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On the regular solutions for some classes of
Navier-Stokes equations 

Y. EBIHARA(1) and L.A. MEDEIROS(2)

Annales Faculte des Sciences de Toulouse Vol. IX, n01, 1988

On démontre l’existence et l’unicité de solutions réguliers
pour un systeme de Navier-Stokes. A l’aide d’une hypothese raisonnable
sur l’accroissement du terme non-homogene, on analyse le comportement
asymptotique de la solution obtenue. On utilise la methode de penalisation
de Ebihara associee aux approximations de Galerkin.

ABSTRACT. - In this paper we obtain regular solutions of the Navier-
Stokes equations. We shall work in a suitable space of functions where
we have uniqueness. Under reasonable assumptions on the growth of the
nonhomogeneous term, we obtain the asymptotic behavior of the solutions
as t --~ +00. Our approach is based on Ebihara’s penalizer and the Galerkin
approximations.

0. Introduction

In LIONS [7], TARTAR [12] and TEMAM [13], we can find a methodic study
about the weak solutions of the Navier-Stokes equations (1.1), for space
dimension n. The uniqueness for the solution of (1.1) in this weak class was
proved by LIONS-PRODE [6], when n = 2. For n > 3 and more restriction
on the solutions, there exists some results on the uniqueness in LIONS [7]
(see Remark 1.2 after Proposition 1.3, Section 1, of this paper) SERRIN
[11]. Concerning the regularity of weak solutions we can refer in GIGA [3], ,
RAUTMANN [10], (Cite their references). Some topics are shown in LERAY
[4], LIONS [8]. Our objective in this paper is to prove the existence and
uniqueness of regular solutions for the Navier-Stokes equations and certain
growth of these solutions. Our notations follow LIONS [7] and MIZOHATA [9].
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814-01 - Japan
(2) Instituto de Matematica - UFRJ, C.P. 68530, CEP 21944, Rio de Janeiro, R.J. - Brasil



We can summarize the content of this paper as follows. It contains

three sections. The section one is dedicated to fix the notations, to define
the concept of regular solutions of the Navier-Stokes system, called (m)-
solutions, to obtain certain properties and the uniqueness. At the end of this
section we announce the main results, that is, four theorems which will be
proved in sections two and three. In the section two, we prove theorems one
and two by the Galerkin method. The first one is about the existence of local
(m)-solutins of the Navier-Stokes equations and the second theorem about
global solutions. Finally in the section three, using an argument of EBIHARA
[2], that is, Galerkin method plus a certain penalty term, we prove the
last two theorems, which the first, theorem three, gives certain asymptotic
behavior of the (m)-solutions. The theorem four gives a characterization of
the set of initial data for a particular type of forcing term of the system.

1. Preliminaries and statement of the results

Let n be a bounded open set in Rn, n > 2, with sufficiently smooth
boundary F and 0  T  oo. We represent by Q the cylinder n x [0, T 
and by £ the lateral boundary of Q, that is, r x [0, T~. By u = u(x, t), we
represent the velocity vector

with M, = u $ ( x, t ), defined on ~, with values in reals R.

We use the notations :

u . V =  Mj 2014. and (u . V)M is the vector which the i-th component is

n i
uj ~ai ~xj.

The Navier-Stokes equations are : :



The initial and boundary conditions are :

The problem is that for given f = (/i, /2~ " ’ ? fn ) and uo = ? ’uo2, ~ ~ ~ ,

~ ~ ~ , uon) find the vector velocity u = ~ul, u2, ~ ~ ~ , un) and the pressure
p : f~ -~ R, satisfying the Navier-Stokes equations, the initial and boundary
conditions. Note that v > 0 is the viscosity. In the vector notation, the
Navier-Stokes equations can be written as follows :

We need some functional spaces to formulate our problem about (1.1).
Let ~w~ ~ be a Stokes system, that is,

Since E is smooth enough, we may assume that ~w~ ~ are smooth, say, if
E is in C~-class, then are functions in Hi-class (See [13, p.39]), and
they are orthonormal in By V~ we represent the space of linear
combinations of first ~2,’" , wk and V = Vk. And we define

This is a closure of V by a topology of inner-product and norm

for



o

In a standard manner, by we represent the Sobolev space
of order and by (., ..), product.

Remark 1.1.- We can prove that in V the norm in (1.2) and the
Sobolev norm ~ ~ ~ ~ ~ .~ of are equivalent. For each .~, Vi is a closed

o

subspace of ~H~ (SZ) n Note that, we understand the relation for
v E w = E ~~~

because v = Pk[v] + E Vk’, v’ E Vk) where Pk is a projection from
[L~(~)]" into Vk and V~- is an orthogonal space of V~ in Then we
see that

o

for v E n E Vi, for some y(.~) > 0. We sometimes use
this number ~y(.~). Therefore we can assert :

For u, v, w E V,

o

by applying Sobolev lemma. Here after we put Wk - k =

1, 2, ... .

We also use the well known notation Lp(0, T, X ), Ck(O, t; X ) for a Banach
space X, 1  p  non negative integers. For k = 0 we write C(0, T; X ).
Now we are in condition to give the definition of solution for ( 1.1 ).

DEFINITION 1.1. Let m be a positive integer. A function 2c(x, t) : Q -~
R is said to be an (m)-solutions for (1.1~ in ~0, T[, if it satisfies : :

(22) for every v E V, we have :



a. e. in t E [0, T 
(iii ) u(o) = uo.

By LIONS [7], we know that when f E if there exists a
function u(t) E T; Vl) n L°°(o, t; Vo) such that for any v E V1, we
have :

in the distributional sense in [0, T[, then we obtain a function p(x, t) E L2 (Q)
which satisfies 

_

in the distributional sense in Q.
Note that p(x, t) and p(x, t) plus a constant in S~ solve the problem. This

means that p(x, t) + po(t) is the general solution for (x, t) in ~.
So we have :

PROPOSITION 1.1. Let m > [n 2] + 2 and f E L°°(o, T; W,n_1 ). If there
exists an (m)-solution u(x, t) for (1.1) in [0, T[, then we get a function
p(x, t) such that ~p E L°° (o, T; ~H"~-1 (S2)Jn) and

a. e. in Q.

Proof. - From our definition of the (m)-solution u(x,t) and the Sobo-
lev embedding theorems, we obtain a function p(x, t) which satisfies the
equality :

a.e. in ~. Since the left hand side belongs to L°° (o, T; it proves
the Proposition 1.1.

PROPOSITION 1.2. Let [n 2] + 3 and f E T; W,n_2 ). If there
exists an (m)-solution u(x, t) for (1.1) in [0, T[, then we obtain a function
p(x, t) such that ~p E ~H"’~-2(S~~~n~, and: :



in Q.

Proof . - If we show that u’(t) E C(o,-T; ~",._2), ~ then. the assertion will
hold applying Sobolev embedding theorems.

We know from the definition of t) that it belongs to C(o, t : Vm). In
fact, we have, for 0  t, s  T :

Thus, for a.e. t, s E ~0, T~, and r  m - 1, we have :

because u(t) is the form u(t) = 

Since u(t) is Lipschitz continuous from [0,T] in Vm , as we have proved
above, we have :

for a.e. t in [0, T[ and r  m for v E Vm .

Therefore, we can see that for a.e. t, s E [0, T[, we obtain :

Now, we show for k = m - 2 and a.e. t E [0, T[ : :



We get for a.e. t, s E [0, T[,

Here we know that :

therefore

and

Further, we get :

Therefore, from these facts, we get :



which proves the inequality (1.5).
Thus, if we change the situation of s and t, we should have :

Consequently, adding these two last inequalities, we obtain :

and then,

for a.e. t, s E [0, T[.
Now, for any to E [0, T ~, there exists a sequence in [0, T such that

lim ~~ t  = to, E V,.,1_2. From the inequality (1.5) it follows that
is a Cauchy sequence in V,n_2. So we have the limit (u’(to )) =

Vm-2 , and the limit dose not depend on the choice of the
sequence Therefore, we can say u’(t) E C(o,T; Vm-2 ).

Then, from the continuity of u(t), f (t), we have :

for all t E [0,T[ ~ and v E V. From this we obtain the condition of the
Proposition 1.2.

Q.E.D.

PROPOSITION 1.3.2014 Under the same assumptions as in Proposition 1.1,
we can not have two different (m)-solutions for (1.1~ in ~O,T(.

Proof.-If there exist two (m)-solutions u(t), u(t), then = u(t) -
should satisfy a.e. in [0, T[ : :

Here we know :



because u, ic E T; 
We obtain 

’ ’

Thus,

Since w(0) = 0, we get w(t) = 0 in [0, T[.
Q.E.D.

Remark 1.2. In the case of n = 2 we have uniqueness for ( 1.1 ) when the
solution u belongs to the weak class T; V1) n L°°(o, T; Vo) as proved
by LIONS-PRODI [6]. In LIONS [7] p.84, he proved that if n > 3 and the weak
solutions u belong to :

for 2/s + n/r  1, we have also uniqueness for the weak solutions for
the Navier-Stokes equations (1.1). It is important to observe that the
assumptions of the Proposition 1.3 implies that our (m)-solutions belong
to the above Lions class. So, the proof of Proposition 1.3 follows also from
this Lions result.

Now we state our assertions.

J 
~ 

r _ _ _ _ ~ r ~ B 1 , B r r _ _ ~ 1 i

f’(t) E C(o, ~; W,n_1 ). Then, there exists a positive number 03B4 and a unique
function u(x, t) which is an (m)-solutions of (1.1~ in ~0, b~.

Corollary of Theorem 1. If m > ~n/2~ + 3, the function u in Theorem
1 satisfies ( 1.1 ) for all (x, t) in Q.

THEOREM 2. Under the same assumptions as in Theorem 1, we assume
J(t) E L1 (o, oo; Wm). Then, if

is small enough, the function u(t) exists in ~0, oo~.

THEOREM 3. Under the same assumptions as in Theorem 1, we assume



for some constants C > 0, a > 0. Then we have a function and

positive real numbers 0  T1  T2  -f-oo such that :

and u(x, t) is an (m)-solution for (l,1~ in ~0, Tl ~, and u(x, t) solves of
Definition 1.1 in the interval [T2, ~-oo~. Moreover :

holds, for some C > 0 and large t.

o

THEOREM 4. Let m > [n/2] +2, ,f (x, t) = for g E H (SZ). Then,
we have a set W C V;n+1 such that if uo E W there exists an (m)-solution
u(x, t) for (1.1~ in with initial condition u(x, 0) = uo(x). The set W
is not bounded in 

Remark 1.3. -- Note that u E means u E LOO(O,T;H) for
any 0  T  oo . 

°~

2. Galerkin approximation scheme

In this section we prove the Theorems 1 and 2. We get for u o E Vm+2 a

sequence (a~ of real numbers such that

For each j E N, we define = which belongs to the
space V; w2, ~ ~ ~ The approximated Galerkin scheme consists in

determining such that u~ is a solution of :

We know from the standard theory of ordinary differential equations that

given as a solution of the ordinary differential system, exists in some
interval ~0, b~ ~.



To obtain a priori estimates, we put :

Then Co > 0 is well defined because ~n/2~ + 2. In the following, 
means the solution of (2.2).

LEMMA 2.1. It holds that: :

for t E ~0, b~~, where

Proof. 2014 In (2.2)1 we take v = in [0, 03B4j[. So we get :
.,

We know that from Remark 1.1,

Then, substituting in (2.3) we obtain :

for each t E [0, ~~ [.
Solving this differential inequality, we get the assertion of Lemma 2.1.

Q.E.D.



From Lemma 2.1 and definition (2.1), choosing T > 0 large enough, we
know that for small p > 0, there exists j o E N such that : . 

-

Thus we have proved :

LEMMA 2.2. It holds that: :

Proof . - To obtain ~2.5~ we take v = in (2.2)1. Then
we have :

for 0 C t _ b~ .
So by the estimate (2.4), we obtain :

Applying Gronwall inequality to (2.7) we obtain (2.5).
To get (2.6) we differentiate the equation (2.2)1 with respect to t, and do

v = We have then :



for0t~~. .
We have :

By (2.9), (2.10), the inequality (2.8) can be transformed in the following :

From ( 2.11 ) we get :

If we have boundedness of independent of j E N, then we
obtain the assertion (2.6).

In fact, let t goes to zero in (2.2)1. We get :

for all v E Doing v = ~i=1 in this equation, we obtain :

So, we get :

or

From (2.12) and (2.13) we obtain the estimates (2.6) of Lemma 2.2.
Q.E.D.



By the condition (2.6) of Lemma 2.2, we get :

Consequently, applying compactness argument (cf. [1,7]) to the results in
Lemmas 2.1 and 2.2, we have a subsequence of such that :

--~ u(t) weak star in LOO(O, 5~,; V,.,z+1)
-~ u(t) strongly in Vm for every t E [0, ~~~
~ u’(t) weak star in L°°(0, ~~ : Vm)

as j --~ oo, and from (2.14), the limit u(t) satisfies :

that is, u(t) is Lipschitz continuous in (o, b~,~, with values in Vm.
From this, u(t) satisfies, for a.e. t E [0, the equation :

for all v E V.

Therefore, the function u(t) in an (m)-solution for (1.1) in [0, ~~~. Thus
we have proved Theorem 1.

For the proof of Theorem 2, it is suflicient to prove the following :

LEMMA 2.3. I, f uo, f satisf y :

where

then, for large j, we have :

Proof . In fact, if uo, f satisfy (2.16), we know that :



holds for large j, by (2.1 ). Therefore, in the existence interval [0, ~[ we get :

hence

Integrating from 0 to t this inequality, in the existence interval, we have :

Here, if we have a time t* E (0, S~ ) such that

then at t = t* we should have :

which is a contradiction. This proves the Lemma 2.3.

Q.E.D.
From this estimate we get as in previous argument :

for every fixed T > 0.

Then, applying Proposition 1.3, uniqueness, we have the proof of Theo-
rem 2.

3. Galerkin approximation scheme with penalty term
’ 

In this section we prove the Theorems 3, 4. For this purpose, putting
and (uoi)i~N the same sequences as in Section 2, we set, for

6 >0,



as a solution of the system :

In (3.1) the function F() satisfies the conditions :

The constant K in (3.1) is chosen for uo such that

We have :

LEMMA 3.1. For° large j, ( j > jo), it holds that :

Proof - For large j we have that exists in some interval ~0, b3~, from
( 2.1 ) and (3.3), since it holds that  K for large j, and therefore the
system (3.1) has no singularities near t = 0.

Now, doing v = ~i-1 in (3.1), we get :

Hence, as in a previous manner,



Therefore,

Here, if we have a time t1, (0  tl  b’ ), such that

then we see that

It follows, from the above inequality, that

However, the left hand side of (3.4) should be +00 from (3.2)2. Thus, we
cannot have such t1. This implies our assertion of Lemma 3.1.

Q.E.D.

From Lemma 3.1, we know that exists in [0, oo[ for each E > 0, j >
,70~

Remark 3.1. This type of argument was used by the first time by
Ebihara [2]. .

LEMMA 3.2. - For every fixed T > 0, we have : :

for some Eo > 0.



Proof - We may omit the subindex E, j of representing the function
by u(t). This procedure makes the notation better. Now,. to prove (3.5) we
do v = ~~=i in ~3.1~I and we get ~: ~ . 

’ 

.

Then

Therefore, we get ,

Thus, we have (3.5) of Lemma 3.2.
For the proof of (3.6), we differentiate both sides of (3.1)1 and after we

do v = ai’’‘wi. Then we obtain :

Here, from (3.2), we know that

Therefore, we have :

then,



Thus, if we prove the boundedness of we have the proof
of the estimate (3.6).

In fact, let t --~ 0 in (3.1)i. We get :

From (3.2), we can see that we have :

Therefore, if we take v = ~~~=(o)~ we obtain :

This implies the boundedeness of {, (u~ (o)) ~ ~,n ~ , which proves (3.6) of
Lemma 3.2.

Q.E.D.
From the estimation in Lemmas 3.1, we get, for each fixed E, (0  E  Eo ),

a function which satisfies :

At the same time, we know that :



for each T > 0.

LEMMA 3.3.-

Proof . -- In (3.7) we take v = ~°_° 1 and we obtain

Therefore,

Hence, if .~~ ~2, then,

if > ~r,~2~ 

which proves Lemma 3.3.

Q.E.D.

Therefore, it follows from (3.8) to (3.12), that we obtain u(x, t), such

that :

uE(~, t) ---~ u(., ~) weak star in L°°(o, T; (3.13)
ut(~, t) -+ ut(~, t) weak star in L°°(o, t; Vm), (3.14)
u~(~, t) - u(., t) strongly in C(o, T; Vm), (3.15)

~F (K - |u~(t)|2m ~) ~ ~(t) - weak star in L°° 0 T 3.1f



and > 0 a.e. in [0, T] for every T > 0,

a.e. for t > 0 and for each v E V,

Here we know that :

We have : if 

fact, by the strong convergence uE(t) --~ u(t) in C(o, T; Vm) and

then

Now, we prove Theorem 3.
- From (3.17) we get for a.e. t in [0, 

that is,

Therefore,



From this, we can find Ti > 0 such that :

This implies~)~  ~ 0 ~ ~ Ti, therefore it follows that = 0

In the next step, we do v = u(t) in (3.17) and we get for a.e. t e [O.T] : :

Therefore,

where vo is a positive constant such that Thus

From this inequality we obtain :

holds for some positive constant C, applying I’Hospital Theorem. Next we
get

Then



for some C2 > 0.

Here, we know that there exists po, (0  po ~ 1 ~, such.that

for all u E by using generalized Schwarz inequality :

Therefore, we have :

Thus, we get T > 0 such that :

Therefore, if t > T we get :

and we have :

by assumption.
Thus

for some positive constant C, applying I’Hopital Theorem.



This implies that there exists T2 > 0 such that :

Since  K, t E [T2, oo[, we get x(t) = 0 for t E ~T2, -~-oo[. This shows
that u(t) solves (i) of the Definition 1.1 in 
We finally prove Theorem 4.

01
Since f(x, t) = g E H (S~~ n for any v E V, ( f, v)~ = 0,

k = 0, l, 2, ~ ~ ~ , m, holds. Therefore, in this case, the function u(x, t)
constructed by the system (3.1) and (3.7) should satisfy all the properties
from (3.31) to (3.16) and solves :

In particular as in (3.19), we can find T > 0 such that u(T) E and

So, obtaining 0 0 for t > T, u(t~ solves :

for each v E V, a.e. in t > T.

Therefore, if we put :

where u (t) is the function constructed by our scheme and u(T) is the datum
given by (3.21 ), we can see that W is the desired set for the proof of Theorem
4. In fact, tV is not bounded in because uo E Vm+2 has no restriction
on the size of its norm and U(t) = u(t + T) solves, in our sense, the system :
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which proves Theorem 4.

.. ~ 
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