JOZEF SICIakin
Families of polynomials and determining measures

<http://www.numdam.org/item?id=AFST_1988_5_9_2_193_0>
Families of polynomials and determining measures

JOZEF SICIAK(1)

RÉSUMÉ. — Soit μ une mesure de probabilité sur une partie borélienne bornée non pluripolaire E de C^N, on étudie l’allure de croissance des familles de polynômes ponctuellement bornées μ-presque partout sur E. On définit une fonction $\mathcal{M}(t; E, \mu)$ ($0 \leq t \leq 1$) associée au couple (E, μ). Sous des hypothèses naturelles sur E et μ, on montre que $\mathcal{M}(1; E, \mu) = 1$ si et seulement si le couple (E, μ) satisfait à la condition polynomiale (\mathcal{L}^*), généralisant la condition polynomiale de Leja dans le cas plan, si et seulement si μ est une mesure déterminante pour E par rapport à la fonction L^*_E.

ABSTRACT. — Given a probability measure μ on a bounded nonpluripolar Borel subset E of C^N, we study the growth behaviour of polynomial families which are pointwise bounded μ-a.e. on E. We define a function $\mathcal{M}(t, E, \mu)$ ($0 \leq t \leq 1$) associated to the pair (E, μ). Under natural assumptions on E and μ we prove that $\mathcal{M}(1; E, \mu) = 1$ if and only if the pair (E, μ) satisfies the polynomial condition (\mathcal{L}^*) (a generalization of the Leja’s condition in the plane), if and only if μ is determining for E with respect to the L-extremal function L^*_E.

0 - Introduction

Given a domain Ω in C^N, we denote by $P(\Omega)$ the class of plurisubharmonic (plsh) functions on Ω. Let

$$\mathcal{L} := \{ u \in P(C^N); u(z) \leq \beta + \log(1 + |z|) \text{ in } C^N \},$$

where β is a real constant depending on u. For a bounded set E in C^N define

$$L_E(z) := \sup \{ u(z); u \in \mathcal{L}, u \leq 0 \text{ on } E \}. \tag{0.1}$$

(1) Jagellonian University, Institute of Mathematics, ul. Reymonta 4, 30-059 Krakow - Poland
The uppersemicontinuous regularization $L^*_E(z) := \limsup_{w \to z} L_E(w)$ is called the L-extremal function of E. It is known that if E is a compact subset of \mathbb{C} with positive logarithmic capacity then L_E is identical with the Green function for $\mathbb{C} \setminus \overline{E}$ with pole at infinity.

For a bounded set E in \mathbb{C}^N either $L^*_E \equiv \infty$, in which case E is pluripolar (plp), or $L^*_E \in \mathcal{L}$.

Definition 0.1. We say that a point a in \mathbb{C}^N is an L-regular point of $E \subset \mathbb{C}^N$, if $L^*_E(a) = 0$. A point $a \in \mathbb{C}^N$ such that $L_E(a) = 0$ and $L^*_E(a) > 0$ is called irregular point of E. It is clear that L^*_E is continuous at each regular point. By Bedford-Taylor theorem on negligible sets the set of irregular points of any subset E of \mathbb{C}^N is plp. If E is a compact set and $L_E = L^*_E$ on E (i.e. if L^*_E is continuous at each point of E) then L_E is continuous in \mathbb{C}^N and $L_E = L^*_E$. A compact set E with $L^*_E = L_E$ is called L-regular. The set of L-regular points of a compact L-regular set E is identical with the polynomially convex hull \hat{E} of E.

Definition 0.2. A finite positive Borel measure μ on a bounded Borel set E in \mathbb{C}^N is called determining for E, if for every Borel subset F of E with $\mu(F) = \mu(E)$ one has $L^*_F = L^*_E$.

Observe that if $L^*_E = L_E$ and μ is determining for E, then for every $F \subset E$ with $\mu(F) = \mu(E)$ one has $L_F = L_E$ (because $L^*_E = L^*_E = L_E \leq L_F$).

It is known that $L^*_{E \cup A} = L^*_E$, if A is plp. Therefore $L^*_F = L^*_F$ for a subset F of E if and only if $L^*_F = 0$ quasi-almost everywhere (q.a.e.) on E. We say that a property \mathcal{P} holds q.a.e. on E, if it holds for each point of E except at most of a plp subset of E.

We say that a property \mathcal{P} holds quasi-star-almost-everywhere (q*.a.e.) on E, if it holds for each point of a subset F of E with $L^*_F \leq L^*_E$.

It is clear that if μ is determining for E and \mathcal{P} holds μ-a.e. on E then it holds q*.a.e. on E.

Definition 0.3. Let μ be a finite positive Borel measure on a bounded Borel set in \mathbb{C}^N. We say that the pair (E, μ) satisfies (L^*)-condition at a point a of \mathbb{C}^N, if for every family \mathcal{F} of polynomials of N-complex variables and for every number $b > 1$ the polynomial family

$$\mathcal{F}_b := \{b^{-\deg f} f; f \in \mathcal{F}\} \tag{0.2}$$

is uniformly bounded on a neighborhood U of a.

- 194 -
We say that the pair \((E, \mu)\) satisfies \((\mathcal{L}^*)\)-condition, if for every \(b > 1\) and for every polynomial family \(\mathcal{F}\) bounded \(\mu\)-a.e. on \(E\) the family \(\mathcal{F}_b\) is uniformly bounded on a neighborhood of \(E\).

It is clear that if \(E\) is compact then \((E, \mu)\) satisfies \((\mathcal{L}^*)\)-condition, if and only if it satisfies \((\mathcal{L}^*)\) at each point of \(E\).

All these notions are important for applications of the extremal function \(\mathcal{L}^*_E\). There are strict relations between them. Also are known important examples of pairs \((E, \mu)\) satisfying \((\mathcal{L}^*)\) and of determining measures (e.g. \([2], [5], [6], [7], [8], [14]\)).

In this paper we introduce a new function \(M(t) \equiv M(t; E, \mu)\) associated to every pair \((E, \mu)\) by the formula

\[
\log M(t) := \sup \left\{ \sup_{E} L_A; A \subset E, \mu(A) \geq t \mu(E) \right\}, \ 0 \leq t \leq 1.
\]

It is clear that \(M\) is a decreasing function and \(1 \leq M(t) \leq +\infty\). The function \(M^*(t) := \lim_{\tau \uparrow t} M(\tau) \ (0 < t \leq 1), \ M^*(0) := M(0)\), is decreasing and uppersemicontinuous on \([0, 1]\).

In the sequel we shall often assume (without loss of generality) that \(\mu\) is a probability measure (i.e. \(\mu(E) = 1\)).

The function \(M\) appears to be a useful notion strictly related to the determining measures and the \((\mathcal{L}^*)\)-condition. For example we have obtained the following results involving the function \(M\).

Theorem A. — If \(E \subset \mathbb{C}^N\) is compact and \(\mu\) vanishes on plp subsets of \(\mathbb{C}^N\) then the following conditions are equivalent

(i) The pair \((E, \mu)\) satisfies \((\mathcal{L}^*)\)-condition;

(ii) If \(u \in \mathcal{L} \) and \(u \leq 0 \mu\)-a.e. on \(E\), then \(u \leq 0 \) on \(E\);

(iii) \(M^*(1) = 1\);

(iv) \(M(1) = 1\);

(v) \(\mu\) is determining for \(E\) and \(E\) is \(\mathcal{L}\)-regular.

Theorem B. — Let \(A \subset \mathbb{C}^P, B \subset \mathbb{C}^Q\) be two bounded Borel sets and \(\mu, \nu\) two probability measures on \(A\) and \(B\), respectively. Put \(M_A(t) := M(t; A, \mu), M_B(t) := M(t; B, \nu)\) and \(M_{A \times B}(t) := M(t, A \times B, \mu \otimes \nu)\). Then

(i) \(M_{A \times B}(1) \leq M_A(1) M_B(1)\)

(ii) \(M^*_A(1) M^*_B(1) \leq M^*_{A \times B}(1) \)

Corollary. If \(A \subset \mathbb{C}^P, B \subset \mathbb{C}^P \) are compact sets and \(\mu, \nu \) vanish on plp sets, then if the pairs \((A, \mu), (B, \nu)\) satisfy one of the equivalent conditions of Theorem A then the pair \((A \times B, \mu \otimes \nu)\) satisfies each of the conditions.

The equivalence of the conditions (i) and (v) was earlier obtained by Levenberg [6]. Nguyen Thanh Van formulated the \((L^*)\)-condition in his paper [7]; his definition was inspired by Leja’s paper [5] containing as a special case so called “Polynomial Lemma”, which in the present language reads as follows:

Let \(\Gamma \) be a rectifiable curve in the complex plane and let \(\lambda \) be the length measure on \(\Gamma \). Then the pair \((\Gamma, \mu)\) satisfies \((L^*)\).

It is worthwhile to mention that the Leja’s paper [5] permits immediately to obtain the following estimate for the function \(M(t) \equiv M(t; [a, b], \lambda) \):

\[
M(t) \leq J \left(\frac{1 - t}{t - 9/10} \right), \quad 9/10 < t < 1,
\]

where

\[
J(\alpha) := \exp \int_0^1 \log \frac{x^2 + \alpha^2}{x^2} \, dx \leq \exp \alpha (\pi + \alpha).
\]

The exact formula for the function \(M(t; [a, b], \lambda) \), where \([a, b]\) is a bounded interval of the real line \(\mathbb{R} \) and \(\lambda \) is the Lebesgue measure on \(\mathbb{R} \), reads as follows

\[
M(t; [a, t], \lambda) = 2t^{-1} - 1 + 2t^{-1} \sqrt{1 - t}, \quad 0 \leq t \leq 1,
\]

and may be easily derived from the following inequality due to Dudley and Randol [4]

\[
\|f\|_{[a, b]} / \|f\|_A \leq (2^{-1} - 1 + 2t^{-1} \sqrt{1 - t})^{\deg f}
\]

true for every polynomial \(f \) of a complex variable and for every compact set \(A \subset [a, b] \) with \(\lambda(A) \geq t(b - a), 0 \leq t \leq 1 \).

This paper was written during the author’s stay at the Université Paul Sabatier, Toulouse (September-October 1987), as an invited professor. I want to thank the University for the invitation. My warmest thanks go to Professor Nguyen Thanh Van for his extraordinary hospitality and for the inspiring discussions on the subject of the paper.
1 - Determining measures for arbitrary bounded Borel subsets of \(\mathbb{C}^N \)

Let us start with the following.

LEMMA 1.1. Let \(F \) be a subset of a bounded set \(E \) in \(\mathbb{C}^N \). If the set

\[
G := \{ z \in E \setminus F; L_P^* (z) > 0 \}
\]

is not plp, then there exist a nonplp subset \(G_0 \) of \(G \), a number \(b > 1 \) and a polynomial family \(\mathcal{F} \) such that

1) \(\mathcal{F} \) is bounded at each point of \(F \).

2) \(\mathcal{F}_b \) given by (0.2) is unbounded at each point \(z \in G_0 \).

Proof. It is known that \(F_1 := \{ z \in F; L_P^* (z) > 0 \} \) is plp, so there exists a function \(w \) in the class \(\mathcal{L} \) with \(w = -\infty \) on \(F_1 \) and \(w \leq -\log 2 \) on \(E \). It is also known \([10]\) that \(w \) can be represented in the form

\[
w = \left(\limsup_{m \to \infty} \frac{1}{m} \log |P_m| \right)^*,
\]

(1.1)

where \(P_m \) is a polynomial on \(\mathbb{C}^N \) of degree \(\leq m \). We shall consider two cases: either \(F_1 = F \), or \(F_1 \neq F \).

Case \(F_1 = F \). By Bedford-Taylor theorem on negligible sets \([1]\) the set

\[
\left\{ \limsup_{m \to \infty} \sqrt[m]{|P_m|} < \left(\limsup_{m \to \infty} \sqrt[m]{|P_m|} \right)^* \right\}
\]

is plp. Hence there exists a non pluripolar subset \(G' \) of \(G \) such that

\[-\infty < w(z) = \limsup_{m \to \infty} \frac{1}{m} \log |P_m(z)| \text{ for } z \in G'.\]

There is a real number \(\epsilon \) with \(0 < \epsilon < 1 \) such that the set \(G_0 := \{ x \in G'; w(z) \geq \log \epsilon \} \) is not plp. Take any \(b \) with \(1 < b < 2 \). Then the family

\[
\mathcal{F} := \left\{ \left(\frac{2}{\epsilon b} \right)^m P_m; m \geq 1 \right\}
\]

has the required properties. Indeed, 1) is satisfied because

\[
\limsup_{m \to \infty} \sqrt[m]{\left(\frac{2}{\epsilon b} \right)^m |P_m(z)|} = 0 \text{ on } F.
\]
If $z \in G_o$, we have

$$\limsup_{m \to \infty} \sqrt[m]{\frac{2}{\epsilon b}} \left| P_m(z) \right| = \frac{2}{\epsilon b} \exp w(z) > \frac{2}{b} > 1,$$

which implies 2).

Case $F_1 \neq F$. Since $F_1 \neq F$, we have $L_F^* \in \mathcal{L}$ and $u_k := \frac{1}{k} w + \frac{k-1}{k} L_F^* \in \mathcal{L}$ for every $k \geq 1$. If $z \in G$ and $w(z) > 0$ the sequence $u_k(z)$ is increasing to the limit $L_F^*(z) > 0$. Therefore there exists k such that the set $G_k := \{z \in G; u_k(z) > 0\}$ is not plp. For such k there is $\epsilon > 0$ such that

$$G' := \{z \in G; u_k(z) \geq \log(1 + \epsilon)\}$$

is not plp. Write u_k in the form

$$u_k = \left(\limsup_{j \to \infty} \frac{1}{j} \log |P_j| \right)^* \quad (\deg P_j \leq j)$$

By the theorem on negligible sets there is a non pluripolar subset G_o of G' with

$$u_k(z) = \frac{1}{k} w(z) + \frac{k-1}{k} L_F^*(z) = \limsup_{j \to \infty} \frac{1}{j} \log |P_j(z)|, z \in G_o.$$

The set G_o, any number b with $1 < b < 1 + \epsilon$ and the polynomial family $\mathcal{F} := \{P_j; j \geq 1\}$ have the required property. Indeed $\limsup_{j \to \infty} \sqrt{j |P_j(z)|} \leq \exp u_k(z) \leq 2^{-k} < 1$ on F, which gives 1). On the other hand, if $z \in G_o$ then

$$\limsup_{j \to \infty} \sqrt{j |P_j(z)|} = b^{-1} \exp u_k(z) \geq \frac{1 + \epsilon}{b} > 1,$$

which implies 2).

Lemma 1.2.—If a polynomial family \mathcal{F} is bounded q.a.e. on a subset E of \mathbb{C}^N, then for every $b > 1$ the family \mathcal{F}_b is bounded q.a.e. on E and uniformly on a neighborhood of every L-regular point a of E. If E is compact and L-regular, and \mathcal{F} is bounded q.a.e. on E then for each $b > 1$ the family \mathcal{F}_b is uniformly bounded on a neighborhood of E.

Proof.—Without loss of generality we can assume E is not plp. Let \mathcal{F} be a polynomial family bounded at each point of a subset F of E with $L_F^* = L_E^*$. Put

$$E_j := \{z \in E; |f(x)| \leq j, \forall f \in \mathcal{F}\}, j \geq 1 \quad (1.2)$$
Then $E_j \subseteq E_{j+1}$ and $F \subseteq E_0 := \bigcup_{1}^{\infty} E_j$. Hence $L_{E_j}^* \downarrow L_{E_0}^* = L_F^* = L_E^*$. By the definition of the L-extremal function we have

$$|f(z)| \leq j \left(\exp L_{E_j}^*(z) \right)^{\deg f}, \quad z \in \mathbb{C}^N, \ j \geq 1, \ f \in \mathcal{F} \quad (1.3)$$

which implies that for each $b > 1$ the family \mathcal{F}_b is bounded at every L-regular point of E. So \mathcal{F}_b is bounded q.a.e. on E. Moreover, if $L_E^*(a) = 0$, then $L_E^*(z) < b$ on a ball $|z-a| \leq r$. By Dini’s argument there is j sufficiently large with $L_{E_j}^*(z) < b$ on the ball $|z-a| \leq r$, which implies by (1.3) that the family \mathcal{F}_b is uniformly bounded on a ball $|z-a| < r$, if a is any L-regular point of E. The proof of the remaining part of Lemma 1.2. is trivial.

Theorem 1.3. — Given a probability measure on a bounded Borel set E in \mathbb{C}^N the following conditions are equivalent.

I. The measure μ is determining for E;

II. If $u \in L$ and $u \leq 0$ μ-a.e. on E, then $u \leq 0$ q.a.e. on E;

III. If \mathcal{F} is a polynomial family bounded μ-a.e. on E, then for every $b > 1$ the family \mathcal{F}_b is bounded q.a.e. on E.

Proof. $I \Rightarrow II$. Let u be a fixed function in the class L with $u \leq 0$ μ-a.e. on E. Put $F := \{z \in E; u(x) \leq 0\}$. Then $u(z) \leq L_F^*(z) = L_E^*(z)$. Hence $u \leq 0$ q.a.e. on E.

$I \Rightarrow III$. Let \mathcal{F} be a polynomial family bounded μ-a.e. on E. Let E_j be given by (1.2). Then $E_j \subseteq E_{j+1}$ and $\mu(F) = \mu(E)$ for $F := \bigcup_{1}^{\infty} E_j$. By $L_{E_j}^* = L_{E_0}^*$. It is known [12] that $L_{E_j}^* \downarrow L_{E_0}^*$ as $j \to \infty$. Hence by (1.3) the family \mathcal{F} is bounded q.a.e. on E, and by Lemma 1.2. the family \mathcal{F}_b is bounded q.a.e. on E for every $b > 1$.

The implication $III \Rightarrow I$ follows directly from Lemma 1.1.

It remains to show that $II \Rightarrow I$. Fix $F \subseteq E$ with $\mu(F) = \mu(E)$ and let u be a function of the class L such that $u \leq 0$ on F. Then $u \leq 0$ q.a.e. on E. Hence $u \leq L_{E}^*$ in \mathbb{C}^N. By the arbitrariness of u we get $L_{E_j}^* \leq L_{E_0}^*$, which gives $L_{E_j}^* = L_{E_0}^*$, because $L_T^* \leq L_{E_j}^*$. Because $L_E^* \leq L_{E_0}^*$.

2 - The function $\mathcal{M}(t; E, \mu)$

Given a probability measure μ on a bounded Borel set E in \mathbb{C}^N the function \mathcal{M} is defined by the formula

$$\log \mathcal{M}(t) := \sup \left\{ \sup_{E} L_A; A \subseteq E, \ \mu(A) \geq t \right\}, \quad 0 \leq t \leq 1 \quad (2.1)$$
It is clear that $1 \leq \mathcal{M}(t_2) \leq \mathcal{M}(t_1) \leq +\infty$ if $0 \leq t < t_2 \leq 1$. The function
$\mathcal{M}^*(t) := \limsup_{\tau \to t} \mathcal{M}(\tau)$ is also decrasing. It follows from (0.1) that

$$\log \mathcal{M}(t) \leq \sup \left\{ \sup_{E} u; u \in \mathcal{L}, u \leq 0 \text{ on } A, A \subset E, \mu(A) \geq t \right\},$$

which implies

$$\sup_{E} u - \sup_{A} u \leq \log \mathcal{M}(\mu(A)), \text{ if } u \in \mathcal{L}, A \subset E,$$

$$L_A(z) \leq \log \mathcal{M}(\mu(A)) + L_{E}(z), \text{ } z \in C^N, \text{ } A \subset E,$$

where A is any Borel subset of E.

Remark 2.1. If μ vanishes on plp sets then

$$\mathcal{M}(t) \equiv \mathcal{M}_1(t) := \sup \left\{ \sup_{E} \exp L_A^*; A \subset E, \mu(A) \geq t \right\}.$$

Indeed, it is clear that $\mathcal{M} \leq \mathcal{M}_1$. In order to prove the opposite inequality observe that given t with $0 \leq t \leq 1$ and $m \in \mathbb{R}$ with $m < \mathcal{M}_1(t)$ these exists $A \subset E$ such that $\mu(A) \geq t$ and $\sup_E L_A^* > \log m$. Put

$$A_0 := \{ z \in A; L_A(z) = L_A^*(z) \}.$$

Then $\mu(A_0) = \mu(A) \geq t$ and $L_A^* \leq L_{A_0}$. Hence $\log m < \sup_E L_A^* \leq \sup_E L_{A_0} \leq \mathcal{M}(t)$. By the arbitrariness of m we get $\mathcal{M}_1(t) \leq \mathcal{M}(t)$.

Remark 2.2. If $\mathcal{M}^*(1) = 1$, then \mathcal{M} is continuous at $t = 1$ and $\mathcal{M}(1) = 1$. Hence, if $\mathcal{M}^*(1) = 1$ then $L_{A_n} \to L_E$ for every sequence A_n of Borel subsets of E such that $\mu(A_n) \to \mu(E)$.

Remark 2.3. If μ vanishes on plp sets and $\mathcal{M}(1) = 1$ then $L_E^* = 0$ on E. In particular, if E is compact and $\mathcal{M}(1) = 1$ then E is L-regular. Indeed, put

$$E_0 := \{ z \in E; L_E^*(z) = 0 \}.$$

Then $\mu(E_0) = 1$ and $L_E^* \leq L_{E_0} \leq \log \mathcal{M}(1) = 0$ on E, i.e. $L_E^* = 0$ on E. It is clear that the pairs (E, μ) for which $\mathcal{M}(1) = 1$ or $\mathcal{M}^*(1) = 1$ are of great importance for applications of the L-extremal function.

PROPOSITION 2.4. Define

$$\mathcal{M}_P(t) := \sup \left\{ \frac{\|f\|_E/\|f\|_A)^{1/\deg f}}{; \deg f \geq 1, A \subset E, \mu(A) \geq t} \right\}$$

where the sup is taken over all polynomials f of degree ≥ 1 and over all compact sets $A \subset E$. If E is compact, then

$$\mathcal{M}_P(t) \leq \mathcal{M}(t) \leq \mathcal{M}_P(t), \text{ } 0 \leq t \leq 1$$

- 200 -
Proof. — Fix t with $0 \leq t \leq 1$. Given any number m with $m < \mathcal{M}(t)$, take $A \subset E$ with $\mu(A) \geq t$ and $\sup_E L_A > \log m$. Next choose u in the class \mathcal{L} with $u \leq 0$ on A and $\sup_E u > \log m$. By the Approximation Lemma [13] there is a sequence $u_\nu := \max \frac{1}{n_j} \log |f_j|$, where f_j is a polynomial of degree $\leq n_j$, such that $u_\nu \downarrow u$ as $\nu \to \infty$. Given $\epsilon > 0$ there exists a compact set $K \subset A$ with $\mu(K) \geq t - \epsilon$. Take ν so large that $\sup_K u_\nu < \epsilon$ and choose j with $\sup_E \frac{1}{n_j} \log |f_j| > \log m$. Then $m e^{-\epsilon} \leq (\|f_j\|_E/\|f_j\|_K)^{1/n_j} \leq \mathcal{M}_P(\mu(K)) \leq \mathcal{M}_P(t - \epsilon)$. Hence $m \leq \mathcal{M}_P(t)$. By the arbitrariness of m we get $\mathcal{M}(t) \leq \mathcal{M}_P(t)$. The inequality $\mathcal{M}_P(t) \leq \mathcal{M}(t)$ is obvious.

Proposition 2.5. — If E is nonplp compact set in \mathbb{C}^N then $\mathcal{M}_P(t) = \lim_{n \to \infty} B_n^{1/n}(t) = \sup_{n \geq 1} B_n^{1/n}(t)$, where

$$B_n(t) := \sup \{\|f\|_E; \deg f \leq n, \|f\|_A = 1, A \subset E, \mu(A) \geq t\}.$$

Proof. — Given $m \geq 1$ and c with $0 < c^m < B_m(t)$, let A be a compact subset of E with $\mu(A) \geq t$ and let f_m be a polynomial of degree $\leq m$ such that $\|f_m\|_A = 1$ and $\|f_m\|_E > c^m$. Every natural number $n \geq m$ can be written in the form $n = km + r$ with $0 \leq r < m$. Observe that

$$c^km < \|f_m\|_E^k \leq B_n(t).$$

Hence $\liminf_{n \to \infty} B_n^{1/n}(t) \geq c$, which implies that $B_m^{1/m}(t) \leq \liminf_{n \to \infty} B_n^{1/n}(t)$, and consequently we get the required result.

Theorem 2.6. — Let $A \subset \mathbb{C}^p$, $B \subset \mathbb{C}^q$ be bounded Borrel sets and let μ, ν be probability measures on A and B, respectively. Put $\mathcal{M}_A(t) := \mathcal{M}(t; A, \mu)$, $\mathcal{M}_B(t) := \mathcal{M}(t; B, \nu)$ and $\mathcal{M}_{A \times B}(t) := \mathcal{M}(t; A \times B, \lambda)$ with $\lambda := \mu \otimes \nu$.

Then

(i) $\mathcal{M}_{A \times B}(1) \leq \mathcal{M}_A(1) \mathcal{M}_B(1)$

(ii) $\mathcal{M}_{A \times B}^*(1) \leq \mathcal{M}_A^*(1) \mathcal{M}_B^*(1)$

Proof. — (i) Let $E \subset A \times B$ with $\lambda(E) = 1$ and put $B^z := \{w \in B; (z, w) \in E\}$. Then $\nu(B^z) = 1 \mu$-a.e. on A. Let $u \in \mathcal{L}(\mathbb{C}^p \times \mathbb{C}^q)$, $u \leq 0$ on E. Then $u(z, w) \leq \log \mathcal{M}_B(1) + L_B(w)$ for all $z \in A_0$ and $w \in \mathbb{C}^q$, where $A_0 \subset A$ and $\mu(A_0) = 1$. Hence

$$u(z, w) \leq \log \mathcal{M}_B(1) + L_B(w) + \log \mathcal{M}_A(1) + L_A(z), (z, w) \in \mathbb{C}^p \times \mathbb{C}^q.$$
Hence by (2.2) one gets (i).

(ii) Let \(m \) be a fixed number with \(m < \log \mathcal{M}_{A\times B}^*(1) \). There is a sequence \(E_n \) of Borel subsets of \(A \times B \) such that \(\lambda(E_n) \geq 1 - 2^{-n} \) and \(\sup_{A \times B} L_{E_n} > m \). Define

\[
B_n^z := \{ w \in B; (z, w) \in E_n \}, \quad z \in A, \ n \geq 1
\]

\[
A_{\neq} := \{ z \in A; \nu(B_n^z) \geq 1 - \epsilon \}, \quad n \geq 1, \ 0 < \epsilon < 1
\]

We claim that \(\mu(A_{\neq}) \rightarrow 1 \) as \(n \rightarrow \infty \). Indeed,

\[
\lambda(E_n) = \int_A \nu(B_n^z) d\mu(z) = \int_{A_{\neq}} + \int_{A \setminus A_{\neq}} \leq \mu(A_{\neq}) + (1 - \mu(A_{\neq})) (1 - \epsilon) = 1 - \epsilon + \epsilon \mu(A_{\neq}).
\]

Hence \(\liminf_{n \rightarrow \infty} \mu(A_{\neq}) \geq 1 \), which implies the claim. Fix \(n \geq 1 \) and let \(u \) be a function of the class \(\mathcal{L}(C^p \times C^q) \) with \(u \leq 0 \) on \(E_n \). Then for every fixed \(z \) in \(A \) we have \(u(z, w) \leq 0 \) on \(B_n^z \). Therefore

\[
u(B_n^z) \leq \log \mathcal{M}_B(\nu(B_n^z)) + L_B(w)
\]

which implies

\[
u(B_n^z) \leq \log \mathcal{M}_B(1 - \epsilon) + L_B(w) \text{ for } z \in A_{\neq}, \ w \in C^q.
\]

Hence

\[
u(B_n^z) \leq \log \mathcal{M}_B(1 - \epsilon) + L_B(w) + \log \mathcal{M}_A(\mu(A_{\neq})) + L_A(z)
\]

for all \((z, w) \in C^p \times C^q\). By the arbitrariness of \(u \) we can replace \(u \) by \(L_{E_n}(z, w) \). Then we get

\[
m < \sup_{A \times B} L_{E_n} \leq \log \mathcal{M}_B(1 - \epsilon) + \log \mathcal{M}_A(\mu(A_{\neq})), \ n \geq 1, \ 0 < \epsilon < 1.
\]

After passing to the limits, first with \(n \) to \(\infty \) and next with \(\epsilon \) to \(0 \), we get

\[
m \leq \log \mathcal{M}_B^*(1) + \log \mathcal{M}_A^*(1).
\]

By the arbitrariness of \(m \) we get (ii).

The following corollary is important for applications of the function \(\mathcal{M} \).

COROLLARY 2.7. — If \(\mathcal{M}_A(1) = 1, \mathcal{M}_B(1) = 1, \) (resp. \(\mathcal{M}_A^*(1) = 1, \mathcal{M}_B^*(1) = 1 \)) then \(\mathcal{M}_{A\times B}(1) = 1 \) (resp. \(\mathcal{M}_{A\times B}^*(1) = 1 \)).
Exemple 2.8. — Let $I = \{a, b\}$ be an interval of the real line \mathbb{R} with end points a, b such that $-\infty < a < b < +\infty$. Then

$$\mathcal{M}(t) \equiv \mathcal{M}(t; I, \lambda_1) = 2t^{-1} - 1 + 2t^{-1}\sqrt{1 - t}, \quad 0 \leq t \leq 1,$$

λ_1 denoting the Lebesgue measure on \mathbb{R}.

Proof. — Without loss of generality we may assume that $I = [a, b]$ is closed. By [4] for every polynomial f of degree $\leq n$, $\|f\|_A/\|f\|_I \leq B_n(t)$, if $A \subset I$ and $\lambda_1(A) \geq t(b - a)$, where

$$B_n(t) := \frac{1}{2} \left[(2t^{-1} - 1 + 2t^{-1}\sqrt{1 - t})^n + (2t^{-1} - 1 - 2t^{-1}\sqrt{1 - t})^n \right].$$

Moreover, if A is a subinterval of I with a common end point, this bound is best possible. Therefore by Proposition 2.5 we have

$$\mathcal{M}_p(t) = \sup_{n \geq 1} B_n^{1/n}(t) = 2t^{-1} - 1 + 2t^{-1}\sqrt{1 - t}, \quad 0 \leq t \leq 1.$$

By Proposition 2.4, $\mathcal{M}_p = \mathcal{M}$.

Remark 2.9. — If Ω is a bounded open set in \mathbb{R}^N (resp. in \mathbb{C}^N) then for every determining measure μ for Ω one has $\mathcal{M}(1; \Omega, \mu) = 1$. Indeed, it is known [12] that $L_\Omega^* = L_\Omega$. So if $F \subset \Omega$ and $\mu(F) = 1$, then $L_F = L_\Omega$ which implies that $\mathcal{M}(1; \Omega, \mu) = 1$. As an example of such μ one can take the Lebesgue measure λ_N in \mathbb{R}^N (resp. λ_2 in \mathbb{C}^N).

If μ is a probability measure on Ω such that $\mathcal{M}^*(1; \Omega, \mu) = 1$, then the closure E of Ω, $E = \overline{\Omega}$, is an \mathcal{L}-regular compact. Indeed, let K_n be an increasing sequence of \mathcal{L}-regular compact subsets of Ω such that $\mu(\Omega) = \lim_{n \to \infty} \mu(K_n)$ and $\Omega = \bigcup_{n \geq 1} K_n$. Then

$$\log \mathcal{M}(\mu(K_n)) \geq \sup_{\Omega} L_{K_n} = \sup_{E} L_{K_n} \geq \sup_{E} L_{E}, \quad n \geq 1,$$

which implies that $L_{E}^* = 0$ on E, i.e. E is \mathcal{L}-regular.

Example 2.10. — We shall now construct a bounded open subset Ω of \mathbb{C} with the following properties.

1) $E := \overline{\Omega}$ is \mathcal{L}-regular.

2) For every probability measure μ on Ω, $\mathcal{M}^*(1; \Omega, \mu) > 1$.

3) There exists no finite positive Borel measure μ on Ω such that the pair (Ω, μ) satisfies the (\mathcal{L}^*)-condition.
Indeed, let \(\{a_n\} \) be a discrete sequence in the upper half plane \(\{\text{Im } z > 0\} \) such that each point of \(I = [0,1] \) is a limit of a subsequence of \(\{a_n\} \) and the sequence \(\{a_n\} \) has no other limit points. There exists a sequence of positive real numbers \(\{r_n\} \) such that

\[
L_{\Omega_n}(z) \geq 5 - (2^{-1} + \ldots + 2^{-n}), \quad z \in I, \quad n \geq 1,
\]

with \(\Omega_n := \bigcup_{j=1}^{\infty} \{|z - a_j| < r_j\} \). Namely, it is clear that \(L_{\Omega_1}(z) > 5 - 2^{-1} \) on \(I \), if \(r_i > 0 \) is sufficiently small. Suppose \(r_1, \ldots, r_n \) are already chosen so that (*) is satisfied. Put \(\Omega(r) := \Omega_n \cup \{|z - a_{n+1}| < r\} \). Then \(L_{\Omega(r)} \uparrow L_{\Omega_n} \) in \(C \setminus \{a_{n+1}\} \) as \(r \uparrow 0 \). By Dini's argument the convergence is uniform on \(I \). Hence (*) is satisfied for \(n + 1 \) with \(r = r_{n+1} \) sufficiently small. The open set \(\Omega := \bigcup_{n} \Omega_n \) has the required properties. It is clear that \(E := \overline{\Omega} \) is \(L \)-regular. If \(\mu \) is a finite positive Borel measure on \(\Omega \), then \(\log M(\mu(\Omega_n)) \geq \sup_{\Omega} L_{\Omega_n} = \sup_{E} L_{\Omega_n} \geq 4 \) \((n \geq 1) \). Hence \(M^*(1; \Omega, \mu) \geq 4 \). The set \(G := \{z \in E : L_{\Omega}^*(z) > 0\} \) contains the interval \(I \), so \(G \) is not plp. By Lemma 1.1 the pair \((\Omega, \mu) \) does not satisfy \((L^*) \) (see also theorem 3.1).

Proposition 2.11. If \(\mu \) is determining for a nonpluripolar bounded Borel set in \(\mathbb{C}^N \), \(\mu \) vanishes on plp sets and \(M^*(1; E, \mu) = 1 \) then \((E, \mu) \) satisfies \((L^*) \).

Proof. Given a polynomial family \(\mathcal{F} \) bounded \(\mu \)-a.e. on \(E \), let \(E_j \) be the sequence of subsets of \(E \) defined by (1.2). Then \(E_j \uparrow F \) with \(\mu(F) = 1 \). Therefore \(L_{E_j}^* \downarrow L_E^* = L_E \) (see Remark 2.3). Given \(b > 1 \) the set \(\Omega_b := \{L^*_F < \sqrt{b}\} \) is an open neighborhood of \(E \). By (1.2) and (2.4)

\[
|f(z)| \leq j \left(M(\mu(E_j)) \exp L_{E_j}^*(z) \right)^{\deg f}, \quad f \in \mathcal{F}, \quad j \geq 1.
\]

If \(j \) is sufficiently large the family \(\mathcal{F}_b \) is bounded by \(j \) uniformly on \(\Omega_b \).

Problem 2.12. Let \(\Delta = \{|z| < 1\} \) be the unit disk on the complex plane \(\mathbb{C} \). Let \(\theta \) denote the length measure on the boundary \(\partial \Delta \) of \(\Delta \) and let \(\lambda_2 \) be the Lebesgue measure on \(\mathbb{C} \equiv \mathbb{R}^2 \). Compute the functions \(M(t; \partial \Delta, \theta) \) and \(M(t; \Delta, \lambda_2) \), \(0 \leq t \leq 1 \).

3 - Determining measures for bounded Borel sets with \(L \)-regular closure

The main result of this section is given by the following.
THEOREM 3.1. — Let \(\mu \) be a probability measure on a bounded Borel set \(E \) in \(\mathbb{C}^N \) such that \(\overline{E} \) is \(L \)-regular. Then the following conditions are equivalent.

(1) The pair \((E, \mu)\) satisfies \((L^*)\)-condition;

(2) If \(u \in L \) and \(u \leq 0 \) \(\mu \)-a.e. on \(E \) then \(u \leq 0 \) on \(\overline{E} \);

(3) \(M^*(1) \equiv M^*(1; E, \mu) = 1 \) and \(L_E = L_{\overline{E}} \);

(4) \(M(1) \equiv M(1; E, \mu) = 1 \) and \(L_E = L_{\overline{E}} \);

(5) If \(A \subset E \) and \(\mu(A) = 1 \), then \(L_A = L_{\overline{E}} \);

(6) For every \(b > 1 \) there exists a neighborhood \(\Omega \) of \(\overline{E} \) such that for every polynomial family \(\mathcal{F} \) bounded \(\mu \)-a.e. on \(E \) the family \(\mathcal{F}_b \) (given by \((0.2)) \) is uniformly bounded on \(\Omega \);

(7) If \(\mathcal{F} \) is a polynomial family bounded \(\mu \)-a.e. on \(E \) then for every number \(b > 1 \) the family \(\mathcal{F}_b \) is bounded q.a.e. on \(\overline{E} \).

Proof. — (1) \(\Rightarrow \) (2). Let \(u \) be a function of the class \(\mathcal{F} \) with \(u \leq 0 \) \(\mu \)-a.e. on \(E \). The function \(u \) can be written in the form

\[
u = \left(\limsup_{j \to \infty} \frac{1}{j} \log |f_j| \right)^*\]

where \(f_j \) is a polynomial of degree \(\leq j \). Given any fixed number \(b > 1 \) the polynomial family \(\mathcal{F} := \{ b^{-j} f_j; j \geq 1 \} \) is bounded \(\mu \)-a.e. on \(E \). By (1) there are a constant \(M > 0 \) and a neighborhood \(\Omega \) of \(E \) such that

\[
\|f_j\|_\infty \leq M b^{2j}, \quad j \geq 1,
\]

which implies \(\|f_j\|_\overline{E} \leq M b^{2j} (j \geq 1) \). Hence by the definition of \(L_{\overline{E}} \) we obtain

\[
\frac{1}{j} \log |f_j(z)| \leq \frac{1}{j} \log M + 2 \log b + L_E(z) \quad \text{in} \quad \mathbb{C}^N (j \geq 1).
\]

Therefore \(u(z) \leq 2 \log b \) on \(\overline{E} \). By the arbitrariness of \(b > 1 \) we get \(u \leq 0 \) on \(\overline{E} \).

(2) \(\Rightarrow \) (3). If (2) is satisfied, then \(L_E \leq L_{\overline{E}} \leq L_E \), so that \(L_E = L_{\overline{E}} \).

It remains to show that \(\lim_{t \uparrow 1} M(t) = 1 \). Suppose there exists \(b > 1 \) with \(M(t) > b \) for all \(t \) with \(0 < t < 1 \). Let \(A_n \) be Borel subsets of \(E \) such that

\[
\mu(A_n) \geq 1 - 2^{-n} \quad \text{and} \quad \sup_{E} (\exp L_{A_n}) > b \quad (n \geq 1)
\]

(*)

Put \(E_n := A_n \cap A_{n+1} \cap \ldots \) and observe that \(E_{n+1} \supset E_n, E_n \subset A_n \) and

\[
\mu(E_n) = \mu(A_n) - \mu(A_n \setminus E_n) \geq \mu(A_n) - \mu(E \setminus E_n)
\]

\[
\geq \mu(A_n) - \sum_{j=0}^{\infty} \mu(E \setminus A_{n+j}) \geq 1 - 2^{-n} - \sum_{j=0}^{\infty} 2^{-n-j} = 1 - 3.2^{-n},
\]

- 205 -
which implies that \(\mu(E_n) \to 1 \). Put \(F := \bigcup E_n \). Then \(L_{E_n}^* \downarrow L_F^* \) and \(\mu(F) = 1 \). By (2) \(L_F \leq L_E \) and since \(L_E \leq L_F \), we get \(L_F = L_E \). By Dini’s argument \(L_{E_n} \leq L_{E_n}^* \leq \log b \) on \(\overline{E} \), if \(n > n_0 = n_0(b) \). This however contradicts the second inequality of (*)\). Therefore \(M^*(1) = \lim_{t \to 1} M(t) = 1 \).

(3) \(\Rightarrow \) (4) obvious.

(5) \(\Rightarrow \) (6) If \(b > 1 \), then the set \(\Omega_b := \{ z \in \mathbb{C}^N; L_E(z) < \sqrt{b} \} \) is by (5) an open neighborhood of \(\overline{E} \). Let \(\mathcal{F} \) be a polynomial family bounded \(\mu \)-a.e. on \(E \). Put \(E_k := \{ z \in E; |f(z)| \leq k, \forall f \in \mathcal{F} \} \). Then \(E_k \subset E_{k+1} \) and \(\mu(E_k) \uparrow 1 \). Hence by (5) \(L_{E_k}^* \downarrow L_{A}^* = L_{E} \) with \(A := \bigcup_{i=0}^{\infty} E_k \), the convergence being uniform on \(\overline{E} \). Hence \(L_{E_k} \leq \frac{1}{2} \log b \) on \(\overline{E} \) if \(k > k_0 \). It is clear that

\[
|f(z)| \leq k (\exp L_{E_k}(z))^{\deg f} \\
\leq k \cdot \left(\exp \left[\frac{1}{2} \log b + L_{E}(z) \right] \right)^{\deg f} \\
\leq k \cdot b^{\deg f} , \text{if } z \in \Omega_b, \ f \in \mathcal{F}, \ k > k_0.
\]

(6) \(\Rightarrow \) (7) is obvious.

(7) \(\Rightarrow \) (1) follows from lemma 1.2.

4 - Determining measures for compact sets in \(\mathbb{C}^N \)

Theorem 4.1. — If \(\mu \) is a probability measure on a compact set \(E \) in \(\mathbb{C}^N \) vanishing on plp subsets of \(E \), then the following conditions are equivalent.

(i) The pair \((E, \mu)\) satisfies (*)\);

(ii) If \(u \in \mathcal{L} \) and \(u \leq 0 \) \(\mu \)-a.e. on \(E \), then \(u \leq 0 \) on \(E \);

(iii) \(M^*(1, E, \mu) = 1 \);

(iv) \(M(1; E, \mu) = 1 \);

(v) \(\mu \) is determining for \(E \) and \(E \) is \(\mathcal{L} \)-regular.

Proof. — First observe that each of the conditions (i), (ii), (iii), (iv) implies \(\mathcal{L} \)-regularity of \(E \), and next apply Theorem 3.1.

Example 4.2. — (most likely well known to the reader). Let \(E \) be a compact subset in the complex plane. Assume \(E \) has a positive logarithmic
capacity \(c(E) \). By the classical potential theory there exists a unique probability measure \(\lambda \) with support on \(E \) such that

\[
\log c(E) = \int_E \int_E \log |z - \zeta| d\lambda(z) d\lambda(\zeta) = \sup_{\mu} \int_E \int_E \log |z - \zeta| d\mu(z) d\mu(\zeta)
\]

the supremum being taken over all probability measures \(\mu \) on \(E \). The measure \(\lambda \) is called the equilibrium measure of \(E \). We shall show that \(\lambda \) is determining for \(E \). Indeed, if \(F \) is a Borel subset of \(E \) with \(\lambda(F) = 1 \) there is (by Choquet capacitability theorem) a sequence \(F_n \) of compact subsets of \(F \) with \(c(F_n) / c(F) \). Without loss of generality we may assume \(E \) is contained in the disk \(|z| < 1/2 \). Then

\[
\log c(E) \geq \log c(F_n) \geq \frac{1}{\lambda^2(F_n)} \int_{F_n} \int_{F_n} \log |z - \zeta| d\lambda(z) d\lambda(\zeta)
\]

\[
\geq \frac{1}{\lambda^2(F_n)} \log c(E).
\]

Therefore \(c(F_n) \uparrow c(E) = c(F) \). For all sufficiently large \(n \) the function \(u_n(z) := L^+_E(z) - L^+_E(z), u_n(\infty) := \log[c(E)/c(F_n)] \), is harmonic in \(\overline{C \setminus \hat{E}} \), \(u_{n+1} \leq u_n \) and \(u_n(\infty) \downarrow 0 \). By Harnack's theorem \(u_n \downarrow 0 \) locally uniformly in \(\overline{C \setminus \hat{E}} \). The function \(u := \lim L^+_n \) is subharmonic on \(C \), \(u \geq L^+_E \) on \(C \), and \(u = L^+_E \) in \(C \setminus \hat{E} \) as well as at each regular point of \(\partial \hat{E} \). By the generalized maximum principle for subharmonic function, \(u \leq 0 \) on \(\hat{E} \) except at most the polar set of irregular points of \(\partial \hat{E} \). On the other hand \(u \geq 0 \) on \(C \). Therefore \(u = L^+_E \). Observe that \(L_E \leq L_F \leq L_{F_n}(n \geq 1) \). Hence \(L^*_E = L^*_F \).

It follows that \(\mu \) is determining for \(E \). Hence by theorem 3.1, if \(E \) is an \(\mathcal{L} \)-regular subset of \(C \) and \(\lambda \) is the equilibrium measure of \(E \), then the pair \((E, \lambda)\) satisfies each of the equivalent conditions of theorem 4.1.

Remark 4.3.—Given a norm \(\mathcal{N} \) on \(\mathbb{C}^N \) the logarithmic capacity \(c(E) \equiv c(E, \mathcal{N}) \) of a bounded subset \(E \) of \(\mathbb{C}^N \) is defined by the formula

\[
-\log c(E) := \limsup_{\mathcal{N}(z) \to \infty} [L_E(z) - \log \mathcal{N}(z)].
\]

If \(E \) is a probability measure on \(E \) with \(\mathcal{M}(1; E, \mu) = 1 \), then for every \(F \subset E \) with \(\mu(F) = \mu(E) \) one has \(c(F) = c(E) \).

On the plane, if \(E \) is bounded and \(F \subset E \), then \(c(F) = c(E) \iff L^*_F = L^*_E \), which implies that \(\mu \) is determining for \(E \) iff \(F \subset E \), \(\mu(F) = 1 \Rightarrow c(F) = c(E) \) (i.e.; iff \(\mu \) is determining in the sense of Ullman [14]).
If $N \geq 2$ and $F \subset E$, it is clear that $L^*_F = L^*_E \Rightarrow \forall Nc(F, N) = c(E, N)$. But we do not know whether the inverse implication is true.

The aim of the following example is to illustrate an application of theorem 2.6.

Example 4.4. — Let Ω be a bounded open set in \mathbb{R}^N (resp. in \mathbb{C}^N). Then it is known that λ_N (resp. λ_{2N}) is determining for Ω. We can propose the following proof of this result.

It is sufficient to consider the case of \mathbb{R}^N (because by (1.1) for every $u \in L(C^N)$ there is $\tilde{u} \in L(C^{2N})$ such that $\tilde{u}(x_1, y_1, \ldots, x_N, y_N) = u(x_1 + iy_1, \ldots, x_N + iy_N)$ for $(x_1 + iy_1, \ldots, x_N + iy_N) \in C^N \equiv \mathbb{R}^{2N}$. Hence, if $u \in L(C^N)$ and $u \leq 0 \lambda_{2N} - a.e.$ on $\Omega \subset C^N$ then $u \leq 0$ on Ω. Let $u \in L(C^N)$ and let $u \leq 0 \lambda_N - a.e.$ on Ω. Given a point $a = (a_1, \ldots, a_n)$ in Ω, let $Q := \{ |x_j - a_j| \leq r \ (j = 1, \ldots, N) \}$ be a closed cube with center a contained in Ω. Since by Theorem 4.1 (via example 2.8) λ_1 is determining for $[a_j - r, a_j + r]$, so by theorem 2.6 the measure λ_N is determining for the cube Q. Therefore $u \leq 0$ on Q. By the arbitrariness of Q we get $u \leq 0$ on Ω. Hence $L^*_\Omega = L^*_F$ for every $F \subset \Omega$ with $\lambda_N(F) = \lambda_N(\Omega)$.

Let $I^N = [0, 1]^N$ be the unit cube in \mathbb{R}^N. If A is a nonsingular affine mapping of \mathbb{R}^N onto itself, then the set $P := A(I^N)$ is called a parallelepiped.

Let Ω be a bounded open subset of \mathbb{R}^N such that for each point $b \in \overline{\Omega}$ there exists a parallelepiped P such that $P \subset \Omega \cup \{b\}$ and $b \in P$. Then $\overline{\Omega}$ is C-regular and the pair (Ω, λ_N) satisfies each of the equivalent conditions of theorem 3.1.

Indeed, it is easy to see that each parallelepiped P is C-regular. Therefore $\overline{\Omega}$ is C-regular, because $L_{\overline{\Omega}} \leq L_P$. We already know that the pair (I^N, λ_N) satisfies (C^*). Hence for every parallelepiped P the pair (P, λ_N) satisfies (C^*). Therefore the pair (Ω, λ_N) satisfies (C^*) at each point of $\overline{\Omega}$, which implies that (Ω, λ_N) satisfies (6) of Theorem 3.1.

5 - Polynomial inequality of Bernstein-Markov type and pairs (E, μ) atisfying the (C^*)-condition

Definition 5.1. — Let p be a positive number, E a bounded Borel set in \mathbb{C}^N and μ a probability measure on E. We say that the triple (p, E, μ) has Bernstein-Markov Property, if for every $b > 1$ there exist a positive constant M and a neighborhood G of E such that for every polynomial f of...
N complex variables one has

$$\|f\|_G \leq M \deg f \|f\|_{\mu_p} \quad (BM)$$

with $\|f\|_{\mu_p} := (\int_E |f(x)|^p \, d\mu(z))^{1/p}$.

It was shown in [11] that if (E, μ) satisfies (\mathcal{L}^*) and μ satisfies some density condition, then the triple (p, E, μ) has BMP for every $p > 0$. Due to a remark by A. Zeriahi the density condition may be dropped and one gets the following.

Theorem 5.1.— Let E be a Borel subset of \mathbb{C}^N and let μ be a positive measure on E such that (E, μ) satisfies (\mathcal{L}^*). Then for every $p > 0$ the triple (p, E, μ) has the Bernstein-Markov Property (BMP).

Proof.— Let $s(f)$ denote the degree of f. It is sufficient to prove that for every $p > 0$ and for every $b > 1$ there exists a constant $M > 0$ such that for every polynomial f

$$\|f\| := \|f\|_E \leq M \deg f \|f\|_{\mu_p}.$$

Suppose the statement is not true. Then we can find $p > 0$, $b > 1$ and a sequence of polynomials f_k such that

$$\|f_k\| > k^k \deg(f_k) \|f\|_{\mu_p} \text{ for } k \geq 1. \quad (5.1)$$

It follows that $\|f_k\| > 0$ and $0 < \|f_k\|_{\mu_p} < +\infty$ ($k \geq 1$). We claim that for every $q > 1$ and every $w > 1$ the sequence of polynomials $g_k := \eta^{-k} q^{-s(f_k)} f_k/\|f_k\|_{\mu_p}$ is bounded μ-a.e. on E. Indeed, following NGUYEN THANH VAN [8], put $E_{nk} := \{z \in E; |g_k(z)| \geq n\}$, $E_n := \cup_{k=1}^\infty E_{nk}$ and observe that

$$\mu(E_n) \leq \sum_{k=1}^{\infty} n^{-p} \eta^{-kq} q^{-q s(f_k)} \leq n^{-p}/\eta^{p-1}, \quad n \geq 1,$$

whence it follow that $\{g_k\}$ is bounded μ-a.e. on E. Now by the assumption (E, μ) satisfies (\mathcal{L}^*), so that we can find $G \supset E$ and $M > 0$ such that $\|g_k\|_G \leq M q^{s(f_k)}, \quad k \geq 1$. Hence

$$\|f_k\|_G \leq M \eta^k q^{2s(f_k)} \|f\|_{\mu_p}, \quad k \geq 1 \quad (5.2)$$
Put $q = b^{1/2}$. Then (5.1) and (5.2) imply

$$k^k < M \eta^k, \; k \geq 1,$$

which is an absurd.

Theorem 5.2. If $M^*(1; E, \mu) = 1$ and there is $p > 0$ such that the triple (p, E, μ) has the BMP, then (E, μ) satisfies (\mathcal{L}^*).

Proof. Take $b > 1$ and let \mathcal{F} be a polynomial family bounded μ-a.e. on E. Define E_j by formula (1.2). Then $\mu(E_j) \uparrow 1$ and

$$|f(z)| \leq j \mathcal{M}(\mu(E_j))^{\deg f} \text{ for all } z \in E, \; f \in \mathcal{F}, \; j \geq 1.$$

Hence by BMP

$$\|f\|_{\mathcal{O}} \leq j \cdot M [b \cdot \mathcal{M}(\mu(E_j))]^{\deg f} \; , \; f \in \mathcal{F}, \; j \geq 1,$$

which implies the required result.

Corollary. If $M^*(1; E, \mu) = 1$, then the pair (E, μ) satisfies (\mathcal{L}^*) if and only if for every $p > 0$ (for some $p > 0$) the triple (p, E, μ) has the BMP.

References

Families of polynomials and determining measures

(Manuscrit reçu le 14 décembre 1987)