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Foliated and associated geometric structures 
on foliated manifolds

ROBERT A.WOLAK(1)(2)

Annales Faculte des Sciences de Toulouse Vol. X, n°3, 1989

Le papier presente une théorie unifiée des structures géomé-
triques sur des varietes feuilletees. Les structures sont classifiées dans trois
groupes : feuilletees, transverses et associees. Cette unification du traite-
ment permet de simplifier des demonstrations et de formuler des theoremes
nouveaux sur des feuilletages admettant une structure geometrique.

ABSTRACT. - This paper presents a unified approach to geometric struc-
tures on foliated manifolds. Three types of structures are distinguished : :
foliated, transverse and associated. This unified approach allows to simplify
proofs and to obtain new results concerning foliations with additional geo-
metric structure.

In this paper we present a definition of a transverse geometric structure
as well as those of foliated and associated structures, and study relations
between them. Then we propose a unified approach to these geometric
structures. We obtain generalizations of results and simplifications of proofs
of R.A. Blumenthal as well as new results on foliations admitting foliated
and associated geometric structure. For simplicity’s sake all the objects
considered are smooth and manifolds are connected, unless otherwise stated.

For another approach to geometric structures on foliated manifolds see
P.Molino [26,28].

In the presentation of transverse structures the author is indebted to
Prof.A.Haefliger and his vision of transverse properties. The author had
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the privilege of discussing these problems with him. In fact, without his
comments the definition would have been more restrictive than the one

presented in this paper. The author would like to express his gratitude to
Prof. P. Molino who helped him understand better foliated structures and
whose treatment of foliated G-structures was an inspiration.

During the preparation of this paper the author was a guest of Insti-
tut d’Estudis Catalans, Centre de Recerca Matematica in Bellaterra (Bar-
celona). ,

1. Transverse structures

Let (M, F) be a foliated manifold of dimension n whose foliation ~’ is of
codimension q. The foliation ,~ is said to be modelled on a q-manifold No
if it is defined by a cocycle U = f=, modelled on No, i.e.

1. is an open covering of M,
2. Ii: Ui -~ No are submersions with connected fibres, and = f on

The q-manifold N = U Ni, Ni = /,(!7,), is called the transverse manifold
associated to the cocycle U and the pseudogroup 1£ of local diffeomorphisms
of N generated by g=~ the holonomy pseudogroup representative on N
(associated to the cocycle U). N is a complete transverse manifold. The
equivalence class of ~-C we call the holonomy pseudogroup of F (or (M, ,~") ) .
In what follows, we assume that ~’ is defined by a cocycle U and we denote
by N and ?-C the transverse manifold and holonomy pseudogroup associated
to U, respectively. It is not difficult to check that different cocycles defining
the same foliation provide us with equivalent holonomy pseudogroups, cf.
[16]. In general the converse is not true.

Example 1. Let F be a transversely affine foliation whose developing
mapping is surjective, cf. [14]. Its holonomy pseudogroup has a represen-
tative the pseudogroup defined by the action of the affine holonomy
group r on Rq. . If the fibres of the developing mapping are not connected
and some connected components correspond to different leaves of F, then
Rg cannot be a complete transverse manifold of the foliation F, and ?r is
not a representative of the holonomy pseudogroup associated to any cocycle
defining the foliation 7. As an example of such a foliation we can take the
one-dimensional Hopf foliation of S2 x S1.



The precise statement of the "converse" result is best expressed using
the notion of a K-foliation, cf. [15]. Let K be any pseudogroup of local
diffeomorphisms on a q-manifold No. A ~-foliation is a foliation defined by
a cocycle U modelled on No with gij being elements of the pseudogroup
~C. Then the holonomy pseudogroup associated to U is equivalent to a
subpseudogroup of J~. With this in mind we have the following.

LEMMA 1.2014 Let F be a foliation defined by a cocycle U and let (?-~’, N’)
be a pseudogroup equivalent to (?nC, N). . Then F is an H’-foliation.

To introduce the definition of a transverse geometric structure we use the
notion of a natural bundle, cf. [32].

DEFINITION 1.2014 Let N be a transverse manifold of the foliation ,F.
An H-invariant subbundle E of a natural fibre bundle F(N) is called a
transverse geometric structure of the foliation ~.

It is not difficult to see that the definition does not depend on the choice of
a cocycle U defining the foliation (i.e. on the choice of a transverse manifold
and holonomy pseudogroup). Let (x’ N’) be a pseudogroup equivalent to
(~-C, N) and (~«) be the equivalence. Then the subbundle E~ = E

F(N’): v’ = F(~«)(v)~ v E F} (resp. E~ = ~u’ E F(N’): F(~«)(v’) E F~
for a contravariant functor) is an H’-invariant subbundle of F(N’ ) which is
locally isomorphic to the subbundle E. Therefore, it is possible to talk about
holonomy invariant subbundles on the transverse manifold. Moreover, when
solving a particular problem, we can choose a cocycle making our foliation
a K-foliation for a suitable pseudogroup K,.

Example 2. - 1. Let L be the functor associating to a manifold its bundle
of linear frames. Then any ?i-invariant G-reduction of L(N) is a transverse
geometric structure. Such a foliation is called a G-foliation, cf. [19,24,33].

2. Any H-invariant section of a fibre bundle F(N) is a transverse

geometric structure. Thus, if we take the functor of the tangent bundle
we get holonomy invariant vector fields on the transverse manifold. For the
contravariant functor of the cotangent bundle we get ?-~-invariant 1-forms
and as x-invariant sections of the tensor products of these bundles(functors)
we get ,}{-invariant tensor fields.

Using a suitable associated fibre bundle to the bundle of linear frames
(such functors are natural fibre bundles), we obtain that any H-invariant
linear connection in an M-invariant G-structure is a transverse geometric



structure. Such foliations we have called B7 - G-foliations, cf. [39]. Rieman-
nian and transversely affine foliations belong to this class.
We obtain holonomy invariant connections of higher order or Cartan

connections as holonomy invariant sections of associated fibre bundles to
the bundle of frames of higher order. Such connections exist for transversely
conformal or transversely projective foliations, cf. [8].

. 3. Let F be a K-foliation. If JC is a Lie pseudogroup, then the subbundle
of r-jets from the definition of a Lie pseudogroup, cf. [34], is a transverse
geometric structure. Foliations admitting foliated systems of differential
equations are of this type, cf. [42].

Many geometric constructions provide useful ways of constructing new
transverse geometric structures. In fact, the holonomy pseudogroup is
a pseudogroup of local automorphisms of a given transverse geometric
structure. Any geometric object related to this structure and invariant under
the action of the pseudogroup of local automorphisms of the initial structure
is itself a transverse geometric structure. For example, take a holonomy
invariant G-structure B(N, G). Then its prolongations and their structure
tensors are also holonomy invariant, cf. [20,35]. If V is a holonomy invariant
connection in B(N, G), then its torsion and curvature tensor fields T and
R, respectively, are holonomy invariant as well as and 

2. Foliated structures

A foliated geometric structure, intuitively, is a geometric stucture on a
foliated manifold which is "locally constant" along the leaves ; for example,
in local adapted coordinates it can be expressed in transverse coordinates
only. It is the case of a foliated vector field or the Riemannian metric induced
on the normal bundle by a bundle-like Riemannian metric. To present the
definition of a foliated structure we need the following.

Let Fol be the category of foliated manifolds with codimension q folia-
tions. Global mappings which preserve foliations and which are transverse
to them are the morphisms in this category, i.e.

f E iff C and f *.~’Z = .

DEFINITION 2.- A covariant contravariant) functor F on the
category Folq into the category of locally trivial fibre bundles and their fibre
mappings is called a foliated natural bundle if the following conditions are
satisfied :



i~ for any foliated manifold (M, .~’), is a locally trivial fibre
bundle over M ;

ii~ let f E ~’I ), (M2, ~’2 )). Then the fibre mapping F( f ) has
the following properties: :

a~ covariant case :

. F( f ) covers f , i. e. the following diagram is commutative :

. for any point x of M1, the mapping F(f)z:(M1,F1)x ~ (M2, F2)f(x)
is a diffeomorphism;

b ) contravariant case :

. for any point x of Mt, the mapping (M2, ,~~) f(x) --~ 
is a diffeomorphism,

. the following diagram is commutative : :

iii ) the functor ~’ is regular. 
’

Remark. - In ~41~ we have called such functors transverse natural
bundles.



Example 3. - The following functors are foliated natural bundles, cf.

[23, 41] .
. normal bundle,
. normal bundle of order r,

. bundle of transverse linear frames,
. ~ bundle of transverse r-frames,
. bundle of transverse (p, r)-velocities,
. bundle of transverse A-points, ,

~ dual bundle of the normal bundle,
~ any tensor product of these bundles,
~ any associated fibre bundle to the bundles of transverse frames.

The use of the adjective "foliated" is best explained by the following.
Let F be any covariant foliated natural bundle functor. If the foliation ,~’

is defined by a cocycle U then is a cocycle defining
a foliation ~’F on the total space of the bundle The leaves of the

foliation ~’F are coverings of leaves of 7. In the contravariant case we define
this cocycle as follows :

We start with the commutative diagram :

Then take 2014~ equal to and ~ = 
Indeed, is a cocycle defining a foliation 7F on the
total space of the bundle F(M, ~) whose leaves are coverings of leaves of 7.
It is not difficult to verify that to equivalent cocycles defining the foliation
~ correspond equivalent cocycles on the total space of F(M, 7) . Therefore
the foliation ~p does not depend on the choice of a cocycle defining 7.

One can easily verify that any foliated natural bundle is determined by
its values on q-manifolds. In fact, the bundle ~~ = where

(x,i,v) ~ (x’,j,v’) iff x = x’ and v’ = (resp. v = in the



contravariant case), is a well-defined locally trivial fibre bundle over M. Two
equivalent cocycles define isomorphic bundles. Moreover this isomorphism
preserves the natural foliations (locally defined by projections ft F(N=) --~
F(Nt )) of these two bundles. The bundle F(M, ,~’) is isomorphic to Fu and
this isomorphism is foliation preserving. Therefore any natural functor can
be uniquely extended to a foliated natural one.
We have noticed that any foliated natural bundle F(M, ~) admits a

foliation of the same dimension as ~’. Therefore we can talk foliated
subbundles of i.e. those whose total space is saturated for cf.

[18,24,29]. This leads us to the following definition of a foliated geometric
structure.

DEFINITION 3. - A foliated subbundle E of a foliated natural bundle
F(M, ~) is called a foliated geometric structure.

The previous considerations ensure that these foliated subbundles are
in one-to-one correspondence with holonomy invariant subbundles of the
corresponding natural bundle on the transverse manifold. Therefore foliated
geometric structures are in one-to-one correspondence with transverse ones.

This correspondence can be presented in the following dictionary :
Dictionary

foliated
normal bundle of order r
bundle of transverse (p, r)-velocities
bundle of transverse A-points
foliated natural bundle
foliated vector field
base-like r-form (on the normal bundle)
foliated tensor field of type (p, r)
foliated G-structure

fundamental form of " "

structure tensor of " "

kth prolongation of " "

transversely pro ject able G-connection
torsion tensor of " "

curvature tensor of " "

bundle-like metric (on the normal bundle)
transverse sectional curvature

foliated Cartan connection
curvature of " " "

holonomy invariant
tangent bundle of order r
bundle of (p, r)-velocities
bundle of A-points
natural bundle

vector field

r-form

tensor field of type (p, r)
G-structure
fundamental form of "
structure tensor of "

kth prolongation of "
G-connection
torsion tensor of "

curvature tensor of "

~ Riemannian metric
sectional curvature

Cartan connection
curvature of " "



In [25] P.Molino considers foliations admitting transversely projectable
connections. The correspondence between structure tensors and prolonga-
tions have been proved in [24,40]. Foliated Cartan connections were in-
troduced by M.Takeuchi in [36] and R.A.Blumenthal in [8] and transverse
sectional curvature in [7].

The dictionary reduces the study of "foliated" problems to holonomy
invariant ones and sometimes to the right choice of a cocycle defining the
foliation. This, owing to Lemma 1, is equivalent to a good choice of a
representative of the holonomy pseudogroup.

Let us analyze the results of R.A.Blumenthal presented in [3,4,5,6,8]. In
[3,4,5,6] he considers foliations admitting a transversely projectable connec-
tion whose curvature and torsion tensors have some additional properties.
These properties, the connection being transversely projectable, can be read
as the properties of the curvature and torsion tensors, respectively, of the
corresponding holonomy invariant connection on the transverse manifold. In
Blumenthal’s case well-known theorems ensure that we can choose a very

good representative of the holonomy pseudogroup. It is precisely what Blu-
menthal did in each case. In fact, as a holonomy pseudogroup representative
we can take a subpseudogroup of the pseudogroup obtained as the localiza-
tion of an quasi-analytical action of a Lie group K on a connected simply-
connected manifold No. Therefore, our foliation is an (No, K)-structure and
a developable foliation, cf. [12,14,37]. The completeness assumptions ensure
that the developing mapping is a locally trivial fibre bundle, and this fact
yields the most important results.

At the basis of these four papers is the following scheme :
~ Realize that the considered geometric objects on the foliated manifold

are foliated and pass to the holonomy invariant ones.
~ Using theorems on local equivalence of geometric structures choose a
good representative of the holonomy pseudogroup.

. Check that any element of the holonomy pseudogroup can be uniquely
extended to a global one.

. Verify that "completeness" assumptions ensure that the developing map-
ping is a locally trivial fibre bundle; for example the foliated differential
equation defined by the foliated geometric object is a transversely com-
plete foliated differential equation and it projects onto a differential equa-
tion on the developing image, cf. Theorem 1 of [42].
The same scheme has been applied to foliations admitting Cartan connec-

tions in [8].



Having formulated our proof scheme we can prove the results contained
in [3,4,5,6] quite easily. We only need some results on local equivalence
of reductive and locally symmetric spaces, see for example [21,38]. In. the
case of Cartan connections we should take into account Lemma 11.10 and

Proposition 11.1 of [31]. Then the equation of the geodesic of the trans-
versely projectable connection is a tranversely complete foliated differential-- -
equation corresponding to the equation of the geodesic of the connection of
the transverse manifold. Therefore the developing mapping must be locally
trivial.

The theory of foliated Cartan connections is very similar to its classical
counterpart, cf. [31]. Let us restrict our attention to G-structures of second
order modelled on a semi-simple homogeneous space. Let B(M, G; ~’) be
such a foliated G-structure. Its total space B is foliated by a foliation F B.
As in the case of 1st order G-structures foliated Cartan connections do not

always exist. The standard construction ( using the partition of unity and
local existence ) ensures the existence of basic Cartan connections, i.e. 1-
forms on B with values in Lie(L) = I vanishing on vectors tangent to the
foliation It is also possible to introduce the notion of basic admissible
Cartan connections. The vanishing of the Spencer cohomology group 
ensures the existence of a foliated Cartan connection, cf. Theorem 1.1 of
[36]. In fact, the vanishing of this cohomology group makes sure that in
the corresponding G-structure on the transverse manifold there exists the
normal Cartan connection and that this connection is holonomy invariant.
Thus it defines a foliated Cartan connection in B(M, G; F) which we call the
normal foliated Cartan connection of this G-structure. Next one can define
its Weyl tensor, and it is not difficult to verify that it is a foliated tensor.
In some cases its vanishing ensures that the model G-structure is flat. This
leads us to formulate the following theorem which is a generalization of
Theorem 2 of [8]. .

THEOREM 1.2014 Let B(M, G; .~) be a foliated G-structure of second order
modelled on a semi-simple flat homogeneous space L/Lo such that B’2~1(1)
=H2~2(1) = 0. If the normal foliated Cartan connection of this
structure is complete, and the Weyl tensor of B(M, G; F) vanishes, then
.~’ is an (L/Lo, L)-structure and the developing mapping h: M --~ L/ Lo (
L/Lo is the universal covering space of L/Lo ) is a locally trivial fibre bundle
whose fibres are the leaves of the lifted foliation .~’.



Proo f . We follow our proof scheme.> Since the Weyl tensor is foliated,
the Weyl tensor of the corresponding G-structure on the transverse manifold
vanishes. Ochai’s theorem (cf. [31] Theorem 12.1 ) ensures that the normal
Cartan connection is flat. Then according to Proposition 11.1 and Lemma
11.10 of the same paper the foliation ~’ is an (L/Lo, L)-structure. The
completeness of the normal foliated Cartan connection means that the
foliation ~’~ is a complete transversely parallelisable foliation, cf. [8], and
that the equation of the geodesic of this connection is complete. This first
fact ensures that the holonomy coverings of leaves of F are diffeomorphic,
and the second that the developing mapping is a locally trivial fibre bundle
cf. Theorem 1 of [42].

Let us provide some more background material for our "proof scheme" .
Local equivalence of geometric structures have been studied for many years.
The best account can be found in [I], see also [27]. Geometers looked for a
set of invariants of K-structures (K a Lie pseudogroup) which would ensure
that any two ~-structures having the same invariants are locally equivalent.
Having defined the structure tensors, it was necessary to determine whether
the formal integrability (i.e. all structure tensors vanish) is equivalent to the
integrability (i.e. the K-structure is locally equivalent to the corresponding
canonical flat structure on Rn). It is true for any G-structure, as well as
for many other 1~-structures, cf. [1]. We can say a little more about G-
structures of finite type : two G-structures with the same constant structure
tensors are locally equivalent, cf. [20,35]. Therefore transverse G-structures
of foliated G-structures of finite type with the same constant structure
tensors are locally equivalent. Thus any foliated G-structure of finite type
with vanishing structure tensors can be modelled on the canonical flat
G-structure of Rf. The group of automorphisms of such a G-structure
B(No, G) of finite type is a Lie group, and its elements are determined
by their finite jets, cf. [20]. Therefore, this group acts quasi-analytically on
the manifold No.

Having chosen a model N) of the transverse structure of the foliation
7, with N a connected manifold, we would like to know whether the
pseudogroup JC is generated by a group, i.e. whether any element of 1C
can be uniquely extended to a global diffeomorphism of N. It is a very well
known problem, and there are many theorems of this type. We have already
used some of them. They are based on the following principle :

There exists a fibre bundle B(N) over N whose total space is paralleli-
sable and which has the following properties :



. the vector space spanned by vector fields of the parallelism consists of
complete vector fields,

. the group generated by the flows of these vector fields acts effectively (i.e.
f( x) = x implies f = id),

. elements of the pseudogroup ~C lift to local diffeomorphisms of the total
space of B(N) which commute with the parallelism,

. any local diffeomorphism commuting with the parallelism is, locally, the
lift of an element of /C.

Then, of course, any element of JC can be uniquely extended to a global
diffeomorphism of N. In some cases it is possible to verify directly that
the pseudogroup of automorphisms of a given geometric structure has this
extension property.

In general, it is easier to solve the infinitesimal version of this problem, 
’

(as it only concerns solutions of systems of linear differential equations) : can
any local K-vector field be extended to a global one ?, cf. [30, 22, 2]. Having
a positive answer to this question does not solve the extension problem for
the pseudogroup K,. First of all, we have to know whether any element of lC,
at least locally, can be represented as the composition of a finite number of
elements of flows of K-vector fields and whether global K-vector fields are
complete. The first one have been studied thoroughly in the framework of
Lie pseudogroups and we have a definite answer, cf. [34] Propositions 3.6
and 3.7. The second one is just the question whether a certain differential
equation has global solutions.

The above considerations lead to several interesting results concerning
G-foliations. Let us recall that a G-foliation with the group G of type k is
transversely complete if for a given choice of a subbundle Q supplementary
to ~’ the transverse parallelism of the foliation of the total space of

G; ~) is complete, cf. ~7, 40~. .

THEOREM 2.2014 Let N be a simply connected compact analytic manifold
with an analytic G-structure B(N, G) of finite type. Let x be a connected
regular pseudogroup of local analytic automorphisms of B(N, G). Then any
H-foliation J’ is developable. Moreover, if the G-foliation J’ is transversely
complete, then the developing mapping is a locally trivial fibre bundle whose
fibres are the leaves of the lifted foliation.

Proof. - Our proof scheme takes care of everything but the fact that
the foliation 7 is an (N, K)-structure. Proposition 3.6 or 3.7 of [34] ensures



that any element of the pseudogroup H, locally, can be represented as the
composition of a finite number of local diffeomorphisms from flows of 
vector fields. The theorem of Amores, cf. [2], makes sure that any local
(analytic) infinitesimal automorphism of the G-structure B(N, G) can be
extended to a global one, and as the manifold N is compact, these vector
fields are complete. Thus ~’ is an (N, Aut(B(N, G))-structure. The local
triviality of the developing mapping results from the fact that the complete
~ TUSP foliated system of differential equations on (M, 7) defined by the
transverse parallelism of ~’~ projects via the developing mapping onto a
system of differential equations defined by the parallelism of G).

The results of A.Y.Ledger and M.Obata lead us to the formulation of the
following theorem, cf. ~22~ . .

THEOREM 3. Let (M, ~) be a conformal but non-Riemannian trans-
versely analytic foliation of codimension q (q > 2). Then :

1. Let the foliation ~’ be modelled on a compact Riemannian analytic
manifold with finite fundamental group whose pseudogroup C of local
conformal transformations is a regular Lie pseudogroup. If the holonomy
pseudogroup of ~’ is contained in the connected component of id in ~
then the foliation .~ is developable and the developing mapping is into
the q-sphere S’q.

2. If, additionally, the foliation ~ is transversely complete, then the develo-
ping mapping is a locally trivial fibre bundle with fibres being leaves of the
lifted foliation.

Taking into account the results of A.Y.Ledger and M.Obata the proof of
this theorem is the same as that of Theorem 2.

THEOREM 4. Let (M, ~’) be a G-foliation of type 1 with vanishing
structure tensors. If the holonomy pseudogroup x on the transverse manifold
N is contained in the connected component of id of the pseudogroup of
local automorphisms of the G-structure B(N, G), then the foliation ~’ is

developable. Moreover, if .~ is transversely complete, then the developing
mapping is a locally trivial fibre bundle over Rq with fibres being the leaves
of the lifted foliation.

Proof.-The vanishing of the structure tensors of the foliated G-
structure B(M, G; ,~’) ensures that the structure tensors of B(N, G) also
vanish. Therefore the G-structure B(N, G) is integrable, cf. ~2©, 35~, and
the foliation ~ is modelled on the’ canonical flat G-structure of Rq. Since



the group G is of type 1, only the vector fields of the form or

((a~ ) E Lie(G)) are infinitesimal automorphisms of this flat
G-structure, and any local infinitesimal automorphism can be extended to
a global one. It is not difficult to see that these vector fields are complete.
The rest of the proof is standard.

Using our proof scheme we can produce some other theorems of this kind.
For example, by imposing conditions on the transverse sectional curvature
of a Riemannian foliation we obtain :

THEOREM 5. - Let (M, l’, g) be a complete Riemannian foliation. If
the transverse sectional curvature is constant or depends only on the point
of the manifold M, then the foliation ,~’ is developable, and the developing
mapping is a locally trivial fibre bundle over Rq, or Hq with fibres being
the leaves of the lifted foliation.

Proof. - The second condition ensures that the transverse sectional
curvature is constant (a foliated version of Schur lemma which can be
easily proved or deduced from the original one). Then the theorem on local
isometries of such Riemannian manifolds, cf. ~21, 38J, and our proof scheme
take care of the rest.

There are many applications of these theorems. We shall give only some
of them, see also ~3, 4, f , 8J . We assume that .~ is transversely complete and
that the assumptions of one of the theorems are satisfied.

COROLLARY 1. Let N be a contractible q-manifold and K a Lie group
acting quasi-analytically on it. If the foliation ~ is an (N, K)-structure then
the universal covering space M of the manifold M is the product L x N,
where L is the common universal covering space of leaves of the foliation .~".

Proof. - In this case the developing mapping is a trivial bundle.

COROLLARY 2. On a compact manifold with a finite fundamental
group there are no G-foliations satisfying the assumption of Theorem .~.

Proof . In this case, the universal covering space would be both compact
and diffeomorphic to L x Rq contradiction.

COROLLARY 3. - Let  be a flow on a compact manifold with finite
fundamental group. If the flow ~ admits a foliated structure satisfying the
assumptions of one of the theorems then its leaves have finite holonomy. If
all its orbits are closed then ~ is a Riemannian flow.



Proof . Assume the contrary. Let L be a leaf with infinite holonomy. Its
holonomy covering cannot be compact. Thus the developing mapping is a
locally trivial fibre bundle whose total space is compact but whose fibres are
diffeomorphic to R. Contradition. Then the second assertion follows from
[13], see also [44].

It is worth to mention that the assumption of "completeness" of a foliated
structure does not translate itself easily into the language of holonomy
invariant properties. The only really succesful case is the Riemannian one
where A.Haefliger has introduced the notion of a complete pseudogroup of
local isometries, cf. ~1F;~17~. For other attempts see [43].

3. Associated structures

On a foliated manifold there are other structures than foliated ones. Let
us consider the following two examples.

Example 4. - A foliated vector field, which is a foliated section of the
normal bundle, is a foliated structure. On the other hand it is an equivalence
class of global infitesimal automorphisms of the foliation .F. Such a global
infinitesimal automorphism is a foliated section of the tangent bundle TM
with the foliation 7T M defined by the atlas of T M associated to the adapted
atlas of (M, F). The foliation FTM has codimension 2q. Its leaves project
onto the leaves of ~’ and the natural projection pN: TM ---~ is a

morphism in Fol2q.

Example 5. Let L~(M) be the bundle of linear frames adapted to .~’,
i.e. (vl, ...vn) E iff vl, ...vn_q span the subspace tangent to ~’ at
the point x. There is a natural mapping pL from this bundle into the bundle
of transverse linear frames L(M; ~’) assigning to any frame (vl, ...vn) the
frame (vl, .~:.vq) corresponding to the vectors vn_q+1, ...vn. As in the previous
example the adapted atlas of F defines a foliation FL of codimension q + q2
on the total space of The leaves of ~’~ project onto the leaves of
~’. The mapping pL is a morphism in the category .

In the above examples we have presented two structures which are
not foliated in our sense, but which are closely related to the structure
of a foliated manifold. These two structure are, what we call, associated
geometric structures. Now we are going to present a formal definition.

Let Folq be a category of foliated manifolds with foliations of codimen-
sion q. The morphisms in this category are the following :



f E iff

1. dimM1 = dimM2, then f:M1 - M2 is an embedding and = F1,
2. dimM1 > dimM2, then dimM2 = q, F2 is the foliation by points and
f M1 ---~ M2 is a submersion defining .~’1.

DEFINITION 4. An associated natural bundle is a functor defined on
Folq, with values in the category of locally trivial fibre bundles such that : :
i~ the bundle is a locally trivial bundle over M ;
it) for any morphism f E Mor((Ml, ~’1), (M2, ~’2)), F(f ) is a bundle

mapping such that :

ca~ covariant case: the diagram

is commutative. Moreover, for any x E M1, if dimM1 = dimM2 the mapping
~ F(M2,F2)f(x) is a diffeomorphism, and if dimM1 >

dimM2 = q then this mapping is a surjective submersion;
b ) contravariant case : the diagram

is commutative, where f is the natural projection induced by f. . Moreover,
for any points y E M2, x E if dimM1 = dimM2 the mapping
F(f)y:F(M2,F2)y ~ F(M1,F1)x is a diffeomorphism, and if dimM1 >
dimM2 = q then this mapping is an embedding,.



iii ) the functor F is regular.

Remark . - If we consider the category Manq as a subcategory of Fol q,
the restriction of any associated natural bundle functor to this subcategory
is a natural bundle functor. In general, it does not seem to be possible to
reconstruct an associated natural bundle functor from its values on M anq. .
But owing to the considerations of the previous section, any associated
natural bundle defines a foliated natural bundle, e.g. the passage from the
bundle of linear frames adapted to the foliation to the bundle of transverse
linear frames. Moreover, any foliated natural bundle functor is an associated
one.

DEFINITION 5. - Let f be a morphism in Folq,
f E Mor((Mi ~ ~i )~ (MZ ~ ~2 )). .

.. Two subbundles Bl of F(M1,F1) and B2 of are said to be f -
related if the fibre mapping F( f ) restricted to Bl is a surjective submersion
onto B2 (resp. it is a diffeomorphism of f *B2 onto Bl in the contravariant
cas e~.

Let U be a cocycle defining the foliation F modelled on N. In the
covariant case this cocycle defines a cocycle UF on the total space of the
bundle namely : where = f t =

F( f i ), gij = The foliation ~F defined by this cocycle (equivalent
cocycles of ~’ give equivalent ones) is not of the same dimension as ~’
but it projects onto F. The codimension of ~F is equal to dirraF(N). In
the contravariant case, we obtain a subbundle of the fibre bundle

F(M, ,~’). Over U=, it is isomorphic to ft F(N) and therefore it is naturally
foliated. This subbundle and its foliation does not depend on the choice

.. of the cocycle U. The foliation has codimension equal and is

of the same dimension as ~’.

DEFINITION 6 . - A foliated subbundle E of (resp . of 
in the contravariant case ) is called an associated geometric structure on the
foliated manifold (M, X).

It is not difficult to see that for a given associated natural bundle
F(M, X), associated geometric structures on (M, X) which are foliated
subbundles of define holonomy invariant subbundles of F(N) to
which they are U-related, i.e. f;-related for any i E I.



Example 6. - 1. A global infinitesimal automorphism of the foliation F
is an associated geometric structure; a base-like form is such a structure as
well.

2. Let us consider the bundle of adapted linear frames to the
foliation ,~’. It is a reduction of the linear frame bundle L(M) to the structure
group GL(n, n - q). The foliation ~L of locally, is given by the
following submersion : let (U, ~), ~ = (~~, ~2): U --~ Rn-q x RQ be an
adapted chart, then the mapping ~: --~ L(Rq),

is a submersion defining XL over U.
Associated G-structures are foliated reductions of L:F(M) to groups

consisting of matrices of the form ( * j where A is a matrix of a given
Lie subgroup Go of GL(q).

3. A linear connection w in the bundle is given by a section
S’w of the sheaf q))) of I-forms on 
with values in the associated fibre bundle q)) (to be
precise we take the pull-back of this bundle to the total space of 
Such a connection is an associated geometric structure (or an associated
connection) if in the bundle L(N) there exists a connection wN given by
a section SN which is U-related to the gl(q)-component of Sw. Locally, it
means that for any submersion f: U --~ N defining the foliation ~’ the
following diagram is commutative :



where !7 = / is the mapping of frame bundles induced by f,
/~ and f the corresponding mappings of the sheaves and associated fibre
bundles, respectively, and p* the mapping induced by the homomorphism
p:gl(n,n - q) 2014~ gl(q) defined by the correspondence gl(n,n-q) 3

(~ ~)20142014~~~).Thus

and therefore

pw = f*WN.

To be absolutely precise, such a connection itself is not an associated

structure, but rather a class of connections in L.r(M) having the same
gl ( q )-component .

In terms of geometric properties it means that the parallel transport
on M defined by the connection w projects onto the parallel transport on
the transverse manifold N defined by the connection wN. Such pairs of
connections were studied by R.A.Blumenthal in [9,10].

4. Let us consider associated ~e}-structures. An associated ~e~-structure
is a foliated section of the bundle thus at each point x we have a
linear frame (vi ...vn) of Moreover, at any two points x1 and x2 of
!7, such that = f z (x2 ), the value of the mapping f on these frames
is the same, i.e. = df i (v? (x2 )). Therefore, the global vector
fields X~, = = 1, ...q, are infinitesimal automorphisms
defining a transverse parallelism of .F.

It is easy to verify that on the total space of L~(M) an associated
connection defines an associated ~ e}-structure for the foliation ~L .

5. Prolongations of associated G-structures provide other examples of
associated geometric structures; for details on prolongations of G-structures
see [20, 35~ . Let us consider the vector space as the product RP x Rq, p =
n - q, the natural projection RP and the natural inclusion

so : .Rq -~ Rn . Then let us take the Lie subgroup G of GL(n, p) consisting of
matrices of the form ( j with A from a Lie subgroup G’ of GL(q). The
correspondence p: ( ~ . j E--~ A defines a homomorphism of Lie groups

p: G --~ G’ and of Lie algebras p: g --~ g’. The mapping ~: g’ --; g defined
as s(B) = (0 0 0 B) } is a section ofp.



It is straight-forward to verify that the mapping p induces surjective
homomorphisms pk of the subsequent prolongations of the Lie algebras of
9 and g’; ---, 9r(k).

As the result of these considerations we obtain the following lemma.

LEMMA 2. - If the Lie algebra g ia of type k, the Lie algebra g’ is of
type k’, k’  k.

Let f : M --~ N be a surjective submersion. Let B(M, G, ~r) be a G-
structure on the n-manifold M and B’(N, G’, ~r’) a G’-structure on the q-
manifold N which are f -related. Then for the fundamental forms 8 and 8’
of and B’(N, G’, ~’~, respectively, we have the following :

Let X E TpB, then 8’(d f (X )) = = o df o 
As ( f (p))-i o dxf = 03C10p-1 where = x, we have

We would like to show that the consecutive prolongations of the f -related
structures B ( M, G, and B’ ( N, G’, are f -related. First of all, we shall
demonstrate that their structure tensors are f -related.

The structure tensor c of B(M, G, 7r) takes values in

The mappings p and po induce the mappings p: n Rn, Rn) -~
Hom(Rq n Rq, Rq) and p: --~ H’o,2 (g’ ), the second one being the
quotient of the first. The mappings s and so define the corresponding
sections of p and p, respectively, i.e. s: Hom(Rq n Rq, Rq) --~ n

Rn,Rn) and ---~ H°,2 (g ). The equality ( 1 ) ensures that

Take a subspace C of Hom(Rn n Rn , supplementary to g)
such that the space is in (Hom(Rq039BRq,Rq)). Then

= C’ is supplementary to aHom(Rq, g’) in Hom(Rq n 
Let V be a horizontal subspace of TpB such that cv E C. The equality (1)

ensures that for the horizontal subspace V’ = dj(V), E C’, as pcv =
cv~ . This implies that the correspondence V ~--; dj(V) = V’ defines a



transformation f 1 of the first prolongation G, ~r) of the G-structure
B(M, G, ~r) onto the first prolongation B’~1 ~(N, G’, of the G’-structure
B’(N, G’, 03C0’). fl covers f and makes. these two structures f-related, and-
thus the bundles ~ M and B’t1> ~ N f -related. Repeating the
construction we obtain mappings ---~ B’~k>(N, G’, ~’)
covering the mappings and f and making these structures f -related.
If the group G is of type k -I-1, the total spaces of the bundles G, ~)
and B’(k)(N, G’, are parallelisable and these parallelisms are fk-related.

In the case of a foliation .~’ defined by a cocycle U, the above construction
yields structures G, ~r) and B’~~~ (N, G’, ~’) which are U-related. For
a group G of type k + 1, the foliation of the total space Bk of the
bundle G, ~r) is transversely parallelisable. The parallelisms of the
manifolds B k and B’k are Uk-related where uk+1 is the cocycle defining

derived from the cocycle U.

Before we can formulate our main theorem on associated geometric
structures we need the following definitions.

DEFINITION ?. A G-structure B(M, G, ~t) of type k + 1 is complete if
the parallelism of the total space Bk of the kth-prolongation G, ~)
is complete.

DEFINITION 8.- 1. An associated geometric structure is of
finite type if the total space E of this bundle is parallelisable and this paral-
lelism is UE-related to a parallelism of the total space of the corresponding
bundle on the transverse manifold.

,~. An associated geometric structure E(M, .~’) of finite type is complete if
the vector space spanned by the vector fields of the parallelism of E consists
of complete vector fields.

~. An associated geometric structure E(M, ~’) is a Serre structure if the
projection in the bundle E(N) is a Serre fibration.

Example 7. Associated G-structures of finite type and G-structures of
higher order, cf. ~31,11~, are Serre associated geometric structures of finite
type.

THEOREM 6.- Let the foliation ~’ be an (N, K)-structure on a ma-
nifold M. If (M, .~’) admits a complete Serre associated geometric structure
E(M,.~) of finite type, then the natural projection p: M -~ M~~ of the
universal covering space M of M onto the space of leaves M/7 of the lifted



foliation is a Serre fibration and the space is a Hausdorff manifold.

Proof. - From the very beginning we can assume that the manifold N
is simply connected. We can always take its universal covering and the
group generated by the action of K on it. Since elements of K lift to

diffeomorphisms preserving the parallelism of the total space of E(N), K
acts quasi-analytically on N. Therefore .~’ is developable. Let n: M --i N be
the developing mapping. Then we have the following commutative diagram :

where E(M, F) is the lift of the bundle E(M, F) to M. The parallelisms of
the total spaces E and EN of the bundles and are E(n)-
related. Therefore, the lifted foliation FE of E which is defined by the global
submersion E(n) is a complete transversely parallelisable foliation. Thus
the submersion E(n) is a locally trivial fibre bundle, and the developing
mapping is surjective. The fact that the projection EN --~ N is a Serre
fibration ensures that the developing mapping itself is a Serre fibration.
Since the manifold N is simply connected, its fibres must be connected and
the space of leaves of the foliation ~’ is just the manifold N.

Remarks . This theorem generalizes results of R.A.Blumenthal contai-
ned in [9,10,11]. In its main outline the proof is the same as the one presen-
ted by him and can be considered as a kind of "proof scheme". By adopting
various assumptions on geometric structures (as we have done in section 2)
and imposing the completeness conditions we can prove a series of results
on associated geometric structures which correspond to theorems proved
in the previous section. It is worth stressing that the completeness of an
associated structure does not imply the completeness of the corresponding
foliated structure.

This kind of theorems is quite useful in the study of homotopy and
homology groups of leaves and their relations with the corresponding groups
of the ambient manifold, cf. [9,10,11]. As an example we can give the
following corollary.



COROLLARY 4. Let the model space N be contractible and the

holonomy pseudogroup equivalent to the one generated by a group K. Then
for any leaf L of the foliation ~’ the homotopy groups inject into the
corresponding homotopy groups of the ambient manifold M.
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