, 1988

RÉSUMÉ.2014 Dans cet article nous étudions la continuité spectrale dans
Falgebre des operateurs lineaires et continus sur un espace de Banach. Plu-
sieurs nouvelles conditions suffisantes (la plupart d’elles sont aussi neces-
saires au moins dans le cas particulier d’un espace de Hilbert separable)
pour la continuite des fonctions spectre et rayon spectrale sont etudiees et
comparees a celles deja connues. Des exemples sont donnes aussi pour etu-
dier les liaisons parmi toutes ces conditions. Deux sous-ensembles (qui au
moins dans le cas d’un espace de Hilbert separable ne sont pas propres) de
l’ensemble des points de continuite ds fonctions spectre et rayon spectrale
sont definis. Nous etudions les proprietes algebriques et topologiques de ces
ensembles.

ABSTRACT. - This paper deals with spectral continuity in the algebra of
linear and continuous operators on a Banach space. Several new sufficient
conditions (most of which are also necessary, at least in the particular case
of a separable Hilbert space) for the continuity of the spectrum and spectral
radius functions are studied and compared with the already known ones.
Examples are given to specify the connections between these conditions.
Two subsets (which, at least in the case of a separable Hilbert space, are
not proper) of the sets of the continuity points of the spectrum and spectral
radius functions are introduced, by means of two of the conditions above,
and algebraic and topological properties of theirs are studied.

Introduction

The continuity points of the spectrum and spectral radius functions
in the algebra of linear and continuous operators on a separable Hilbert
space have been recently characterized by CONWAY and MORREL ([CM]).
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A different characterization of the continuity points of spectrum has been
given afterwards by the authors of [AFHV].

Both the conditions given by [CM] and [AFHV] for the continuity of
spectrum with respect to the Hausdorff metric at the operator A require
that the union of the union of all trivial components of a convenient subset
of the spectrum and the set of the semi-Fredholm points of A with
nonzero index is dense in the spectrum of A. The two characterizations differ
in the subset of the spectrum whose trivial components are considered (see
[CM], 3.1 and [AFHV], Th. 14. 15).

Both the conditions given by [CM] for the continuity of the spectral
radius function at the operator A require that the maximum of the su-
premum of the modulus function on and ~ E

w } : w is a component of T ~ (where T is a convenient subset of the spectrum
) coincides with the spectral radius of A. The two characterizations differ
in the subset of the spectrum whose components are considered (see [CM],
2.5 and 2.6).

These four conditions, which characterize the continuity points of spec-
trum and spectral radius in the case of a separable Hilbert space, are at
least sufficient for the continuity of the two spectral functions for any Ba-
nach space (see [CM], §4, [AFHV], page 277, and Corollary 1. 15 and Corol-
lary 2.13 of this paper). The authors of [AFHV] suspect that they are also
necessary for any Banach space (see [AFHV], page 313).

In this paper I give new conditions which ensure the continuity of the
spectrum and spectral radius functions in the algebra of all linear and
continuous operators on a Banach space and I investigate systematically
their reciprocal connnections and their relationships with the conditions of
[CM] and [AFHV].

In Section 1 I introduce a subset of the spectrum of an

operator A whose union with the set of all normal eigenvalues of
A is contained in the subset defined by [CM] and coincides with it in

the particular case of a Hilbert space (see Definition 1.2). I study the
connections between the unions of all trivial components of seven different
subsets of (among which U ~p(A) and the
two sets introduced in [CM] and [AFHV]) and prove that there are some
relationships of inclusion and three chains can be constructed (see Theorem
1.6). In particular, if I‘1 (A) denotes the union of all trivial components of

ro(A) denotes the union of all trivial components of the set
introduced in [AFHV], I‘2 (A) denotes the union of all trivial components



of the set introduced in [CM] and denotes the union of all trivial

components of U ~p (A), c C r2 (A) c and

all the other three unions of trivial components contain Fi(A) and are .

contained in r4(A). By means of several examples, I show that none of the
inclusions enunciated in Theorem 1.6 can be inverted. Moreover, I prove
that, for any of the seven subsets above of r(~t), the union of the union of
its trivial components and coincides with or with

r4(A) U and, if r4(A) U = a(A), also r1(A) U 
and F4(A) U coincide (see Theorem 1.13). Hence.I have obtained
five new sufficient conditions for the continuity of spectrum at the point A,
which are equivalent to the two already known ones and therefore are also

necessary, at least in the case of a separable Hilbert space (see Corollary
1.15).

In Section 2 I study the connections between the suprema of the sets of
the infima of the modulus function on the components of the seven subsets
above of o~(A). Several inequalities can be established and three chains
can be constructed (see Theorem 2.2). In particular, if ~5 (A) and S2 (A)
denote the suprema introduced in [CM] (where b5 (A) coincides with the
supremum defined in [CM]) and ~2 (A) coincides with the supremum
S~ (A) defined in [CM]) and if we put ~4 (A) - E w } :
cv is a component of U S5(A)  b2(A)  S4(A). By means
of several examples, I prove that none of the inequalities enunciated in
Theorem 2.2 can be inverted. Moreover, I prove that the maxima of 
and any of the seven suprema above can assume at most two values, the
maximum of which is S2(A) V = S4(A) V = S5(A) V (see
Theorem 2.12). In this way, I have obtained five new sufficient conditions
for the continuity of the spectral radius function at the point A , , two of
which are equivalent to the two already known ones and therefore are also
necessary, at least in the case of a separable Hilbert space (see Corollary
2.13). An example proves that the remaining three conditions are not
necessary for the continuity of spectral radius, even in a separable Hilbert
space (see Example 2.14).

In Section 3 I introduce a subset Eo(X) (defined by the equivalent
conditions of Corollary 1.15) of the continuity points of spectrum and
a subset Ro (X ~ (defined by the equivalent conditions iv), v), vi) and
vii) of Corollary 2.13) of the continuity points of spectral radius in the
algebra of all linear and continuous operators on a Banach space X, with

c Ro (X). Both subsets are not proper, at least in the case of



a Hilbert separable space. I study algebraic and topological properties of
and and compare them with another sets-, a subset reX)

of Eo(X) and a subset 7r(X) of that I have already defined in a
previous paper ([B]) by means of topological conditions on the spectrum.

Acknowledgement: my special thanks to Professor Cecconi, who was
so kind to discuss with me about the results of this paper.

0.

We shall denote the norm by the symbol [[ [[ in any normed space.
If X is a complex nonzero Banach space, for any x E X and for any

~ > 0 let ~) denote the set of all points of X whose distance from
x is smaller than c. We shall denote by Lc(X ) the algehra of all linear and
continuous operators on X, by the ideal of compact operators of

and by Ix the identity of 

By a continuous projection on X we shall mean an operator P E Lc(X)
such that P~ = P. Obviously, Ix -P is a projetion too, Im P = ker(Ix -P)
(we shall always use the symbol Im to denote the range of a function), so
that Im P is closed, and X = Im ker P (where the symbol ® means
algebraic direct sum). For any A E Lc(X ), we shall denote the spectrum of
A by a~(A), the spectral radius of A by r(A) and (where the symbol
C denotes the complex plane) by p(A). We recall that: is compact and

nonempty, the resolvent function:

A e p(A) --~ = (aIX - E 

is analytic, r(A) = limn~~~An~1/n, the peripheral spectrum of A is the
set of all points of whose modulus is equal to r(A) and a spectral set
of A is a subset of its spectrum that is both open and closed in the relative

topology of a(A).
Let denote the semi-Fredholm domain of A, that is the set of all

points A E C such that A is a semi-Fredholm operator (see [Ka], page
230). For any n E Z U ~-oo, -~-oo}, let denote the set of all points
A E ps_F(A) such that ind (aIX - A) = n (where, for any semi-Fredholm
operator T E ind T denotes the semi-Fredholm index of ~’, see ~Ka~,
IV, (5.1 )). From the stability of semi- Fredholm index (see [Ka], IV, 5.17)
it follows that is open for any n E Z U ~ - oo, -~-oo ~ . Consequently,
if we put



also and p8_F(A) are open subsets of C. It is immediate to remark
that .C and, consequently, C (so that, as 
is closed, also C ~(A)).
We shall denote by r~(~4) the set of all normal eigenvalues of A, that is

the set of all isolated points of for which the corresponding spectral
projection (see [TL], page 321) has finite-dimentional range. From [Ka], IV,
5.28 it follows that C 

We recall that, for any A E there exists a neighborhood U of a,
contained in such that dim ker(p,Ix -A) and dim X/Im (p,Ix -A)
are constant for p, E (see [Ka], IV, 5.31). Therefore, since 
is open for any n E Z U ~-oo, -~oo}, ~~°(A) c 
We also recall that any isolated point of which belongs to 

belongs to ~P(A), too (see ~Ka~, IV, 5.28 and 5.10). Hence =

~~(A) U (~(A) n 
We shall denote with Since is open and

ps-F(A) D p(A), it follows that is closed and C 

Since n 8u(A) C by ~Ka~, IV, 5.31, it follows that

9r(A) C U ~p(A). Hence U ~P(A) is nonempty.
If Q : : Lc(X) --> is the canonical map, we shall denote

by the essential spectruth of A (that is the spectrum of Q( A) in
the Calkin algebra Lc(X)/ Lcc(X)), by the left essential spectrum
of A (that is the left spectrum of Q(A) in Lc(X)/Lcc(X) and by are(A)
the right essential spectrum of A (that is the right spectrum of Q(A) in
Lc(X)/Lcc(X)). Obviously, and are compact subsets
of C and = U We recall that coincides with

the Fredholm domain of A, that is UnEZ p$_F(A) (see [CPY], (3.2.8)). Hence
or.(~) = P8 F(A)~ Since p:;(A) and are

open subsets of C, it follows that C From [CPY], (4.3.4)
it follows that U C ps-F(A). Hence C

n The opposite inclusion is not always satisfied in a generic
Banach space (see for instance, in this paper, Example 1.1), whereas from
[CPY], (4.3.4) it follows immediatly that = n if X

is a Hilbert space.

Since

it follows that



and

Let Kc denote the set of all compact nonempty subsets of the complex
plane, endowed with the Hausdorff metric. We put

03A3(X) = {T e Lc(X) : the spectrum function 03C3 : ~ Kc is
continuous at T ~ ,

R(X) = {T E the spectral radius function r Lc(X) - [0, -f-oo)
is continuous at T},

7r(X) = {T E any neighborhood of the peripheral spectrum of T
contains a nonempty spectral set of T~ (see [B], 1.1) and

reX) = {T E Lc(X) : : any open set in the relative topology of 
contains a nonempty spectral set of T~
(see [B], 2.1). Obviously, c R(X) and reX) C 

If, for any topological space Wand for any w E W, , Cw(W) denotes
the component of W which contains w, for any A E Lc(X) we put

= ~a E : = ~~1~} (see [B], 2.3) and = ~a E
O’(A) : C ~~ E C :  r(A)~} (see 1.3). We
recall that reX) = ~A E : = (see [B], 2.4) and
x(X) = {A E Lc(X) : E = r(A)} (see [B], 1.5). From
[M], 2.1 and 2.2 it follows that x(X) C R(X) and reX) C ~(X ).

Finally we recall that, if X is complex infinite-dimentional Hilbert space,
for any compact nonempty subset K of the complex plane and for any
orthonormal basis E of X there exists A E diagonal with respect to
E (and therefore normal), such that = K (see [Ha], Prob.46, in which
only the case of a separable Hilbert space is treated; the general case follows
immediately).

1.

Let X be a complex nonzero Banach space and let A E From

[CPY], (4.3.4) it follows that

and



Pietsch, in the example at pages 366 and 367 of [P], has shown that
in a non-reflexive Banach space there may exist a semi-Fredholm operator
with finite-dimensional null space (resp., finite-codimensional range) whose
range (resp., null space) is not the range of a continuous projection. Hence,
by [CPY], (4.3.4), none of the two inclusions above can be inverted. The
following example, inspired by the one of Pietsch, shows that even in
a reflexive space none of the two inclusions above can be inverted and

n is not always contained in 

EXAMPLE 1.1 . - Let us consider the complex Banach space .~p (where
p E (0, 2) U (2, +oo)). Since p ~ 2, there exists a closed subspace X of .~p
such that X is not the range of any continuous projection on .~p (see [K6],
31.3, (6)).

.~p x .~p is a Banach space with respect to the canonical norm defined by
= + for any (x, y) E .~p x and obviously X x .~p is a

closed subspace of .~p x ~p .
If denotes the canonical basis of .~p, that is en = for

any n E N , it is not difficult to verify that the operator T : .~p ---~ .~p x .~p
(where, for any x = E lp, Tx = (03A3n~N x2nen, 03A3n~Nx2n+1en)) iS
an isomorphism of Banach spaces. If we define A(x, y) = (o, T-1 (x, y)) for
any (x, y) E X x .~p, it follows that the operator A : X x .~p ---~ X is
linear and continuous, ker A = ~ 0 ~ and

Consequently A is a semi-Fredholm operator and, moreover,

(where A* is the adjoint of A, see [Ka], IV, 5.13).
Nevertheless, we prove that 0 E (so that, as, since p E (1, -E-oo),

X x .~p is reflexive, 0 E too, and none of the two inclusions above
can be inverted).
We prove that Im A is not the range of any continuous projection on

X x ~p. Suppose that there exists a projection P E Lc(X x .~p) such that

For any k = 1, 2, we define the linear and continuous operators



in the following way:

and

If we put Q = P1TP2PJ2T-1J1, it follows that Q E and

Moreover, for any x E X, as E ImP it follows that

Consequently, since Qz E X for any z E .~p and Qx = x for any x E X, Q
is a continuous projection on .~p and Im Q = X . This is a contradiction, as
X is not the range of any continuous projection on Therefore Im A is
not the range of any continuous projection on X x .~p.

From [CPY], (4.3.4) it follows that 0 E 

Obviously, since Im A has not complementary closed subspace,
X x lp / ImA is infinite-dimensional, so that, by the inclusions above,
0 E are(A), too.
We have thus proved that

If X is a complex nonzero Banach space and A E Lc(X), let ro(A) denote
the set of all points A E such that ~~1~ is a component of

and let denote the set of all points A E such that A is a compo-
nent of n U We recall two recent characterizations of

for a separable Hilbert space, that will be useful afterwards.



THEOREM (1) ([CM], 3.1). Let X be a complex nonzero separable Hil-
bert space and let A E Lc(X); then A E ~(X ) = U I’2(A).
.

The condition = U I‘2 (A) is at least sufficient for member-
ship in for any complex nonzero Banach space X . In fact, even if

ps-F(A) does not always coincide with ole(A) fl the equality

is anyway satisfied in any Banach space, so that Conway and Morrel’s

proof of the sufficiency of the condition above for membership in E(X) can
be repeated without alterations in the general case of a complex nonzero
Banach space.

THEOREM (2) ([AFHV], Th. 14.15).-Let X be a complex nonzero

separable Hilbert space and let A E then A E iff =

Fs F(A) U ro(A). a 
.

We take the opportunity of remarking that in [AFHV], Th. 14.15 the
proof the sufficiency of the condition above for membership in E(X),
in order to avoid pathological examples like S 9) 0 on 12 ? 12, should
be stated more exactly by observing that, if D(~; , E/2) does not contain
any component of 7(A), it contains anyway a component of so

that Corollary 1.6 can still be applied (see [He], Cor.16). This part of
the proof of Theorem 14.15 can be extended, without further alterations,
to the general case of a complex nonzero Banach space. Therefore, if

X is a complex nonzero Banach space and A E Lc(X), the condition

o-(A) = U is at least sufficient membership in 

DEFINITION 1.2. Let X be a complex nonzero Banach space and let
A E Lc(X). We define

We remark that X(A) n - ~ and that C C

fl a~re(A) (SO that, if X is a Hilbert space, = =

n 

THEOREM 1.3. Let X be a complex nonzero Banach space and let

A E Lc(X); then = for any ~ E and

= n for any a E x(A).



Proof . For any 03BB E ~(A), since C Ca it follows
that

In addition, since A E X(A) and C~. (vle (A) fl vre (A)) = Ca (vle (A) n vre (A))
for any  E n it follows that Ca(vle(A) fl vre(A)) C
X(A) C v,,,t (A), so that Ca (vle (A) fl vre(A)) C Therefore

For any A E since C C n it follows
that

Moreover, since A E n C’a(ale(A) n (~, so that
= ~. It follows that = ~. Hence

C and, consequently, C .

Therefore = for any ~ E 

DEFINITION 1.4. - Let X be a complex nonzero Banach space and let
A E We define

and

We remark that c u(A) for any j = 0, ... , 5 and, if X is a
Hilbert space, r2 (A) - r3 (A) = r4 (A) for any A E (because

= n are(A) = a"z (A) in a Hilbert space).

LEMMA 1.5. - Let X be a locally compact Hausdorff space and let C be
a nonempty connected compact subset of X. . Then C is a component of X

there exists an open subset U of X such that C is a component of U.

Proof. . Obviously, if C is a component of ~’’ and we put U = X , it

follows that U is an open subset of X and C is a component of U.

Conversely, suppose that there exist an open subset U of X such that
C is a component of U. Since X is a locally compact Hausdorff space and



C is compact, compact neighborhoods of C are a neighborhood base of C.
o

Therefore there exists a compact subset V of X such that C 
Since C is a component of U, C is also a component of V . Since V is a

compact Hausdorff space and C C V, from [Hy], 2.4, Th. 2.15 it follows
that there exists an open and closed set W in the relative topology of V
such that C C W C V. .

Since V is compact and X is a Hausdorff space, V is closed, so that W
is a closed subset of X. Moreover, since W is open in the relative topology
of V and is contained in V, W is open also in the relative topology of V, so
that, as obviously V is open in X, W is an open subset of X. .

Hence there exists an open and closed subset W of X such that C C

W C U. If D denotes the component of X that contains C, it follows that
D C W C U. Consequently, D is a component of U, so that, as also C is a
component of U, D = C. Therefore C is a component of X. . 0

THEOREM 1.6.2014 Let X be a complex nonzero Banach space and let
A E Lc(X). . Then

and

moreover,

Proof.-Since is open in the relative topology of 
from Lemma 1.5 it follows that C 

We prove that ~(A) C U ~p(A).
Since C ~(A), it follows that

Hence ~(A) n = ~p(A), and therefore C U ~p(A) C
U ~p (A). Consequently, for any a E 



so that A E 

Hence ~(A) C rs(A).
We prove that

Let A E rs(A); then U = {,1}, so that a E 8Qe(A) U
C U Since Q9_F(A) C fl Qre(A) C oe(l4) and

Ca(Qe(A) U o~°(A)) = {,~}, it follows that

and therefore a ~ I‘2 (A~ n r3 (A~.
We prove that

For any A e ~p (A), A is isolated in o(A), so that, as U ~~° (A) C
a(A), A is isolated in U ~p (A), too. Consequently,

and therefore

For any a E a E and = (A).
Consequently, by Theorem 1.3, ~a}, so that also

Therefore

For any A E A E n and

so that, obviously, ~a~. Since a ~’ it follows

that ~ E x(A) C C and hence _ ~ a}, so
that also U ~~°(A)) = ~a}.



Therefore

We have thus proved that

Conversely, for any A E F4(A), if A E U ~p(A) it follows that

Consequently,

and therefore

If, instead, A E x(A), from Theorem 1.3 it follows that

so that A E F2(A).
Therefore

We have thus proved that

and

Now we prove that r1(A) C ro(A).
We define



Since C s(A) C o(A), it follows that =

Therefore is open in the relative topology
of s(A).
We remark that

(because C ~(A)Bpe_F(A)); therefore s(A) is the inter-
section between an open and a closed subset of the complex plane and,
consequently, it is a Hausdorff locally compact space. Hence from Lemma
1.5 it follows that C ro(A).

o

We have proved that C Since C
_________ 

o 0

and C a (A) (so that _ ~) for any
n E Z~{0~, it follows that

Consequently,

so that ro(A) n ~(A) c Hence = n ~~A~.
Finally we prove that

Obviously

For any n E Z,

o

consequently, ~p~_F(A) is open in the relative topology of 
o

so that any trivial component of ~ p9 F(A) is also a component of



(and therefore it is a component of U too) by Lemma
1.5.

Hence

We have thus proved that

We shall prove that none of the inclusions enunciated in Theorem 1.6 can
be inverted. _

First of all, we prove that, in general, there is not any relationship of
inclusion between and 

LEMMA 1.7. - Let X and Y be Banach spaces, let ,~ E and let
T E Lc(Y). Then the operator S ~ T E Lc(X ® Y) is semi-Fredholm iff ,S
and T are semi-Fredholm and ~ ind S, ind T } ~ ~-oo, -~-oo}; moreover, if
S ® T is a semi-Fredholm operator, ind (S ® T) = ind S + ind T.

Proof.2014 We define A = S’ ® T. From [TL], V, 5.2 it follows that
ker A = ker S ~ ker T and Im A = Im S (B Im T (so that the vector space
(X ® Y) 11m A is algebrically isomorphic to the vector space X/Im S ~
Y/Im T). It is not difficult to verify that Im A is closed if and only if both
Im ,S‘ and Im T are closed. Therfore A is a semi-Fredholm operator if and
only if Im S and Im T are closed and either ker S and ker T are finite-
dimensional or X/Im ,S’ and Y/Im T are finite-dimensional. Hence A is a
semi-Fredholm operator if and only if S and T are semi-Fredholm operators
and {ind S, ind T~ ~ {-oo, -f-oo}.

In addition, from the equalities enunciated above it follows that, if A is
a semi-Fredholm operator, ind A = ind S’ + ind T. D

The following example shows that ro(A) is not always contained in ~(A).

Example 1.8 . - We denote by S the unilateral left shift operator on .~Z
and by 0 the null operator on l2. Let us consider the operator A = S ~ 0 E
Lc (£2 C .~2). From [TL], V, 5.4 it follows that = = .BC(o, I}
(see [Ha], Sol. 67). Therefore, since obviously Bc(o,1 ) is connected, =

0.

We prove that 0.



We recall that = p9_F(S‘) and ind - S) = 1 for any
A E (see [Ka], IV, 5.24). Since - A = (~I~e2 - S) ® ~Ie2
for any A E C and 0 is not a semi-Fredholm operator, from Lemma 1.7 ~ ~
it follows that = C~ ({0} U ôBc(O, 1)) and ind A) =
ind S) = 1 for any A E BC(0,1)B{0}.

Therefore = and p°~_F(A) = -

C~B~(0,1), so that

Consequently, ro(A) = ~0~ ~ 0. D

Since ro(A) is not always contained in tP(A), ri(A) C and

C it follows that is not always contained in Fi(A)
and is not always contained in 

The following example proves that is not always contained in 

EXAMPLE 1.9. - We denote by S unilateral left shift on ~2. Let us consider
the complex Hilbert space

the norm in X is defined in the following way :

for any Since = 1, the sequence

of linear and continuous operators on £2 is bounded in norm, so that



for any and the linear operator

(where {~(1/2n)~.~z -~- ~L~2n+Z),S’n+1~ for any

(xn)n~N E X) is continuous.
For any n EN, we define two closed subspaces of X,

(which obviously is isomorphic to .~2 ) and

and two linear and continuous operators,

(where Tn(03B4nkx)k~N = (6nk ((1/2")Ir, + (l/2n+2)sn+l) for any x E

22 ) and

(where Anz = for any z E Xn).

Obviously, for any n E N, X = ( ® Yk) ~ Xn and A = ( ® Tk) ~ An .

B&#x26;=o / k=0 /

Moreover, since ~(S’) = BC(o,1 ) and p8_F(,S’) = J?c(0,1) (see [Ka], IV,
5.24), it follows that

and,as

for any 03B4 > 0 and for any 03B8 E [0,203C0), 03C1n+1s-F(Sn+1) = Bc(o,1) (see
[CPY], (3.2.7)) (so that = "t" (1/2’z+2),S‘n’+~) -

It is not difficult to verify that the balls Bc ( 1 /2n,1 /2n+2 ), n E N, are
pairwise disjoint.



For any n E N, since 0 for any k = 0,..., n and for any
E Xn it follows that

for any E Xn.

Therfore  5/2n+3 and, consequently, C BC(o, 5/2n+3).
It is not difficult to verify that BC (o, 5/2’~+3 ) fl BC ( 1 /2’~,1 /2’~+2 ) _ ~;

therefore BC ( 1 /2n,1 /2’~+~ ) C p(An ) n . From Lemma 1.7 it

follows that Bc(l/2", 1/2"-~) C p$±~(A).
By [TL], V,5.4,

for any n EN; therefore

for any n E N. Since 5/2n+3 -~ 0, it follows that
n-+oo

Consequently, = ~ for any negative integer n,

for any positive integer n and



Therefore

so that = and

Hence fo(A) = 0, whereas, obviously, = ~ 0 ~ . Therefore tP(A) is not
contained in ro (A).

Since is not always contained in Fi(A) C fo(A) and
C fs(A), it follows that is not always contained in and

rs(A) is not always contained in ro(A).
We prove that, generally speaking, neither r2 (A) nor r3(A) are contained

in rs(A).
EXAMPLE 1.10 We consider the complex Hilbert space .~2 and the

linear and continuous operator A : : .~2 --~ .~2 (where, if denotes
the canonical basis of ~2, that is en = for any n E N, =

03A3n~N xne2n for any (Xn)nEN 6 12 ).
Obviously, for any x E .~2, so that ~~A~~ = 1 and C

BC (0,1 ). In addition, for any A E BC(0,1 ) and for any x E ~2,

Consequently, ~h2 - A is one-to-one and A) is closed for any
A E Bc(0,1) (see [TL] ,IV,5.9), so that Bc(0,1) C ps- F(A).

Since the function:

is locally constant (see [Ka], IV, 5.17) and BC (o,1 ) is connected, it follows
that

We consider two closed subspaces 

and



It is not difficult to verify that Im A = Xi and t2 = Xi ~X2. Since obviously
22/Im A = is isomorphic to X2, which is infinite-dimensional, it
follows that ind A = -oo.

Therefore = Bc(O,l), = Bc(U,1), oa-F(A) = 88c(0,1)
and = BC(0,1).

Let us consider the operator 0 on 12 (where 0 is the null

operator on e2). By [TL], V,5.4, ~ 0) = o(A) U{0} = Bc(0,1). Since
= C~{0} = p(0), from Lemma 1.7 it follows that

and

Therfore 0) = Bc(0,1), so that 0) = 0.
Since e2~P2 is a Hilbert space, it follows that = = f 0}.

Hence neither 0) nor 0) are contained in 0).
We prove that, in general, there is not any relationship of inclusion

between r2(A) and r3(A).
The following example shows that r2(A) is not always contained in F3(A).

EXAMPLE 1.11 . - Let us consider the complex Banach space Q~ x ~oo?
with the canonical norm of the product + for any

(x, y) E eoo x and the operator

(where = for any E 

Obviously H is an isomorphism of Banach spaces, and



If we consider the complex Banach space co x .~~ and define the linear and
continuous operator

(where I A(x, y) = for any (x, y) E co x it follows that

for any (x, y) E co x so that  1. Consequently, u(A) C Bc(0,1).
In addition, for any A E Bc(0,1),

for any (x, y) E co x l~. Therefore ker(03BBIc0 l~ - A) = {0} and
Im A) is closed for any A E (see [TL], IV, 5.9) and,
consequently, Bc(0,1) C pa_p(A).

Since the function:

is locally constant (see [Ka], IV, 5.17) and Bc(0, 1) is connected, it follows
that

We remark that Im A is not the range of any continuous projection on Co xe~
(see [P], example at pages 366 and 367); consequently, (co x A is

infinite-dimensional.

Therefore u(A) = Bc(O, 1) and = Bc(0,1).
It follows that U = ôBc(O, 1), and therefore r3(A) = 0.

We prove that r2(~l) 7~ 0.



Since ImA is not the range of any continuous projection on co x 2~ and
co x A is infinite-dimentional, from (4.3.4) it follows that .

0 E ale(A) (~ vre(A), so that

We prove that {0} U 8Bc(0,1). .
For any A E Im A) = ~~~, y) E ~o x :

there exist u E co and v E ~oo such that Au = x and Av - H-1 (u, v) = y} _
= {(x, y) E co x e~ : there exists v E e~ such that av-H-1(~/a, v) = y} =
= E Cp x : there exists (vn)n~N E foo such that
03BBv2n - = Y2n and av2n+1 - vn = y2n+1 for any n EN}. .

We remark that, for any positive odd integer h, there exist k E NB{0}
and n E N such that h = -~- 2k _ 1.

In fact, if we put k = ma.x{ mEN: : h ~- 1 is divided by 2’"}, it follows
that k E N~{0} (because h + 1 is even) and there exists n E N such that
h + 1 = 2k(2n + 1); consequently, h = 2k+ln -~ 2k - 1. It is not difficult
to verify that the function f from (N~~O}) x N onto 2N + 1, defined by
f((k,n)) = ~- 2k - 1 for any (k,n) E (N~{0}) x N, is one-to-one.
Obviously, also the function ~ : : (k, n) e N x N 2014~ 2k+ln + 2~ - 1 6 N is
one-to-one and onto, and 2N = x N).

By induction on k, it is not difficult to verify that, if Av2n - = y2n
and Av2n+1 - vn = for any n E N (where E co and 

E ~co ), = ~l~~ik~-2B r~n’+-.~~~_~ for

any (~) ~ N x N.
We remark that, as  1, converges for any

n E N and for any E 

Co, E and also the sequence (defined
by : : = (1/ak+z) (xn for any (k, n) E N x N)
belongs to l~, since 1/|03BB|k+2  +~ it follows that +°° =
-xn/03BB for any n ~ N .



. Conversely, if ~o and E .~~ are such .that

for any n E N and the sequence (Vn)nEN is defined as above, it is not
difficult to verify that = y2n and = for any
nEN.

Moreover, for any ( k, n ) E N x N,

We have thus proved that Im A) = E

co x2~ : : ~~ o .B~yy~j "~ = for any n E N} for any A E BC(0,1)B{0}.
Let A E J9c(0,l)B{0}. For any x = E co and for any

!/ - (yn)n~N E We define _ -xn/03BB - 03A3+~i=1 03BBjyg(j,n) and

y) = for any n E N.



Since ~pin~(x, y)~  + for any n E N, it follows
that

and

Consequently, the linear operator Px : co x P~ --~ co x 2~ ( where

y, = Cx, y)) n~N) for any (x, y) E co x is continuous

and  1 + Moreover, since, for any (x, y) E co x e~,

for any n E N, it follows that Im Px C Im(03BBIc0 l~ - A). Therefore,
since, for any (a?,!/) E Im(03BBIc0 l~ - A) and for any n E N, =

- - - (x~ y) for any (~~ y) E
Im - A). Consequently, ~’a is a continuous projection on co x ~oo
and Im Pa = Im A), so that a ~ (see [CPY], (4.3.4)).
We have thus proved that

Hence



Since r2 (A) is not always contained in r3 (A) and r2 (A) C r4(A), it follows
that r4(A) is not always contained in r3(A). - ~ ~ - ~ -

- 

The following example shows that is not always contained in I~2 (A).

EXAMPLE 1.12 Let K be a compact nonempty connected subset of
the complex plane and let be a sequence of elements of K such

that = K.

We consider the complex Banach space (N, co x 
.r~ E co x for any n E N and E N}  with the

canonical supremum norm. Since K is compact,.- the sequence is

bounded, so that, if A is the operator of Example 1.11 and 6 E R+ is such
that 6 > diam K,

+ 03B4A)xn)n~N E X l~)
and ~ ((03BBnIc0 l~ + II  (IIAII + supn~N|03BBn|)~(xn)n~N~ for any

E X 

Consequently, the linear operator T : : co x - co x .~~)
(where T(xn)n~N = + 03B4A)xn)n~N for any

x is continuous.

For any n E N, we consider two closed subspaces of Co x foo),

and

Obviously X n is isomorphic to co x .~~ and, since both X n and Yn are
invariant under T, from [TL], V, 5.4 it follows that, if Tn denotes the
restriction of T to Xn , ,

(see Example 1.11 and [TL], V, 3.4).
Therefore 6).
We put K1 = {03BB E C : dist (03BB, K)  03B4}; it is not difficult to verify that

UnEN b) C and that I~~ is connected.

We prove that



For any A E there exists e > 0 such that ~ ~ - ~n ~ > S( 1 + ~)
for any n E N . Since ( ~ - 1 + ~ for any n E N, it follows that
dist ((A - ~(~~~ = dist ((a - ~n~/~, B~(o,1)) > ~ for any n E N.

Therefore, by [DS], VII, 6.11, an)/~, : n E N}  -i-o’o,
so that ((1/03B4)R((03BB - an)ls, A)xn)n~N E c0 X for any E

co x and the linear operator

(whereF03BB(xn)n~N = ((1/03B4)R((03BB - An)/6, for any E

c~ x is continuous.

It is not difficult to verify that Fx T) = Il~(N,c0 l~) =

T) F03BB for any 03BB E CBK1.
Therefore CBK1 C peT) and .R( a, T ) = Fa for any 03BB E CBK1.
We have thus proved that

We put I~o - ~a E C : ~~ : ~ E I~~  ~}; obviously, Ko is
open and contained in ~~1 and, as diam K  6, K c Ko . It is not difficult
to verify that is a convex set.

We prove that

We recall that (1 - for any x E co x ~~
and for any  E BC (o,1 ) (see Example 1.11 ). For any A E Ko, there exists
e E (0,1) such that : n E N ~  6( 1- ~ ); consequently, for any
(xn)n~N E x l~),

Therefore ker ~~I~~ ~N~~o x~~ ~ - T) = ~0~ and T) is
closed for any A E I~o and, consequently, Ao C .



For any A E Ko, since (co x A) is infinite-
dimensional (see Example 1.11) and obviously it is isomorphic to a subspace
of " ....

for any n E N, it follows that

is infinite-dimensional, so that ind T) = -oo.
Hence

We prove that

For any A E C, we prove that, if T) is the range of

a continuous projection on x too), Im (((a - A) is
the range of a continuous projection on co x too for any n E N.

Suppose that Im T) is the range of a continuous pro-
jection P on x 

For any n E N, we define the operators

and

in the following way: Pn(xk)k~N = xn for any (xk)kEN E x l~)
and Jnx = for any x E co x .~~.

Obviously, Pn Jn = 

and

If we consider the linear and continuous operator PnPJn on co x it

follows that



Moreover, for any x E Im (((A - A),

so that

Therefore PnPJn is a continuous projection and

We have thus proved that, if Im T) is the range of a
continuous projection on is
the range of a continuous projection on co x .eoo for any n E N.

Since Im A is not the range of any continuous projection on co x .eoo (see
Example 1.11), it follows that Im T)) is not the range of
any continuous projection on co x for any n EN, so that, since

C Ko C C by [CPY], (4.3.4).
Therefore

We prove that

Let A E Ko ~I~. For any n E N, we put ~cn = (~ - ~n)/~. Since ~ E I~o ~K,
it follows that > (1/b) dist > 0 for any n E N and there exists
e E (0,1) such that  1 - e for any n E N.

Obviously,

we prove that the equality holds.

Let (Xn)nEN E x be such that xn E Im A) for
anynEN.

For any n E N, there exists yn E co x .~~ such that



so that (see Example 1.11)

and, consequently, 
Therefore (yn)nEN E x .~~).
In addition,

so that

Therefore

For any n E N, we define the continuous projection on co x like
in Example 1.11. We recall that

for any n E N (see Example 1.11 ).
Consequently, E x for any E

co x and the linear operator

(where P(xn )nEN = for any (xn)n~N E x 

is a continuous projection. Moreover, since obviously Px - x for any
x E Im T) and E Im - A) for any n E N
and for any x (see Example 1.11), it follows that
Im P = Im T).
We have thus proved that Im - T) is the range of a

continuous projection on x for any 03BB E Consequently,
by [CPY], (4.3.4), C 

Therefore



We prove that

Let A E If there exists n E N such that (a - An[ = 6, since
(~ - An)/6 E 8BC(o,1) = (see Example 1.11) it follows that
the operator Tn defined before is not a semi-Fredholm element of Lc(Xn ).
Consequently, A E by Lemma 1.7.

If, instead, ~A - ~n ~ ~ 6 for any n E N, since E

Ii ~  ~  E K} and K is compact and connected, it
follows that there exists 03BB E such that |03BB - 03BB| = 6. Since

(À - ~,,)~s E 9Bc(0,1) = (see Example 1.11), by [TL], V, 4.1 there
exists a sequence (Wn)nEN of elements of co x .~~ such that = 1 for

any n E N and A) wn converges to 0 as n ---~ -f-oo.

Since 03BB E K, there exists a subsequence of (03BBn)n~N such that
~1 n~ ~~ ..

Hence

converges to zero as j -~ +00.

Besides, = = 1 for any j E N and, 
for any n E N, ((A - A is one-to-one for any n E N

(see Example 1.11). Consequently, is one-to-one, so that

T) is not closed (see [TL], IV, 5.9).
Therefore

We have thus proved that

Hence r(T) = .I~1, _ 

11 U ( K1 ‘~~0 ~ .

Suppose now that K does not consists of a single point.
Let /-lo E I~ and let X be an infinite-dimensional Banach space. We

consider the linear and continuous operator on co .



From [TL], V, 5.4 it follows that ® = u(T) U = Kl. .
Moreover, by Lemma 1.7, = and

(T ® = U 

We prove that, for any A E Im T ® 0IX)
is the range of a continuous projection on co x ® X if and

only if Im T) is the range of a continuous projection on
co x foo).

Let A E From [TL], V, 5.2 it follows that

Therefore, obviously, if

is the range of a continuous projection Q on co x 

is the range of the continuous projection Q (B Ix on co x X.

Conversely, it is not difficult to verify that, if

is the range of a continuous projection P on co x and

and

are the natural maps,

is the range of the continuous projection QPJ on x 

Therefore, since = C P9 F (T ), from 
(4.3.4) it follows that



Hence =1~1, = =

U and n 03C3re(T ® = K U 

Since = ~ ~o } and Ko is an open set, it follows that
is a component of 0 IX ). Hence E r3(T ® 0 Ix ).

Since o is connected and does
not consist of a single point, it follows that

so that 0 ~ r2 (T C 0IX ).
Therefore r3 (T ® is not contained in r2(T ® ~

Since r3 (A) is not always contained in r2(A) and r3 (A) C r4(A), it
follows that r4 (A) is not always contained in r2 (A).
We remark that Example 1.8, Example 1.9 and Example 1.10 have been

given in Hilbert spaces, whereas necessarily the spaces of Example 1.11 and
Example 1.12 are not Hilbert, as r2 (A), f3(A) and r4 (A) coincide in a
Hilbert space.

THEOREM 1.13.- Let X be a complex nonzero Banach space and let
A 6 = = C

= = = 

moreover, if a(A) = r3(A) U all the sets above coincide.

Proof. - From Theorem 1.6 it follows that I‘1 (A) U C ~(A) U
C fs(A) U Ps F(A) C U C r4 (A) U Ps F(A) for

any j = 2, 3 and r1 (A) U C ro(A) U P8 F(A) C rs(A) U Pa F(A).
We prove that

Since C C - U pa F(A) U 
it follows that = 

Therefore, by Lemma 1.5, = ~~~ for any a E 
such that = It follows immediately that

Therefore r.~(A) U c rs(A) U pF(A) and, consequently, r2(A) U
= r3(A) U = r4(A) U = r5(A) U 



Obviously, C rl(f1).
o 0

C for any n E Z~{0} and pa_p(A) C 
~p~, it follows that

and, consequently, c 

Therefore

We prove that, if

We remark that D (p8 F(A) U r3(A)) - 0. Conse-

quently, if r3(A) U is dense in r(~), ~(A) n = 0 and

therefore, since n = (~(A) n U =

U U /?~_jp(~.). It follows immediately that =

U and therefore C 

We have thus proved that, if r(A) = r3(A) U (which is equi-
valent to r(A) = - r4(A) u p~_F(A), = -’

U p~_F(A), U = U any j = o, ... , 5.
a

We remark that, if r3(A) U y(A), ,peA) U may be

strictly contained in The following is an example.

EXAMPLE 1.14 Let us consider the complex Hilbert space .~2 (Z) and
the linear and continuous operator



(where {en}n~N denotes the canonical basis of .e2(Z)). We recall that
7(!7) = Bc(0,1), and BC(o,1 ) C (see .

IV, 5.25)..
If 0 denotes the null operator on .~2 ( Z ), we consider the linear and

continuous operator 0 on .~2(Z) ~ .~2(Z). From [TL], V, 5.4 and
Lemma 1.7 it follows that r(!7 ® 0) = ® 0) = ~0~ U

and C ~ 0). Therefore ® 0) =
= 0 and ® 0) = ~0~ U Consequently, r5 (U ® 0) = ~0}
and ® 0) = 0, so that C 0) U ~ 0) _ ~ c fo~ = 0).
a

The following result is an immediate consequence of Theorem 1.13,
Theorem (1), Theorem (2) and of the remarks after Theorem (1) and
Theorem (2).

COROLLARY 1.15. -- Let X be a complex nonzero Banach space and let
A ~ Lc(X). Then the following conditions are equivalent:

The equivalent conditions i), ii), iii), iv), v), vi) and vii) imply the
following condition : :

viii) A F ~(X ).
Besides, if X is a Hilbert separable space, all the conditions i), ii), iii),

iv), v), vi), vii) and viii) are equivalent. 0

2.

If X is a complex nonzero Banach space and A ~ we put

S5(A) = : a E w~ : w is a component of U 



~2 (A) = : ~1 E w~ : w is a component of n U

~{A) - ~ ~ E (if P8 F(A) - ~, we put
=va). ~ ~ v 

’

We recall two recent characterizations of R(X ) for a separable Hilbert
space, that will be useful afterwards.

THEOREM (3) ([CM], 2.6 and 2.5).- Let X be a complex nonzero
separable Hilbert space and let A E then A E R(X) iff r(A) =
= ,Q(A) V ~2 (A). D

THEOREM (4) 2.6 and [AFHV], Th. 14.1). Let X be a complex
nonzero separable Hilbert space and let A E then A E R(X) 
r{A) = V b5 (A). D

We remark that the proof of the sufficiency of the condition r(A) =
= ~3(A) V S5 (A) for membership in R(X ), given in [AFHV], Th. 14.1, can
be repeated without alterations in the general case of a complex nonzero
Banach space. Therefore the condition r(A) = V ~5 (A) is at least
sufficient for membership in R(X ) for any complex nonzero Banach space
X.

DEFINITION 2.1. Let X be a complex nonzero Banach space and let
A E We define:

s*(A) = a E 

03B40(A) = sup{inf{|03BB| : 03BB E w is a component of (03C3(A)/03C1±s-F(A)) U
(Un~Z(o 03C1ns-F(A)]03C1n s-F(A) )}

(if 03C3(A)/03C1±s-F(A)) U Un~Z(o 03C1n s-F(A) B03C1ns-F(A))) = , we put
~o (A) = ~~a

: ~ is a component 

~$f ~~ we put ~1 (A) = 0~~
S3(A) - E w~: w is a component of U 

and

b~{A) = E w~: w is a component of U ~~°,(A)~ . D

We remark that ~* (A) - : ~ E w ~ : w is a component of
~(A) ~, ~* {A)  r(A), bJ (A)  r(A) for any j = 0, ... ,5 and, if X is



a Hilbert space, = ~3(A) = ~4(~4) (because = =

n in a Hilbert space).

THEOREM 2.2. - Let X be a complex nonzero Banach space and let
.4 E Then ~*(A)  Ss(A)  ~~(A)  ~4(A) for any j = 2, 3 and
~1 (A) C ~o(~); moreover, ~4(A) = s2(A) v ~3(A).

Proof. - In [CM], 2.4 the inequality f*(A)  ~5(A) is proved in the
case of a separable Hilbert space. Since C U C

n U r~(~) in any Banach space, the proof of [CM], 2.4
can be extended to the general case of a complex nonzero Banach space,
without alterations. Therefore S*(A)  b~(A).
We prove that ~5 ( A)  ~? ( A) for any j = 2, 3.
Let C be a component of U ~~° (A). If C n o~p (A) ~ 0, it follows

that C consists of a single point of so that C is also a component
of U ~p(A) and n are(A)) U and, consequently,
b~ (A) > ~ C} for any j = 2, 3. If, instead, C C C is

a component of and therefore, by ~C,, III, 21 B.8, 8C C C

C ule(A) n Hence there exists A E C n C

n are(A). Since C n crre(A) c it follows

that U c~.~°(A)) C n ure(A)) U ~p(A)) C C and,
consequently, as ~(~4) ~ E U and ~~(A) >

E n crre(A)) U ~P(A))}, ~J(A) ~ ~u E C~ for
any j = 2, 3.

Hence S J ( A) > E cv ~ : c,~ is a component of U

= b~,~ (A) for any j = 2, 3.
Since any component of is a componet of a,n (A) (see Theo-

rem 1.3) and the points of are isolated in a~(A), it follows obviously
that ~3( A)  s4(A).
We prove that

Let C be a component of n U 7~(~4.). Since, by Defini-
tion 1.2, any component of n crre(A)) has nonempty intersection
with it follows that C n U ~ ~. Consequently, C
contains a component D of U so that > 

: 

Hence ~4 ( A) > : A E w } : w is a component of

n are(A)) U ~P(A)~ = ~2(A)~



We prove that

We have proved that ~2 (A) V ~3 (A)  s4 (A). Since any component of o,n (A)
which is not a component of is a component of fl ore(.A)
(see Theorem 1.3), and the points of are isolated in o(A), it follows
that ~4(A) = : p ~ ~} : ~ is a component of 
s2 (A) v s3 (A).

Therefore

We prove that

We put

o

and we recall that, as n = ~_

Hence, s(A)Bpe F(A) = Q(A)Bp F(A) and

Therefore is both open and closed in s(A) and, consequently,
any component of is a component of s(A}. Since cr(A) =

implies = 0  (see Definition 2.1), it follows that

~1(A)  ~4(A). 0

We shall prove that none of the inequalities enunciated in Theorem 2.2
can be inverted.

First of all we prove that, generally speaking, there is not any relationship
between the chains S* (A)  ~5 (A)  ~~ (A)  ~4 (A) ( j = 2,3) and_



The following example shows that ~o (A) may be strictely smaller than
s* (A).

EXAMPLE 2.3 We denote by S the unilateral left shift operator
on .~2 and by 0 the null operator on £2. Let us consider the operator
A = 0 ® (2r.~Z + S) ~ ~ .e2 ).

From [TL], V, 5.4 it follows that o(A) = ~(o)U(2I~2 -~-,S‘) = ~0} UBC(2,1)
(see ~Ha~, Sol. 67 and [TL], V, 3.4). Hence the components of are ~0}
and B~ (2,1 ), so that b* (A) = E BC (2,1 ) ~ = 1.

Since ps_F{oS‘) n cr(,S‘) = = BC(o,1) (see [Ka], IV, 5.24), it
follows that -~ S) n + S) = .-~- S) = Bc(2,1).
Consequently, since 0 is not a semi-Fredholm operator, pg_F(A) fl =

= Bc { 2,1 ) by Lemma 1. 7 and therefore

Hence b° (A) = 0  1 = S* (A).
The following example shows that ~4 (A) may be strictly smaller than

~~ ~A).

EXAMPLE 2.4 .-Let T E be such that r(r) = [2,3]. Since
C ff (~’) = 0 and = n ~(T ) _ ~,

it follows that = 

We denote by S the unilateral left shift operator on f2. Let us consider
the operator A = -~- S) ~ T E ~ .~2 ). From [TL], V, 5.4 it follows
that = -~- S) U = BC(1,1) U [2, 3] (see [Ha], Sol. 67 and [TL],
V, 3.4).

Moreover, since p9_F(S’) fl = = (see [Ka], IV,
5.24), and therefore ~-- S) n + ~5’) = + S) = Bc(1,1),
from Lemma 1.7 it follows that fl ff(A) = = Bc(1,1).
Hence = = (2, 3~, so that ~1(A) - 
A ~(2,3]} =2.

Since .~2 is a Hilbert space, S~ (A) = b2 (A) = ~3 (A) - :

A E w~ : c,~ is a component of U ~p(A)}. Since n

a(A) = Bc(I,I) and there are no isolated points in a(A), it follows
that U = aBc(I,I) U ~2, 3~, which is connected. Hence

84(A) = : A E U [2,3]} = 0  2 = b’1(A). 0



The following example proves that does not always coincide with

W).
EXAMPLE 2.5 . -- Let A E ~l2) denote the operator of Example 2.3.

We recall that r(~) = {0} U Bc(2,1) and n Q(A) = =

Bc(2,1). Let us consider the operator

A ~ 2It2 E l2 ~ l2).

From [TL], V, 5.4 and Lemma 1.7 it follows that u(A C 2I~2) = Q(A) U
= ~~~UBC~2,1) and = =

J?c(2,l)B{2}.
Hence

and

so that

Consequently, ~ 2I~~ ) = 0  2 = ~ 2I~z ). 0
We remark that the direct sum with the null operator in Example 2.3

and Example 2.5 prevents the sets

and, respectively, ® 2I~~ ) from being empty. Hence, the
inequality ~a (A)  ~* (A) in Example 2.3 and the inequality ~I (A ~ 2I~2 ) 
~So(A®2I~2) in Example 2.5 are intrinsic and do not depend on the arbitrary
definitions which make ~1 and So equal to zero in the case of the related sets
being empty (see Definition 2.1).

The following example proves that ~* ( A) does not always coincide with
&#x26;5(A).

EXAMPLE 2.6. Let us consider the unilateral left shift operator ,S
on £2. We recall that = J3c(0,l), = and



= BC(o,1) (see [Ka], IV, 5.24), so that = and

or°(~S’) = 0. Hence ~(~) = 0  1 = ~5(S’). ~ ...

03B45(A) may be strictly smaller than b2 {A) and 03B43(A). The following is an
example.

EXAMPLE 2.7. Let us consider the operator A E L~(.~2 ) of Example
1.10. We recall that u(A) = ue(A) = J?c(0,1) and us-F(A) = 8BC(o,1).

Therefore ~s {A) = E = 0. Since ~2 is a Hilbert

space, it follows that ~~ (A) = ~3 (A) = E = 1 > 0 =

An example of an operator A such that ~* (A)  ~~ {A)  a2 (A) is given
in [CM], page 183.

Now we prove that, generally speaking, there is not any relationship of
inequality between ~~ (A) and b3 (A).

The following example proves that b~{A) may be strictly smaller than
s2(A).

EXAMPLE 2.8 Let A E Lc(co x denote the operator of Exam-

ple 1.11. We recall that = Bc(0,1), = 8Bc(o,1 ) and
n ~o~ U ~).

Let us consider the linear and continuous operator Ic0 l~ + A. It

is not difficult to verify that + A) = 1 + o(A) - 
+ A) = 1 + = and + A) n

- + A) = 1 + n = {1} U Hence

+ .~~ = : ~, E ~)~ ~ 0  ~ _ + A).

LEMMA 2.9. - be a normed real space such that dim X > 1 and let

K be a convex subset of X , bounded if k’ ~ . Then ~K is path-connected.

Proof. - If ~~’ fl ~, = ~~ and consequently is convex. Hence, in

particular, is path-connected.

If, instead, there exists uo E K, K is bounded. We put M = :

x E For any v E 8Bx(O,I) and for any A E (M + 
+ > ~,~,~ ~.- > M, so that uo + K.

We define the function e : : aBX(o,1) -~ (o, M + (where e(v) =

sup{03BB E (0, +~) : uo E K} for any v E aBX(o,1)). Obviously,
uo + e(v)v E 8K for any v E aBX(o,1 ).



Since uo E K, it is not difficult to verify that, for any u E K,
u0 + s(u - ’ u0) e ’ k ’ for ’any’ ’ s e [0,’ 1 ): ’ Therefore’ ’ ( uo ’ ’+ Av ’ ’ : ’ A ’ ’ e
[0, +~)} fl 8K = {uo + for any v e and, obviously,

- ~~u - for any u E aK.

We prove that e is a continuous function.

Suppose that u E 8BX(0,1) and (un)n~N is a sequence of elements of
8BX (0,1) such that un -~ u. Since e(un ) E ~0, ~1~1-+- for any n E N,
there exists a subsequence (un; )jEN of (un )neN E [0, M + such

that e( un. ) converges to ~ as j -i +00. Hence uo + n + uo + ~u,
so that, since uo + E 8h’ for any j EN, also uo + ~u E 8K.
Consequently, 0  r~ = e(u).
We have thus proved that, for any sequence (un)nEN in 8BX(0,1 ) which

converges to u E aBX (0,1 ), there exists a subsequence such that

converges to e(u) as j --~ -f-oo. Therefore e is continuous.
Since dimX > 1, J~B{0} is path-connected. Hence, for any (u, v) E

8K x 8K, there exists a continuous function -y : [0,1] --~ X B ~0~ such that
y(0) = u - uo and ~y( 1 ) = v - uo. Since E is continuous, also the function
p : [0,1] (where - uo + ~(y(t)~ ~~~(t) ~~ ) for any

t03B3(~)[0,1]) is continuous. Moreover, p(0) = uo + e((u - 
= Uo + u - Uo = u and p(l) = Uo + ~((v - u0)/~v - uoll)(v -
= Uo + v - Uo = v.

Hence 8I~ is path-connected. 0

LEMMA 2.10. - Let X be a normed real space such that dimX > 1, let

Ki be a connected subset of X and let Ko be an open, bounded and convex
subset of X, such that I~o C K1. . Then I~1 is connected.

Proof . If I~o = 0, the thesis is immediate.

If Ko ~ ~, since Ko is bounded and X is connected it follows that
0. Moreover, ~K0 is path-connnected by Lemma 2.9 and, as Ko

is open and I~o C , 8Ko C Kl 
Let Fi and F2 be two closed sets in the relative topology of Ki BKo such

that F1 nF2 = 0 and Fi UF2 = K1 Bh o . Since ~K0 is connected and contained
in there exists j E {1,2~ such that 8~~o c It is not restrictive to
suppose that 8Iio C Fi. We define G1 = Fi U Ko and G2 = F2. Since K1 BKo
is closed in the relative topology of K1, also Fi and F2 are closed in the
relative topology of .F~1. Consequently, G1 and G2 are closed in the relative



topology of K1. Moreover, G~ n G2 = 0 (because Fi n F2 = 0, F2 C I~1 BI~o
and 8Ko C Fi) and G~ U G2 = Fi U F2 (K1 BKo ) U Ko = Since

and K1 is connected, it follows that F2 , .= G2 = . Hence- K1 BKo is .
connected. 0

The following example shows that b2 (A) may be strictly smaller than
S3 (A).

EXAMPLE 2.11 Let K be a nonempty connected compact subset of
the complex plane such that dist(0, K) + E I~} > diamK
(which implies that 0 ~ K) and let 03B4 E R+ be such that diamK  &#x26; 

We define E C : e I~ }  ~ } and
I~1 - ~~ E C : ~}, like in Example 1.12. We recall that
K C Ko C K1, is convex and is connected.

Hence, since Ko is open, Ko C I~1 is closed and the complex plane
is a 2-dimensional real normed space, h’1 is connected by Lemma 2.10.

Since K C Ko, K is open and closed in the relative topology of
BI~o ) U K. Therefore the components of are K and I~1 .

We prove that

If > 6, let A be such that I a ( = dist(0,K). Then
I a - (A - 03BB03B4/|03BB|)I = 03B4, so that A - ( E K1BK0. Moreover, :

,~ E =  lAl = = E ~~.
If  max{lal : A E r~~, 0 E so that e

If E I1’ ~  6, let A be such that I ~ = E

r~~. Then 0  s - and )A + a(~ - lal)/lall - ~, so that
A - I E h~l Moreover, E x1 BKo ~ - I a - ass I a I I =
8 - la)  dist(0, K) = E I~~.

Suppose now that K is not contained in dist(0, K)), let E K
be such that I > dist(0, K) and let X be an infinite-dimensional Banach
space.

We define the operator



like in Example 1.12. We recall that = Kl, =

C _ {l~o} U and ..

(see Example 1.12). Hence ~p (T ~ poIx ) = ~ and b2 (T ® Ix ) = :

a E K~ = dist(0, K).
Since po E K, the components of po Ix ) are ~~o ~ and Kl 

Hence b3 (T ® 0 Ix ) = > dist(0, K) = b2 (T ® po Ix ). []

We remark that Example 2.3, Example 2.4, Example 2.5, Example 2.6
and Example 2.7 have been given in Hilbert spaces, whereas necessarily the

spaces of Example 2.8 and Example 2.11 are not Hilbert, as b2(A), 
and ~4(A) coincide in a Hilbert space.

Obviously, Example 2.8 and Example 2.11 prove also that none of the
two inequalities ~Z(A)  ~~(A) and ~3(A)  ~4(A) can be inverted in a
generic Banach space, since ~4 (A) = ~2 (A) V b3 (A) (see Theorem 2.2).

THEOREM 2.12. - Let X be a complex nonzero Banach space and let
A E Then s*(A) v = ~o(A) v = ~1(A) V 
~2 (A) v = ~3 (A) v = ~4 (A) v = ~5 (A) v 

Proof . From Theorem 2.2 it follows that S*(A)V  ~5(A)V ~(A) 
 s4(A)v,a(A) for any j = 2, 3 and ~1  so(A)v,a(A).

We prove that, if s4 (A) > V A E ~p (A)~, s4 (A)  s5 (A).
Let C be a component of such that : A E C} >

V : ~ E ~p(A)}. Hence C n pa_F(A) = ~. Since n

C U U it follows that C C and

therefore C is a component of and of Since

= C is a component of (and hence
also of U ~p (A)) by Lemma 1.5, so that S5 (A) > E C}.
Therefore b4 ( A )  ~5 ( A ) .

It follows immediately that

Since any component C of such that : ~ E C~ > is also

a component of it follows that ~* (A) V ,C3(A)  ~1 {A) V 
We prove that, if bo (A) > ~3{A), ~o (A)  ~* (A).



Let C be a component of

such that : A E C} > ,Q(A). Then C C E C : :

dist(À,  : ~c E C} -~3(A)}, which is closed and contained
in Consequently, C is closed and it is a component of

so that, by Lemma 1.5, C is a component of ~(A). Hence
b*(A) > : A E C}, and therefore S*(A) > 

It folllows immediately that bo (A) V  b* (A) V 
We have thus proved that

The following result is an immediate consequence of Theorem 2.12,
Theorem (3), Theorem (4) and of the remarks after Theorem (4).

COROLLARY 2.13. Let X be a complex nonzero Banach space and let
A E Then the following conditions are equivalent:

i) r(A) = b* (A) V 

it) = 

iii) r(A) = bl (A) V 
The equivalent conditions i), it) and iii) imply the following conditions,

which are equivalent :

iv) r(A) = b2 (A) V 

v) ~3 (A) V 
vi) r(A) = b4(A) V /3(A);
vii) r(A) = b5(A) V 

The equivalent conditions iv), v), vi) and vii) imply the following condi-
tion :

viii) A E R(X).
Besides, if X is a Hilbert separable space, the conditions iv), v), vi), vii)

and viii) are equivalent. ~



We remark that the conditions i), ii) and iii) are not equivalent to the
conditions iv), v), vi), vii) and viii). Here is an example.

EXAMPLE 2.14 . Let us consider the complex Banach space .e2(Z) and
the linear and continuous operator

of Example 1.14. We recall that = Bc(0, 1), = 8Bc(0, 1)
and = = 

Since = 0, = 0. Moreover, 6*(U) = 0 and b3(U) = 1.

Hence ~()7) V = 0  1 = ~3(U) V = r(U), so that conditions iv),
v), vi), vii) and viii) are satisfied, whereas conditions i), ii), and iii) are not
satisfied. D

We have thus proved that the inequality of Theorem 2.12 may be strict
and that the conditions i), ii) and iii) are not necessary for membership in
R(X), even if X is a separable Hilbert space.

3.

DEFINITION 3.1.2014 Let X be a complex nonzero Banach space. We define

and

By Corollary 1.15 and Corollary 2.13, Ro{X ) C R(X), ~o(X) C E(X)
and, if X is a separable Hilbert space, Ro {X ) = R(X ) and ~o (X) = ~(X ).
Therefore it is interesting to study algebraic and topological properties of
Ro(X) and ~o(X).
We recall that, if X is a Hilbert space and A E Lc(X) is normal,

ker(AIX - A) = for any A E C (so that = 0) and, for
any A E n p°_F(A), ~ is a pole of first order of the resolvent (see [TL],
VI.3, Prob.9), so that, since n = {~(A) n p8_F(A)) U ar°{.4),
À E 7~(A). Therefore = Hence, if N(X ) denotes the
set of all linear, continuous and normal operators on X, , Ro (X ) n N(X ) =

n N(X ) and ~o(X) n N{X ) = reX) n N(X ) (see ~BJ,1.5 and 2.4).



If X is a complex nonzero Banach space, since, for any A E Lc(X),
c r3(A) (see Theorem 1.6) and A E if and only if r(A) = ~(.4)

(see [B], 1.5), which implies r(A) = ~3(A) (see Corollary.2.13), it follows
that r(X) C Eo(X) C Ro (X ) and c Ro {X ). It is immediate to remark
that both Ro(X) and Eo(X) are closed with respect to the product with
a complex number. The following example shows that, generally speaking,
7r(X) and Ro(X) are not invariant under translation (so that they are not
always vector subspaces of Lc(X)).

EXAMPLE 3.2. Let X be a complex infinite-dimensional Hilbert space
and let A E Lc(X) be such that = 8Bc(0,1). Then 6*(A) = 1 = r(A),
so that A E c Ro(X).

Nevertheless, we prove that Ix + ~4 ~ Ro(X).

Since C ?(~) = 0 and r(A) = 
~p{A) = 0, it follows that ~8_F(_~4) = 8BC(0,1 ). Consequently,

+ A) - ~ and + A) = 8BC(1,1) = v(Ix + A), so that
~(~x+A)=0=~a(Ix+A)..

Therefore + A) V ~3 (Ix + A) = 0  2 = r(Ix + A), so that
Ix + A f/. Ro(X) (and hence it does not belong to either). 0

Example 3.2 proves also that is not always contained in Eo(X).
Hence, since, for instance, the unilateral left shift operator on .~2 (see [Ka],
IV, 5.24) belongs obviously to ~o {.~2 )~~r(.~2 ), there is not any relationship
of inclusion, generally speaking, between Eo(X) and Since C

T(X) c Eo(X), Eo(X) c and c Ro(X) it follows that,
generally speaking, Eo(X), Ro(X) and

Ro(X).
From [B], 2.13 it follows that, in particular, reX) is invariant under

translation. It is easy to verify that is invariant under translation,
too. The following example shows that reX) and Eo(X) are not always
vector subspaces of Lc(X) (a counterexample for reX) has been already
given in [B], 3.1).

EXAMPLE 3.3 . Let us consider the complex Hilbert space .~2(Z). We
denote by the canonical basis of .~2(Z). We define two linear and
continuous operators on .~2(Z),



and

Since T6 = Tl = 0, it follows that = = ~0~ and hence To and
Ti belong to T(.~2(Z)) C 
We put T = To + Ti. It is not difficult to verify that =

xnen+1 for any (xn)nE2 E l2(Z). We prove that T ~ 03A30(l2(Z)) (so
that it does not belong to T(.~2(Z)), either).
We recall that v(T ) = 8BC (0,1 ) (see [Ha], Sol. 68). Consequently,

~ (T ) = 0 and, as ~ (T ) = 0, _ ~ Therefore

We remark that, genrally speaking, reX), Eo(X) and Ro(-X~) are
neither open nor closed subsets of Lc(X). In [B], remarks after 3.3, we proved
that, if X is an infinite-dimensional complex Hilbert space, 7r(X) and reX)
are not closed subsets of Lc(X). Since Ro(X)nN(X) = 7r(X)nN(X), such
a proof can be used to show also that neither Eo(X) nor Ro (X ) are closed
subsets of Lc(X).

[B], 3.4 proves that, if X is infinite-dimensional Hilbert space, T(X )
and 7r(X) are not open subsets of Since it is not restrictive to

suppose that the operator A, defined in the proof of [B], 3.4, is diagonal, and
Ro (X ) n N(X ) = n N(X), it follows that neither nor Ro (X )
are open subsets of 

Let X be a complex nonzero Banach space.
From [B], 3.8 and 3.11 it follows that 7r(X) and, respectively, reX) are

G03B4-sets.

We shall show that also Ro (X ) and Eo(X) are G03B4-sets.
We recall that the function ~3 : -~ [0, -f-oo) is lower semi-

continuous (the proof follows easily from the stability of semi-Fredholm
index, see [Ka], IV, 5.17). We recall also that the function
~5 : : Lc(X ) --~ [0, is lower semi-continuous (the proof of [CM], 2.2 can
be extended without alterations to the general case of a complex nonzero
Banach space).

THEOREM 3.4.2014 Let X be a. complex nonzero Banach space. Then

Ro(X) is a 



Proof. . Since ,Q and 65 are lower semi-continuous, also ~3 V 65 is a lower
semi-continuous function. Hence 03B2 V 03B43 = (see Theorem 2.12) is lower
semi-continuous.

Since the spectral radius function is upper semi-continuous (see [R],
(1.6.16)), it follows that the function r - ,Q V ~ : : ---~ [0, is

upper semi-continuous. Therefore (r - ,~ V ~3 )-1 (~0, l~n)) is an open subset
of for any positive integer n and, consequently,

(see Definition 3.1 ) is a G6-set. 0

DEFINITION 3.5. Let X be a complex nonzero Banach space and let
~ E R+. We define ~of ~ (X ) = ~A E : for any ~ E ~(A), if

fl = 0, contains a nonempty spectral set of A}.
Q

LEMMA 3.6. - Let X be a complex nonzero Banach space and let ~ E R+.
Then Eo~~(X ) is an open subset of 

it follows that, for any A ~ contains a nonempty spectral
set c~a of A; since aa is closed, there exists E (0,6) such that

~(a))~
Since obviously

and is compact, there exist ~1, ... , An E and ~~, ... , E ~~

such that 



By [R], (1.6.16), [Ka], IV,5.17, [M], 1.3 and [Hy], Th. 2.15, there exists 6 > 0
such that, for any T E 6),

Ak E for any k = 1, ... , n and r~(~~ )) contains a nonempty
spectral set of T for any j = 1,..., m.

Let T e and let a E 

If A E ~), since ~k E pg F(T) for any k = 1, ... , n it

follows that ~) n ~ 0. If there exists l~ E ~ 1, ... , m ~ such
that A E ~(~k)), it follows that ~(~k)) C BC(~, £)
and therefore, since ~(!~k)) contains a nonempty spectral set of T,

contains a nonempty spectral set of T. Hence T E ~o~~(X ).
We have thus proved that Eo~~ (.X ) is open.n
LEMMA 3.7. - Let X be a complex nonzero Banach space. Then =

Proof . From (HY~, 2.4, Th. 2.15 it follows immediately that Eo(X) C

Conversely, let A E Let U be an open subset of C such
that and = 0. It follows that Bc(~, ~) contains a
nonempty spectral set of A for any p. E U n and for any 6 > 0, so that,
in particular, U contains a nonempty spectral set a of A. Let P denote the
spectral projection associated with a (see [TL], page 321 ) and let Ao denote
the restriction of A to the invariant subspace Im P. Since = a (see
[TL],V,9.2), a is a spectral set of A and a C U, it follows that 
contains a nonempty spectral set of Ao for any  E -a and for any 6 > 0.
Hence Ao E r(ImP) and, = a. Since a is

open in a(A), from Lemma 1.5 it follows that C Hence, since
U n 0.

Therefore U is dense in and, consequently, A E 

The following result is an immediate consequence of Lemma 3.6 and

Lemma 3.7.

THEOREM 3.8.2014 Let X be a complex nonzero Banach space. Then

Eo(X) is a Gb -set. 0



We remark that if, for any complex nonzero Banach space X, as the
authors of [AFHV] suspect (see [AFHV], page.313), condition ii) of Corollary
1.15 is also necessary for membership in E(X), so that E(X) = and

condition vii) of Corollary 2.13 is also necessary for membership in R(X ),
so that Ro (X ) = R(X ), Theorem 3.4 and Theorem 3.8 are an immediate
consequence of [AFHV], Proposition 14.5. In [B] an example is given to prove
that is not always closed with respect to powers (see [B], 1.10). Since
it is not restrictive to suppose the operator A of [B], 1.10 to be normal, it
follows that, generally speaking, Ro (X ) is not closed with respect to powers,
either (so that, in particular, Ro (X ) is not always closed with respect to the
product of the algebra Lc(X)). .
We recall that reX) is invariant under holomorphic functions (see [B],

2.13) and, consequently, it is also closed with respect to powers, whereas
it is not always closed with respect to the product of the algebra Lc(X)
(see [B], 2.14). The behaviour of with respect to powers and, more
generally, holomorphic functions, will be the subject of a future paper.
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