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Asymptotic behaviour of a viscoplastic bingham fluid
in porous media with periodic structure

ALAIN BRILLARD(1)

Annales Faculté des Sciences de Toulouse Vol. X, n01, 1989

Un fluide de BINGHAM viscoplastique et incompressible cir-
cule lentement dans un milieux poreux Qc contenant une repartition
e-périodique d’inclusions identiques. On etudie le comportement asympto-
tique de la vitesse Me du fluide, solution de

lorsque le paramètre e tend vers 0. Les lois limites de BRINKMAN et de
DARCY sont obtenues par des methodes d’épi-convergence.

ABSTRACT. - A viscoplastic Bingham fluid slowly flows in a porous me-
dium Qe containing an e-periodic distribution of identical inclusions. We
study the behaviour of the velocity solution of the minimization pro-
blem

when the parameter c goes to 0. Epi-convergence methods are systematically
used in order to derive the nonlinear BRINKMAN and DARCY limit laws,
according to the size of the inclusions.

(1) Faculte des Sciences et Techniques, 4 Rue des Freres Lumiere, 68093 Mulhouse Cedex,
France



1. Introduction

Let 03A9 be a bounded open and smooth subset of RN (N = 2 or 3) and T
be a smooth open subset of the unit ball B ( 1 ) of RN. The porous medium
Qe is equal to

where T~i is a r~-homothetic of T disposed at the center x~i of the i-th
e-cell Y~i of a rectangular ~2014mesh covering 03A9 :

Figure 1

(notice that the number I(c) of solid inclusions Tei is equivalent to

Vol The problem we are interested in is the behaviour of the

solution Mg. of the minimization problem [7]

where f belongs to ( f represents the exterior forces) and F~ is
the functional defined on by

being the deformation (symmetric) tensor : ui + Di u~), g being
a nonnegative real, ~ denoting the indicator function of the closed
subspace of 



The coefficient g is equal to 0 for newtonian fluids and is strictly positive
for Bingham fluids. The case g - 0, has been studied in [2], [5], [9], [11],

_ [12]. Let P~u~ be the canonical extension of uE taking the value 0 on the
inclusions (thanks to the no-slip condition on the boundary of the solid
inclusions then the asymptotic behaviour of the fluid is described in
the following Theorem :

THEOREM 1.1. - (Brinkman’s law: : case g = 0) [11]
Suppose that : 0. Then the sequence converges in

~--.o

the weak topology of to the solution o of

where M is the symmetric matrix given by :

for every in ~1, ... , N~ :

t?~ being the solution of the local minimization problem : :

(e~ is the kt~ canonical vector of 

Remark 1.2.-

1 - From the definition (3) of the matrix M, we infer the existence of a
critical size r~ of the inclusions :

such that



a) if = 0, then the matrix :Af is null and uo is the solution of
the Stokes problem in S2.

b) if = then u*0 is equal to 0 (the fluid is at rest in Q).

c) if belongs to R+*, then Brinkman’s law contains a "strange
«-o

term" which depends on the size and shape of the inclusions, through
the capacity problem (4).

2 - The solution o of Brinkman’s law is the solution of the following
minimization problem :

where F* is the functional defined on by :

In [5], thanks to the use of epi-convergence methods, have been given :
the behaviour of the dissipation energy of the fluid, the convergence of the
internal pressure (in some duality sense), the convergence of the solution
of the Stokes evolution problem, the convergence of the spectra, some
indications about first-order correctors.

In the next paragraph of the present work, the asymptotic behaviour
of a Bingham fluid (g > 0), slowly flowing in the above-described porous
medium, will be studied in the situation : = 0.

We will prove that the asymptotic velocity fo of the Bingham fluid is

the solution of the minimization problem : Min ~(F(u) - / dx~,~ ’

where F is the functional defined on ( Ho ( SZ ) ~ ~ by

In this non-newtonian case, the limit functional F still contains the "strange
term" 1 2 03A9 Mkl uk ul dz, where Af is the matrix given by (3). The non-
newtonian term g 03A9 ((eij(u))2)1/2 dx, appearing in the functional 



and also in the limit functional F, does not alter this strange term. Theproof of this result, presented in Theorem 2. I is based on the two followingarguments:
- the explicit computation of the solution (tYj , qj ) of (4) when T is equalto the unit ball B( I ) (see [5] ), or the existence of pointwise estimates on thissolution when T is a smooth subset of B(I ) (see [1 1] ). These computationsor estimates imply that for every smooth divergence-free function Y inthere exists a sequence (P~v0~)~ converging to Y in the weaktopology of and such that:

(see Proposition 2.3),
- the lower semicontinuity, with respect to the weak topology ofof this non-newtonian term.

Then, we study the behaviour of the solution of the evolution problemassociated to (I ) (see Proposition 2.4).
In the last part of this paragraph, we consider the case of a coefficientg depending on e. We prove that, either the Bingham fluid has a linearasymptotic behaviour (when lim g(e) = 0), either the sequence (P~u~)~«-o ~ ~

converges to d very fastly (when lim g( e) = +cxJ) (see Remark 2 5)«-o ° °

The particular case re = a~(0  a  1 /2) has been studied, for newtonianfluids, through the method of asymptotic expansions in [2, 9, 12] and bymeans of epi-convergence methods in [5J.
THEOREM 1.3. - (Darcy’s law, case g = 0 )
Suppose re = ae (0  a  1/2). Then, ihe sequence (1 ~2P~u~)~converge3 in ihe weak topology of io ihe function iu*1

where K is ihe symmetric positive definite matrix given by :



for every k, I in ~ 1, ... , N} :

z being the solution of the minimization problem : :

Min

z Y - periodic
z=O on aT
div z = 0 in Y~daT

Remark 1.4. is the solution of the following minimization problem :

where j is the function defined from R~ into R by :

An elementary computation shows that the function j may be written in
the following form :

where is the Y-periodic function equal to Notice that ~ is the
k

solution of :

Min

periodic
Z = 0 on aT

div z = 0 in YBaT



This case : r~. = ae(0  a  1/2) leads, for a Bingham fluid (that is when
g is strictly positive and changed into e g, through a dimension analysis of
the coefficients [10]) to a nonlinear Darcy’s law :

where Ao is the function from RN into RN equal to :

z~ being the solution of the minimization problem :

Min

z Y - periodic

z = 0 on aT
div z = 0 in Y

(compare to (6)).
This result has been partially proved in [10], by means of asymptotic

expansions of the solution ile of (1). The purpose of the third part of the
present work is to furnish a different proof of this nonlinear Darcy’s law, by
means of epi-convergence methods.

We shall first prove that is a bounded sequence in 

Noticing that is the solution of a minimization problem :

where

the nonlinear Darcy’s law will be derived from the computation of the epi-
limit G of the sequence in the weak topology of (I~2(SZ))~ :



The last part of this study deals with the convergence of the internal pressure
of the Bingham fluid. Thanks to Tartar’s idea [13], we shall prove the
existence of an extension p‘~ of the internal pressure pe of the fluid, such
that converges in the strong topology of to a function p2.
We conjecture that this function p2 is in fact equal to the limit pressure pi,
appearing in the nonlinear Darcy’s limit law.

Let us now recall the main properties of epi-convergence, which will be
used throughout this study.

DEFINITION 1.5 [1], [6]. -
Let (X, T) be a metric vector space and a sequence of functionals

from X into R. Then, epi-converges to F, in ~~e topology T, if

where : :

being any sequence converging to x, in the topology T.

Equivalently, this equality is satisfied if the two following assertions are
fulfilled

for every x in X, there exists a sequence ( x ° ) ~ (7)
T-converging to x, such that F(x ),

e-o 
‘

for every x in X and for every sequence (x) (8)
T-converging to x liminf > F(x).

e-o 
‘

This variational convergence is well-fitted to the asymptotic analysis of
minimization problems :



THEOREM 1.6 ([1] Theorem 1.10).2014
Suppose that (F~)~ epi-converges to F, in the topology T and let x~ be an

o~2014minimizer of F~, that is :  Inf + o~, with lim 0.
_. 

~EX ~-.o

Suppose, moreover, that the sequence is -relatively compact.

Then, for every r-converging subsequence (xE. )~. of with x =

lim :
~.--~o

and moreover lim F~~ (xE~ ) = F(x).
~~ -~o

The next result shows the stability of epi-convergence, with respect to
continuous perturbations.

PROPOSITION 1.7 ([1] Theorem 2.15.).2014
S’uppose that epi-converge8 to F, in the topology T and G is

continuous for this topology T. Then (F~ + G)e epi-con?Jerge3 to F + G
in the topology T.

NOTATIONS :

are the classical function spaces, while (L2 (S~)) N and
consist of vector-valued functions whose components belong to

or Ha (SZ).
is the space of smooth divergence-free functions :

is dense in V(Q) for the topology of (Ho (S2))~ and in for the

topology of (L2(SZ))~, where

is the outer normal to the (smooth) boundary o~~ ~ ~

8 A is the indicator function of the set A : sA x _ ~ 
if x belongs to A,( ~ 

+00 elsewhere.

X A is the characteristic function of the set A = 11 if x belongs to A,0 elsewhere.



For every z in L1(Y) (Y is the unit cell [-1 2, 1 2]N of f denotes the

mean value of z on Y

A function z defined on Y is called Y-periodic if it takes the same values
on the opposite sides of Y.

II. Asymptotic behaviour of the solution u~ of (1) when

P~ denotes the canonical extension operator from into

CHo (~))~ :

From the strict positivity of g, Poincare and inequalities in 03A9 [7],
one first deduces from (1), that is bounded in 

THEOREM 2.1.

The sequence (canonical extension of the solution of (1)) conver-
ges in the weak topology of ~o the solution uQ of :

where F is the functional defined by

M being the symmetric matrix given by (9).

Moreover, the dissipation energy of the fluid : :



converges to the energy of the as ymptotic fluid :

This Theorem 2.1 is a straightforward consequence of the following result,

THEOREM 2.2.

The sequence of functionals defined by (2) epi-converges to the

functional F defined by (9~, in the weak topology of (Ho (S~))~,

through theorem 1.6, since
- the functional F is convex and strictly coercive on (hence the
minimizer of F is unique and the whole sequence converges to uo ),
- the functional: 11--+ 1 / ’ 11 dx, is continuous for the weak topology of
(Ho (~))N~ .

Proof of Theorem ,~.,~ :

Noticing that V(S2) is a closed subspace of for the weak

topology of this space, one proves that for every v in which

is not divergence-free in H :

= = 

eO 

In order to prove Theorem 2.2, one has to verify the assertions ( 7) and (8)
which take the special form :

For every v in ~(SZ), there exists a sequence (P~v )E, converging in the weak
topology of (H10(03A9))N to v, with v0~ in such that

for every v in V(H) and for every sequence converging to v in the
weak topology of with vE in 

Suppose first that aN is finite, with



The verification of (10) and (11) is a consequence of the following Proposi-
tion, the technical proof of which being postponed in Appendix 1 : :

PROPOSITION 2.3. - Suppose that v belongs to y(S2) and aN is finite.
Then, there exists a function v in satisf ying

a~ converges to v in the wea.k topology of 

c~ there exists a constant C independant of v such that for every w in 
and for every sequence converging to id, in the weak topology of

with w~ in :

Let us prove (10) for a smooth divergence-free function in 
Proposition 2.3 a), b) and d) imply the existence of converging
to v in the weak topology of and such that :

Therefore, (10) is proved for a smooth divergence-free function v in V ( S2 ) .
If iJ belongs to there exists a sequence (?n)n of smooth divergence-

free functions in converging to v in the strong topology of (H4 (S~))~.
For every n, Proposition 2.3 guarantees the existence of conver-

ging to vn, in the weak topology of such that :

Hence



thanks to the continuity of F, with respect to the strong topology of
Using the diagonalization argument of Corollary 1.16. [I], one

derives the existence of a subsequence growing to +00 such that :

and converges to v in the weak topology of Take
V2 = (v~~~~)° : (10) is proved for Y in V(H) (and aN finite).

Let us now prove (11) when aN is finite : take iJ in (resp.
(vn)n) converging to v in the weak (resp. strong) topology of 
in vn in V(SZ).

Thanks to Proposition 2. 3. b) and c), one obtains

Moreover the functional

is convex and continuous for the strong topology of (Ho (S2))N, hence lower
semicontinuous for the weak topology of this space.



Let n go to +00, and use the property of (vn)n : (11) is proved.
Suppose finally that a N is equal to +00.
Observe first that for every v in V ( ~) and for every a in R+* : :

where Fa is the functional F~ corresponding to the case aN = a and
T = B(1~. From the properties of the matrix M, one immediately deduces

This ends the proof of Theorem 2.2.

Let us conclude this paragraph, giving the convergence of the solution of
the evolution problems.

PROPOSITION 2.4.- Take To in R+*, ( f~~~ (resp. (x~~E~ a sequence

converging to f in .~2(0, To ; (resp. to x in (L2(SZ)~~’~. Then ~~e
sequence (~’~u~(., .))e of extensions of the solution ug of

converges in the strong topology of (L2(~)~~) to the solution ico of

Moreover

Proof of Proposition ,~.1~.
See [1] Theorem 3.74.

Remark 2.5. - In this section, we have supposed g to be a constant. Let
us now consider the case of a coefficient g equal to some function that

is



1 - If lim = 0, then one immediately proves, with the arguments
developped in the proof of Theorem 2.2, that epi-converges in the
weak topology of to the functional F* defined by (5). In this
case, the (weakly) non-newtonian fluid has a linear asymptotic behaviour.
2 - If = +00 and if/belongs to for example then

converges to 0, in the strong topology of for everyinteger p. Indeed, observe first that :

Since is bounded in one proves that

converges to 0 in the appropriate space hence in and
finally in (~(~))~. The preceding equality implies that (~) 
converges to 0 in LD(Q) and in (L~))~.

Multiply the preceding equality by One now proves that
((g(~))2 P~u~)~ converges to 0 in (L1(03A9))N and in (H10(W))N. The assertionis proved in a recurrent way.

III. The case ~ > 0 and r~ =  ~  1/2) : :
The nonlinear Darcy’s law.

Notice first that in the present case, the coefficient g has to be changedinto ~ [10]. Let us denote ~ the solution of the minimization problem

According to the results obtained in Theorem 2.2, converges to 0in the weak topology (and in fact the strong topology) of since



aN is equal to in this case. The purpose of this paragraph is to study.
the rate of convergence.

LEMMA 3.1. - The sequence is bounded in .

is the solution of the minimization problem

where G~ is the functional defined on (L2(~t))N by

Proof of Lemma ~.1

The first assertion follows from (13), thanks to Korn’s inequality in SZ,
the positivity of g and the following estimate of Poincaré’s inequality in 
the proof of which is trivial : :

LEMMA 3.2. - There exists a strictly positive constant C such that :

In order to describe the limit of the sequence in the weak

topology of (L2(SZ))~, one has to compute the epi-limit G of the sequence
(Ge)e in this topology. Notice that the functional : v --~ F / ’ vdx
is continuous for the weak topology of { L2 ( SZ)) ~ (see Theorem 1.6 and
Proposition 1.7).

From the divergence-free condition contained in G~, one first deduces that
the domain of G in contained in H(S~), the closure of V(S2), with respect
to the (weak) topology of {L2(SZ))~. Hence, one has to prove the following
assertions, deduced from (7) and (8) :
for every v in H(n), there exists a sequence converging to v in the
weak topology of with in such that



for every v in and for every sequence converging to v in the
weak topology of (L2(S’t))N, with v~ in 

The verification of (15) and (16) requires the local character of ~~ and the
density of the set of piecewise constant functions in (L2(SZ))N : :

DEFINITION 3.3. - A function u in is called piecewise constant

if there exists a ,finite family of smooth open subsets of S2, with

03A9BU03A9p negligible, such that u is a constant up on SZp.
P

The verification of (15) and (16) also requires the study of the local
minimization problem :

For every ( in RN, let z~ be the solution of

Min

z Y 2014periodic
div z=OonY
z = 0 on aT

Let A be the function : RN 
~ 

R~ .Let Ao be the function : .
The properties of Ao axe summarized in the following Lemma:

LEMMA 3.4. (see [10] and Appendix 2)
a) For every 03BB in RN, there exists 03BE(03BB) in RN such that : A0(03BE(03BB)) .- 03BB.

b) this 03BE(03BB) is not unique, but a, f 03BE1 and 03BE2 belong to Ao 1 (a) : :

c) there exist two constants c, C independant of 03BE such that :



d) there exist a symmetric matrix valued function m~ and a function q~
verif ying -

Let us denote by jo the function from RN into R defined by

(this is justified by Lemma 3.4 b)).
From (17) and Lemma 3.4 c), one immediately infers that jo has a

quadratic growth, namely : : jo (r~)  C + C’ ~~ ~2 (0  C, C’ ). Moreover, an
elementary computation ( deduced from (17)) proves that j0 is convex.

Consequently, the functional dx is well-defined on 

Moreover, this functional G is convex and continuous, with respect to the

strong topology of 

Verification of (15) with = / 
Take any v in Let be any sequence of piecewise constant

functions converging to v in the strong topology of :

vn = vn~ on  p  p(n)), with negligible. For every p
Lemma 3.4 implies the existence of an Y-periodic function such

that the mean value is equal to Then we define as the

Y~2014periodic function equal to (-) in Y~ and ~2014periodically extented
in 



Lemma 4.1 of [12] implies that converges in the weak topology
of to = vnP..

The main difficulty of the problem is to gather all these different

£ -periodic functions This may be done in the following way.

First, define 03A3~ as the set {x E 8Q U U P ~03A9np)  ~}.

Figure2
Let zne be the solution of the Stokes problem in ~~, with boundary

conditions equal either to 0 (on 8Q or on the boundary of the pieces of
inclusions included in 03A3~) or (on ~03A9np fl 

One verifies that the sequence converges to 0, when
ê converges to 0. Then, one deduces, as in Lemma 3.2, that the sequence

converges to 0.

Trivially belongs to and converges to ~ in the
weak topology of (Z~(H)) . The computation of is quite trivial,
since



Hence, from the definition of B and (18) :

Therefore :

The diagonalization argument of Corollary 1.16 [1] implies the existence of
a subsequence growing to such that converges to

d, in the weak topology of and

(15) is proved, taking = 

Choose any v in Let (vn)n be any sequence of piecewise constant
functions in Q, converging to v in the strong topology of (L2(03A9))N : vn = dnp
in S2np with S2~ U nnp negligible.

p

Suppose that converges to v in the weak topology of (.L2(SZ))~,
with ve in We may suppose that :

otherwise, (16) is trivially true.

For every p, we choose a smooth function 0np in C~° satisfying
0  (~n~  1, and we write :



From the definition of the smoothness of 0np and the definition of
jo (18), we derive : 

From Lemma 3.4. d) and the smoothness of we derive : .

Let 0np increase to the characteristic function of Qnp :



Let n increase to (16) is proved, thanks to the continuity of G, with
respect to the strong topology of (L2(S2))N.

Finally, we have proved :

THEOREM 3.5. - The sequence of functionals defined by ~11~~ epi-
converges in the weak topology of to the functional G~ defined on
(L2(S2))N by : 

_

where jo is defined by (18~.

Through Theorem 1.6, we deduce of Theorem 3.5 : :

COROLLARY 3.6.- There exists a function p1 in such that

the sequence 1 converges in the weak topology to

Ao ( f -grad p1 ~
Moreover,

converges to

Remark 3.7. - J.L. LIONS and E. SANCHEZ-FALENCIA proved in ~10~ that
pi is not unique in In fact, if ~ is sufficiently small, Ao ~ is equal
to 0. (see [10] 4.3). However, two determinations of the limit pressure pi
provide the same mean velocity (see Appendix 2).

Remark 3.8. - In the case N = 2, the construction of the test function

satisfying (15) may be done in the following way. First, one deduces
from Lemma 2.5 of [14], through a trivial change of scale, the following
property of Ye-periodic, divergence-free functions.



LEMMA 3.9.- For every Ye-periodic, divergence-free function z in

(L2(Y2~)), there exists an Y~2014periodic function z in H1(Y~) verifying :

where C is a constant independant of ~ and z.

We also need the following restriction operator :

PROPOSITION 3.10 [13]. - There exists a linear restriction operator R~
from into satisfying :

a~ for every u in = u (P~ is the canonical extension

operator~,

b~ C 

b) there exists a constant C independant of ~ and u in such that

And then we define :

where is the function associated to the Y~2014periodic, divergence-free
function by Lemma 3.9 and 0ne is a smooth function in and

identically equal to 1 in .

IV - Convergence of the internal pressure when

THEOREM 4.1. - There exists an extension p~ of the internal pressure
of the Bingham fluid, such that converges, in the strong topology of



Proof of Theorem 4.1. .

Through Proposition 3.10b), define (as in [13]) grad p~ the element of
(H-1 (S~))~ satisfying :

for every u in ( Ho ( SZ ) ) N .
From ( 13), one deduces the following estimate :

Then Proposition 3.10c) implies the boundedness of (grad in

(H 1(S2))N. .
As in ~13J, we then prove the convergence of (p~)~, in the strong topology

of the quotient space L2(~)/R, to some limit point p2. We conjecture that
this limit point p2 is, in fact, one "limit pressure" appearing in the limit law
established in Corollary 3.6 (see Remark 3.7). 

’

APPENDIX 1 : The proof of Proposition ,~. ~.

Let us first mention the following property of the divergence-free func-
tions (which is an immediate consequence of Theorem 4.9 of ~11}, see also
[14]) :

PROPOSITION A.1. a) Suppose N = 3 : for every divergence-free
function w in (LZ(B(r)))3, there exists a divergence-free function w in
(H1 (B(r)))3 satisfying

b~ Suppose N = 2 : for every divergence-free function w in (L2(B(r)))2,
there exists a function lli in satisfying :



where C is a constant independant of r(r > 0) and til.
Let us now prove the Proposition 2.3. Suppose that T is equal to B 1.and define ()

where is the center and Bi(e/4) (the cell and the i-th ball),~, is the divergence-free function associated to tT(.) - in B’(r~~) byProposition A.I 0., is a cut-off function in [0, 1]) whose support is
contained in B’ and identically equal to 1 in 

In the present case, the solution ~) of the minimization problem
(4) is computable in terms of radial functions (see [5]). The assertions of
Proposition 2.3 are immediate consequences of these computations.
When T is a smooth open subset of the unit ball B(I) of one has

to modify the test functions if, given in (19), in order to use the followingpointwise estimates on the solution qj) of (4) :
PROPOSITION A.2 ([11] Lemma 2.2).- for every s~(s~  e) (c > 0), there exists a constant C such that

if N = 3 for every .!- in B(se) verifying Te) > c re

if N = 2 for every z in B(s~) verifying d(z, Te) > ezp 

Define :

where 03C8~i is a cut-off function whose support is contained in Bi(~ 4 - r~ 2)and identically equal to 1 in Bi (~ 8 - r~ 2),



is associated to the divergence-free function wk~ in B* (- 2014 r;)
by Proposition A.I.

The assertions of Proposition 2.3 are quite immediate consequences of
these pointwise estimates.

APPENDIX 2 : Proof of Lemma 

Let us first prove some properties of the function Ao : :

1) Ao is monotone in the sense that for every ~1 and ~2 in RN :

From (17) we derive :

and a similar inequality where ~1 and ~2 are exchanged. Add these two
inequalities :

and the monotonicity of Ao is proved.

2) Ao is continuous. This property of Ao may be proved through an
epi-convergence argument : let H~ be the functional associated to (17).

Let be any sequence converging to 03BE in RN. One trivially proves
that (Hn)n epi-converges to H~ in the strong topology of (H1 (Y))N.

Theorem 1.6 then implies that (z~n ) n converges to z~ in this topology.

Hence, (Ao(n))n converges to Ao~.

We introduce ~. the solution of the following minimization problem :



Min

z Y-periodic
 =  on aT
div  = 0 in Y

Notice that *03BE depends linearly on £, that is : *03BE = where *k is
k

the solution of (22) with £ = ek .
From (17), one derives

Hence, from Lemma 3.4 d), which has been proved by Lions and Sanchez-
Palencia in [10], and from (22), one derives :

And finally, using (21)

These three properties of Ao prove that Ao is maximal monotone and onto
(see [3]), and Lemma 3.4 a) is proved.
Lemma 3.4 b) is a consequence of (17), since z~l - z~2 .
Lemma 3.4 c) is a consequence of (23) and following inequality which is

deduced from (22) :
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