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A new method of exact controllability in short time
and applications

VILMOS KOMORNIK(*)(1)

Annales Faculté des Sciences de Toulouse Vol. X, n°3, 1989

RÉSUMÉ. 2014 On introduit une methode nouvelle, generale et constructive
pour obtenir des estimations optimales ou presque optimales du temps de
controlabilite exacte des systemes d’evolution linéaires. La methode est basee
sur la methode d’unicité hilbertienne (HUM) introduite par J.-L. Lions et
sur une methode d’estimation due a A. Haraux. On applique cette methode
pour plusieurs problemes concrets concernant 1’equation des ondes et de
diverses modeles de plaques.

ABSTRACT. - We introduce a new general and constructive method which
allows us to obtain the best or almost the best estimates of the time
of exact controllability of linear evolution systems. The method is based
on the Hilbert Uniqueness Method of J.-L. Lions and on an estimation
method introduced by A. Haraux. Our method is applied for several concrete
problems related to the wave equation and to various plate models.

0. Introduction

In order to motivate the investigations of the present paper, consider
the following typical problem : let 03A9 be a regular, bounded domain in

> 1 ) with boundary 1,, let T be a positive number and consider
the system

~*~ The results of this paper were obtained while the author was visiting the Universite
de Savoie (Chambery) and the Universite de Bordeaux I
~l Eotvos Lorand University, Department of Analysis, H-1088 Budapest, Muzeum krt.
6-8, Hungary



We recall the following exact controllability result due to L.F. Ho [1]
and J.-L. Lions [2] : there exists a positive number To such that if T > To,
then for every initial data E L2(S2) x I~-1(S2) there exists a control
v E L2 (0, T; F) driving the system (o.l) to rest at time T i. e. such that the
solution of (0.1) satisfies y(T ) = y’(T ) = 0.

According to the Hilbert Uniqueness Method introduced in J.-L. Lions
[1], this result was a consequence of the following a priori estimates concer-
ning the homogeneous system

there exists a positive number To such that if T > To, then for every initial
data (ZO, E n Ho (SZ)) x Ho (SZ) the solution of (0.2) satisfies the
inequalities

where 8yz denotes the normal derivative of z and where c and C are positive
constants, independent of the choice of (ZO, 

The estimates (0.3) were proven by a multiplier method. This provided
an explicit value for To. This value was not the best one ; several methods
were developed to improve the value of To in this and similar problems. The
main purpose of this paper is to introduce a new general and constructive
method which allows one to obtain the best or almost the best value of To

. in most exact controllability problems.
Let us explain briefly the main ideas of this method. The first observation

is that (0.3) holds under a weaker assumption on T if the initial data belong
to a suitable subspace of finite codimension of n Ho (SZ)) x Ho (SZ).

To make this more precise, let us denote by 1]1  1]2  ... the eigenvalues
of -A in H2(S~) n let Z2, ... be the corresponding eigenspaces
and let w1, w2, ... be a sequence of the numbers ~(r~l )1/2 ~ ~(~2)1/2 ~ .. " It is
well-known that every solution of (0.2) may be written in the form



with suitable vector coeflzcients z~. Furthermore, introducing in H2(S2) f1
Ho ( S2 ) t he norm

f~

and the semi norm

(0.3) may be written in the form

Now the multiplier methode allows us to prove the following result : there
exists a positive number T¿(  To) such that for every T > To there is a
positive integer k and there are positive constants c and C such that (0.5)
holds for all solutions z(t) of (0.2) satisfying = 0, Vj > k.

The second observation is that (0.5) then extends automatically for all
solutions of (0.2), without the assumption zj = 0, V;  k (with possibly
different constants c and C). Indeed, imagine for the moment that the
coefficients zj in (0.4) are not vectors scalars. Then (0.5) means that the
system of exponential functions t is a Riesz basis (in its closed linear
hull) on the interval (0, T). It is well-known from the theory of nonharmonic
Fourier series that if we have a Riesz basis of exponential functions on an
interval (0, T) and if we enlarge it with a finite number of new exponential
functions, then the resulting system will be a Riesz basis on every interval
with length greater than T ; cf. e. g. R. M. Young [1]. Recently, in order to
prove some interior controllability theorems, an elementary proof was given
for this result by A. Haraux [1] and, fortunately, this proof may easily be
adapted to the more general case with vector coefficients. This proves (0.3)
for all T > T~.

The plan of this paper is the following :
In section 1 we prove the basic abstract results of the new method.

In section 2 we introduce our method by improving two results of J.-
L. Lions [2] concerning the wave equation. First we show that lower-
order terms of the evolution equation do not affect in general the time of
exact controllability. Secondly we give an application to a problem with
a "strenghtened norm" ; this is a typical situation for example in exact
controllability problems with Neumann action.



Let us mention that the results of this section may also be obtained

(at least if the boundary of the domain and the potential function is very
smooth) by a powerful method of C. Bardos, G. Lebeau and J. Rauch [1]
(based on microlocal analysis) developed for hyperbolic systems.

Sections 3 and 4 are devoted to two problems raised in J. Lagnese and
J.-L. Lions [1]. Section 3 is devoted to the exact controllability of Kirchoff
plates. We prove the convergence of the optimal exact control functions
when the uniform thickness of the plate tends to zero. In Section 4 we prove
the uniform exact controllability of Mindlin-Timoshenko plates with respect
to the shear modulus.

Other applications are given in V. Komornik [5], [6] .
The author is grateful to A. Haraux, J.-L. Lions and E. Zuazua for fruitful

discussions.

1. Norm estimates

L1. - Formulat ion of the results

Let H and V be two real or complex, infinite-dimensional Hilbert spaces
with a dense and continuous imbedding V C H. Identifying H with its

(anti)dual H’ we obtain V C H c V’.

Let a(u, v) be continuous; symmetric (rep. hermitian) bilinear form on V.
Then there exists a unique bounded linear operator A’ : V -~ Y’ such that

a(u, v) = A’u, v > , , Vu, v E V. Let us introduce in H the operator A

given by D(A) := {v E E H~, Av := A’v for all v E D(A).
Assume that there exist two positive constants ao and ai such that

and let s be an arbitrary nonnegative real number. Let us introduce for

brevity the notation

Then it is well-known (cf. J.-L. Lions and E. Magenes [1]) that for every
initial data (uo, E LVs the Cauchy problem



has a unique solution u = u(t) in C(R; D((A + n C1(R; D((A +
a1 I ) s )) (The equation in ( 1.2) is understood in the following sense :

Furthermore, we have the conservation of energy :

Let p be a semi norm on WS. For every compact interval I C R we may
define a new semi norm on W~ by the formula

The purpose of this section is to find conditions ensuring that this semi
norm is equivalent to (or stronger than) the norm

induced by V x H on W ~ .

Let us assume that the imbedding V C H is compact. Then the eigenvalue
problem

has an infinite sequence of eigenvalues

and a corresponding sequence Zl, Z2, ... of pairwise orthogonal (in H),
finite-dimensional eigenspaces whose orthogonal direct sum is equal to H.

For every positive integer k, let us denote by W: the subspace of Ws
consisting of those elements (u, v), for which both u and v are orthogonal in
H to the subspaces Z; for all j  k. (If k = 1, then W~ = Ws.) It is clear
that if (UO, u1 ) E Wk then the solution of (1.2) satisfies (u(t), u’(t)) E Wk
for all t E R.

We shall prove the following result.



TIIEOREM A. Let be a positive integer. Assume that for every
integer k > ko there is a compact interval I~, C R and there are positive
constants ck and Ck such that

Assume also that for every positive integer k  ko there is a compact
interval Ik C R and there are positive constants ck and Ck such that

Let us denote by I the lengh of Ik and set

Then for every compact interval I C R of length> To, there are two

positive constants c and C such that

Moreover, if we denote by k the least positive integer k > ko such that

(  then the constants c and C may be chosen to be continuous

functions of the numbers c~, Cj, r~~ and of the end-points of the intervals h
for j = 1, ... ,1~. 0

Remark 1.1. It is clear if condition (1.8) is satisfied for some positive
integer k, then it is satisfied automatically for every greater value of k with
the same interval and the same constant. In the applications, however, we
shall usually obtain a sequence I of decreasing length : [ > ~ i >
... 0

Remark 1.2. Let us emphasize that To does not depend on Ik for
k  ko. In fact, as we shall see later (cf. Proposition C), if (1.9) is satisfied for
some compact interval Ik , then it is satisfied for every compact subinterval
of R (with different constants c, (in general). D

Remark 1.3. 2014 Theorem A implies in particular that for > To the semi

norm (1.4) is in fact a norm. As a consequence, we obtain the following



uniqueness theorem : if u(t) is a solution of the system (1.2) such that
p(u(t), u’(t)) vanishes in some interval of lenght > To, then u(t) vanishes
identically on R. 0

Remark 1.4. The last assertion of the theorem will follow from the

constructive character of the proof ; hence we shall obtain explicit constants
c and C. This will be important when dealing with systems depending on
a parameter, cf Section 3 below.

Remark 1.5. - If k is a positive integer such that the corresponding
eigenvalue ~k is positive, then the natural norm of V x H is equivalent
to the square root of the energy (1.3) on the subspace W: (and therefore
also on its subspace Zk x Zk ) . In this case we may (and we shall) replace

+ by u1) in (1.8) and (1.9). 0

We shall encounter several problems where the right side estimate of

condition (1.8) of Theorem A will not be satisfied. (This will occur for
example when we "strenghten" the semi norm p.) Then we shall apply the
following result.

THEOREM B. - Let k be a positive integer. Assume that for every integer
1~ > ko there is a compact interval Ik C R and a positive constant ck such
that the solution of (1.2~ satisfies

Assume also that for every positive integer k  ko there is a compact
interval I~; C R such that

Then for every compact interval I C R of length > To, there is a positive
constant c such that



Remark 1.6. Remark that To does not depend on |Ik| for k  k0.

Indeed, as we shall see in Proposition C below, if (1.12) is satisfied for some
compact interval Ik, then it is satisfied for every compact subinterval of
R. 0

Remark 1.7. We have the same uniqueness theorem as in Remark
1.3. 0

Remark 1.8. We remark that the proof of Theorem B, given below, is
not constructive. As a consequence, we do not obtain explicitly a constant
c satisfying (1.13). D

Remark 1.9. If > 0 for some J~, then we may (and we shall) replace
+ by E( uO, in the corresponding condition (1.11). a

Let us note that the real case of both theorems follows easily from
the complex one by a standard complexification argument. Indeed, let us
introduce the complexification H, V, Ws, Wj, , a(., . ) by the usual way (cf.
P. R. Halmos [1]), and define on WS a semi norm p by the formula

It is easy to verify that if the hypotheses of Theorem A or Theorem B
are satisfied in the real case, then the corresponding conditions are satisfied
in the complexified case, too. Applying the corresponding theorem in the
complex case, our conclusion contains the desired real estimate (1.10) or
(1.13) as a special case.

In view of this remark we shall restric ourselves in the sequel to the

complex case.

Finally we shall prove the following result which permits to replace condi-
tion (1.9) of Theorem A or condition (1.12) of Theorem B by a stationary
condition. Here we denote by p the complexification of p. (Naturally, p = p
in the complex case.)

PROPOSITION C. - Let k be a positive integer. If there is a compact
interval I C R such that



where = (r~,~)1~2 if r~k > 0 and w = 2(-~k)1~2 if ~k  0.

Conversely, if this last property is satisfied, then for every compact
interval I c R there exist two positive constants c and C satisfying

In subsection 1.2 we prove Theorem A in the special case where all
the eigenvalues are positive. This is sufficient for many applications of
the present paper. Our proof is essentially a vector extension of a method
introduced in A. Haraux [1]. The proof of Theorem A in the general case is
given in Subsection 1.3. Subsection 1.4 is devoted to the proof of Theorem
B, and Proposition C is proved in Subsection 1.5.

1.2. Proof of theorem A when all the eigenvalues are positive
First of all, in this case we may (and we shall) take a1 = 0 in (1.1).
In order to simplify the calculations we set

Then for every E W’ the solution u = u ( t ) of (1.2) is represented
by a unique convergent (in C(R; D(A’+1/2)) n C1(R; D(A’))) series

Conversely, every such function is a solution of (1.2) for some initial data
E W s.

In the sequel by solution we shall mean an arbitrary function u E
C(R; D(As+1~2)) n C1(1.~; D(A9)) of the form (1.14).
We shall use for brevity the notation

It is easy to verify that the norm + is equivalent to



We may (and we shall) therefore replace ~u°~2v + ~u1~2H by 

(1.8) - (1.10).
We have the following lemma.

LEMMA 1.10. 2014 Assume that for some integer k > 2 and for some positive
numbers T and d1 we have

for all solutions u(t) such that u1 = u2 = ... = uk_1 = 0.
Then for every ~ > 0 there is a positive constant d2 such that

for all solutions u(t) with u1 = u2 = ... = uk-2 = o.
The constant d2 depends only on d1, ~ and on min : j > k}.

Proof. - Let u(t) be an arbitrary solution satisfying u1 = u2 = ... =
uk-2 = 0. Let us introduce, following A. Haraux [I], the auxiliary function

An easy calculation shows that

so that we may apply the estimate (1.16) for v(t). Since

there existes a positive constant d3, independent of the choice of u(t~, such
that



On the other hand, from the definition of v(t) we deduce the estimates

Combining with (1.19), the lemma follows by taking d2 = dl d3 /4 Cl

Next we prove the following simple lemma.

LEMMA 1.11.2014 Let k be a positive integer.

a) Assume that for some compact interval I c R and for some positive
constant c we have

Then the same inequality holds for every compact interval I c R with a
suitable positive constant c depending on ~I~.

b) Assume that for some compact interval I C R and for some positive
constant c we have

Then the same inequality holds for every compact interval I C R having at
least the same length as the above one, with the same constant c.

Proof. - It is sufficient to prove the lemma for the translates of the
interval I; the general case of a) hence follows by the triangle inequality,
while the general case of b) is then obvious.

If for example the inequality in a) is satisfied for some interval I = [a, b], ,
then for every s E R on the interval I’ = [a + s, b + s] we have



Applying our hypothesis we obtain

Since [ = 1, thise yields the desired inequality for I’ with the same
constant c.

The proof of the case b) is analogous. D

Now it is easy to establish the following proposition.

LEMMA 1.12.- Assume that for some integer m > 2 and for some
positive numbers T, d1 and d4 we have

for all solutions u(t) such that ul - ... = u,.,z._1 = 0, and for all solutions
u(t) such that u j = 0 for all j ~ m - 1.
’ 

Then for every ~ > 0 there exist two positive constants d5 and d6 such
that

for all solutions u(t) such that u1 = ... = u,.,.t_2 = 0

Furthermore, d5 and d6 depend only on T, ~, d1, d4 and on 
03C9m-1| : j ~ m}.

Proo f . Given a solution u = u(t) with u l = ... = u,.,.t _2 = 0, let us put
for brevity



Using the triangle inequality, (1.20) and applying Lemma 1.10 we obtain
that

i. e. the left side inequality of (1.21) is satisfied with

The right side inequality of (1.21) follows easily from (1.20), first applying
the triangle inequality for the semi norm ~ ~ ~~ and then using Lemma 1.11.
We may take for example

Finally we need the following variant of Lemma 1.11 :

LEMMA 1.13. -. Let k be a positive integer. Assume that there exists a
compact interval I c R and positive constants d7, d8 such that

for all solutions u(t) with uj = 0 for all j ~ k. Then the same inequality
holds for every compact interval I’ C R instead of I, with suitable positive
constants d? and d8. .

Proof.-Since w; E R, ~j ~ 1, the function p(u(t),u’(t)) is in fact
independant of t :

Hence, if I’ C R is an arbitrary compact interval, then the desired inequality
holds with dh = (II’IIIII )d7 and d8 = p

Now we turn to the proof of the theorem. Let n > ko be the least integer
satisfying |In|  . It follows from (1.8) and from Lemma 1.11 that for



every compact interval J c R of length J ~ there exist two positive
constants c and C such that

for all solutions u(t) satisfying u1 = ... = u2n-2 = 0. If n = 1, then Theorem
A follows by taking J = I.

If n > 1, then we apply Lemma 1.12 with m = 2n -1 and with T > 
arbitrary. Condition (1.20) is satisfied by (1.23), (1.8), (1.9) and Lemma 1.13
(we use ( 1.8) if and (1.9) if m -1  ko ) . Applying Lemma 1.13
and then using Lemma 1.11 we find that for every compact interval J c R
of length IJI > the estimates ( 1.23) hold for all solutions u(t) satisfying
u1 = ... = 2L2n-3 = 0 (the constants c, C are not necessarily the same as
before).

Repeating this argument 2n - 3 times we obtain that for every compact
interval J C R of length J~ > the estimates (1.23) hold for all solutions.
Putting J = I hence the estimates (1.10) of Theorem A follow

The last assertion of Theorem A follows from the analysis of the explicit
constants obtained during the proof D

L3. Proof of theorem A in the general case
We shall use the following notations : if = 0 for some j’, then set

If all the eigenvalues are different from zero, then let j’ be the first index
’such that > 0 and set



Using this notation, there is a one-to-one correspondance between the
elements ( u ° , u 1 ) of W ~ and the convergent series of the form

in C(R; D((A + a1I)s+1/2)) n C~ (R; D((A + a1I )s )), the latter being the
solution of (1.2). In the sequel by solution we shall mean an arbitrary
function u E C(R; D((A + aII)s+1~2)) n C1 (1.~; D((A + of the form

(1.25). Introducing in V the norm = (a(v, v) + (cf. (1.15)),
we have again the equivalence of

The proof of Theorem A in the general case follows the same line as in
the special case considered before :

Lemma 1.10 remains valid with the only modification that d2 depends
now also on S (cf. (1.24)). There are two small changes in the proof :

- Since the numbers are not necessarily real, (1.18) is not obvious.
However, thanks to (1.24), it is satisfied if we choose c > 0 sufficiently
small.

- In the last estimates of the proof we obtain the factor 2 + instead

of 4; hence (1.17) follows with d2 = + 

Lemma 1.11 remains valid, too, with the only change that the constants
c now depend on I. In case a) we obtain the inequality

while in case b) we have



Therefore it is sufficient to find two positive constants c’ and c" such that

This is satisfied for example if we take

(to obtain c’ we may distinguish the cases > 21s I and

~~ul~~ _ 2ISI ( 
Lemma 1.12 and its proof remain valid except that we have to write

u2t instead of everywhere. Again, since we apply Lemma 1.10, the
constants d5, d6 will now depend also on S.

Finally, Lemma 1.13 remains valid, too, but the proof is slightly different
if wk is imaginary. If k ~ 2, then we have the formula

whence the desired inequality follows easily with

The case k = 2 is more technical. Clearly it is sufficient to find two positive,
continuous real functions defined in {~a, b) E R2 : a  b} such that

The right side of (1.26) follows at once from the triangle inequality and
from the Cauchy-Schwary inequality. We have



whence the right side inequality of ( 1.26) is satisfied with

To prove the reverse inequality first we write the inequality

this may be obtained again by applying the triangle inequality and the
Cauchy-schwarz inequality. Choosing s = (b - a)/2 and integrating by t
from a to a -~- s we find

Next we write the inequality

Integrating by t from a to b and then using (1.27) we obtain

The left side inequality of (1.26) now follows from (1.27) and (1.28) by
taking

1.4. Proof of theorem B

We use the same notations as in the preceeding subsection. First we
note that condition (1.12) implies in fact condition ( 1.9) because Zk x Zk if
finite-dimensional. Using this remark, we may repeat the proof of Theorem
A, replacing Lemma 1.12 by the following one : :

LEMMA 1.14. Assume that for some integer m > 2 and for some
positive numbers T and dl we have



for all solutions u(t) such that u1 = ... = ur,.t_1 = 0, and for all solutions
u(t) such that u j = 0 for all j ~ m - 1.

Then for every ~ > 0 there exists a positive constant ds such that

for all solutions u(t) such that ul = ... = = 0.

Proof . Let us denote by Y (resp. by the vector space of all solutions

satisfying u 1 = ... 
= = 0 ( resp. u 1 = ... 

= u,.,.,, _ 1 = 0) and let
ya be finite-dimensional vector space of all solutions satisfying u j = 0 for
all j =I m - 1. Then Y is the direct sum of Y°‘ and Yb. Given u E Y
arbitrarily, we introduce the same notations ua, ub, as in the

proof Lemma 1.12. (If nz = 3, then according to the preceeding subsection
we set ua(t) = u2 t instead of Then we have the decomposition

, 

Let us observe that the semi is in fact a norm on Y. Indeed,
if u E Y and = 0, then applying Lemma 1.10 to (1.29) we obtain

whence ub = 0 and u = ua.

Now applying (1.29) for u = ua we find = = 0 i. e. u = 0.

We shall prove the lemma by contradiction. Assuming that (1.30) does
not hold, in view of Lemma 1.10 there exists a sequence C y such

that, using the decompositions un = un + un, un E Ya, ubn E Yb, we have

Being Ya finite-dimensional, we may also assume (taking a subsequence
if needed) that converges :



Since ( ~ ( ~ is also a norm on the finite-dimensional space Ya, ( 1.34) implies
that

From (1.32) and (1.35) we conclude that belongs to the closure of Yb
with respect to the norm ~ ~ (~ in Y. Our hypothesis (1.29) implies that

This inequality extends by continuity for all u E Y in the closure of Yb with
respect to ~ ~ ~ ~ . In particular we have

Using (1.32), (1.33), (1.35) and letting n --~, we obtain that ~~ * = 1.
On the other hand, it follows at once from (1.31) and (1.34) that

= 1. This contradiction proves the lemma. D

1.5. 2014 Proof of proposition C

Applying the same complexification argument as for Theorems A and B,
it is sufhcient to consider the complex case.

The first part of the proposition is immediate. Assume that there is a
compact interval I C R such that

and let 0 ~ v E Z; be given arbitrarily. Applying (1.36) with u(t) = 
and using the obvious identity

we obtain

Conversely, assuming that (1.37) holds for all 0 ~ v e Zk, it is sufficient to

prove that (u°, u1 ) 6 Zk x Zk and = 0 imply u° = ul - 0.



Indeed, being Zk x Zk finite-dimensional, then there exist two positive
constants c and C such that

Consider first the case r~~; ~ 0. Then u(t) has the form

and from the hypothesis p(u(t), = 0 we deduce that

Using the homogenity of p and applying the triangle inequality hence we
obtain

for all t, s E I. Choosing t, s such that 0, using the homogenity
of p and finally applying ( 1.37) we obtain v = 0. We may prove by the same
way that w = 0. Hence u(t) = 0 and u° = ul = 0.

Consider now the case qk = 0. Then u(t) has the form

Repeating the above argument now we obtain

Choosing t 7~ s, using the homogenity of p and applying (1.37) we obtain
v = 0. Substituting this result into (1.38) we obtain p(w, 0) = 0 whence,
using (1.37) again, w = 0. Hence u(t) = 0 and u° = u1 = 0. 0

2. Applications to the exact controllability of the wave equation

The main purpose of this section is to introduce the new estimation

method. We shall improve some results obtained in J. -L. Lions [2], [3].



In the first subsection pure Dirichlet action is considered. We show that

Theorem A allows us to treat equations containing a potential term by
constructive way. The same method may be applied in other situations as
well, to prove that the lower-order terms in the evolution equation do not
change the minimal time of exact controllability, cf. V. Komornik [5], [6].

In the second subsection pure Neumann action is considered. In this case

the "natural" semi norm p is not a norm; this motivates the introduction

of strenghtened norms. This is a typical situation for the application of
Theorem B.

2.1. A problem with a lower order term

Let 03A9 be a non-empty, bounded, connected open set in RN (N = 1, 2, ... )
having a boundary r of class C2, and denote by v(x) = (vl (x), ... , vN(x))
the unit normal vector to r, directed towards the exterior of n. Fix a point
x ° E RN arbitrarily and set

where RN, and . denotes the scalar product in RN.
Let q : ~ --> R’ be a function satisfying

Then, applying the Sobolev imbedding theorem and the interpolational
inequality, there are positive constants ao, ai such that

Consider the following system :



(As usual, we write u’, u" for It is well-known that for

every initial date E n H® (SZ)) x Ho (SZ), (2.3) has a unique
solution

u E C(R; n Ho (S~)) n C1(R~ Ho (~))~
The purpose of this subsection is to prove the following estimate :

THEOREM 2.1.-- Assume (,~.1~, (2.2) and let I C R be a compact
interval of length (.I) > 2Ro. . Then there exist two positive constants c and C
such that for every E n Ho (~)) x Ho (SZ), solution of (,~. ~3~
satisfies the following inequalities : :

(In (2.4) ayu denotes the normal derivative of u.~

Remark 2.2. - In the special case q = 0 these estimates were obtained
by L. F. Ho [1] under a stronger hypothesis on and then by J. -L.
Lions [2] under the above hypothesis ~I~ > 2Ro, using a non-constructive
compactness-uniqueness argument. Later a constructive proof was given in
V. Komornik [1], [2] (cf. also J.-L. Lions [3]). The case q > 0 of Theorem
2.1 was proved earlier in V. Komornik and E. Zuazua [2], using an indirect
argument. Applying the same method, E. Zuazua [3] proved also a variant
of Theorem 2.1, under the assumption q E x I). 0

Remark 2.3. Applying HUM as in J.-L. Lions ~2J, ~3~, Theorem 2.1
implies the exact controllability of the system

in the following sense : if T > 2Ro, then for every initial data (yO, y1 ) E
L2(n) x H ~ 1 ( SZ ) we can find a corresponding control v E x (0,T))
driving the system (2.5) to rest in time T, i. e. such that yeT) = y’(T) = 0.
For the presentation of the HUM method (Hilbert Uniqueness Method) we
refer to J.-L. Lions [1], [2], [3]. D

Proof of Theorem ,~.1. We are going to apply Theorem A with V =

Ho (SZ), H = L2(S2), a(u, v) = 



the integer ko will be chosen later. Then we introduce the eigenvalues r~~,
the eigenspaces Zk, the spaces and the energy E according to
the general scheme described in Subsection 1.1. We have in particular

It follows from (2.1) and (2.2) that the bilinear form a(u, v) is continuous
on V and satisfies the condition (1.1).

To prove the properties (1.8) and (1.9) we adapt the method in J.-L.
Lions [2], ~3~ , with an extra argument if we cannot choose ai = 0 in (2.2).

First we choose an arbitrary function h E such that h = v

on P. Multiplying the equation (2.3) by h ~ Vu and integrating by parts on
r x J where J c R is an arbitrary compact interval, we obtain easily the
estimates 

,

with a constant C’ depending on J. In particular, the right side inequalities
in (1.8) and (1.9) are satisfied for every compact interval I~.

To prove the reverse inequality we replace the multiplier h . Vu by
2m . + (N - 1)u. We obtain for every T > 0 the identity

Let k be a positive integer and assume that (u°, u1 ) E W~ ~2. In the
following estimates 0(1) and 0(1) will denote diverse constants depending
only on k (i. e. independent of t E R and of the choice of (UO, u1 ) E W~~2)
and being bounded resp. converting to zero as k - oo. Furthermore, in order
to simplify the notations we shall write ~) ~ ~~ * instead of (~ ~ ~~ L* ~~~ , Vr E [1, oo].



We needs some inequalities. First, it follows from (2.1), applying the
inequalities of Sobolev and Poincare, that there exists a constant ro >
2p/(p - 2) satisfying

Applying (2.7) to the right side of the inequality (Holder)

and using the definition of ~~ we find

Interpolating between (2.7) and (2.9) we deduce

and then combining (2.7), (2.8), (2.10) we obtain

Let us finally recall the inequality

obtained in V. Komornik [1], [2].
Using (2.10) and (2.12) in (2.6) we obtain the following estimate :



Using (2.11 ) and the definition of the energy hence we conclude that

Since -~ oo, in view of Remark 1.5 (2.13) implies the existence of a
positive integer ko such that the left side inequality in ( 1.8) is satisfied for
all k > ko. Consequently, the hypothesis (1.8) of Theorem A is satisfied
with a sequence of intervals Ik such that T = 2Ro. .

Finally we prove that hypothesis (1.9) of Theorem A is satisfied for all
k  ko. According to Proposition C, it is sufficient to verify that v E Zk
and Er+ |~yv|2d0393 = 0 imply v = 0. In other words, it is sufficient to prove
that the problem

has no nontrivial solutions in Ho (S2). This is, however, a well-known unique
continuation theorem, cf. e.g. C.E. Kenig, A. Ruiz and C.D. Sogge [1].
We may therefore apply Theorem A and hence Theorem 2.1 follows. D

Remark 2.4. The application of inequality (2.12) has simplified the
proof, but its use is not necessary. Therefore the above method may be also
applied in other problems of this type where we do not have an inequality
analogous to (2.12). D

Remark 2.2.bis. - For q > 0 Theorem 2.1 was proven earlier in V.

Komornik and E. Zuazua [2] by an indirect compactness-uniqueness ar-
gument. Applying this method E. Zuazua [3] proved a variant of Theorem
2.1 under the as sump t ion q E LOO(I x S2 ) . D

2.2. A problem with a strenghtened norm

Consider here instead of (2.3) the following system :



It is well-known that for every initial data E H2(S2) x 
satistying the compatibility condition 0 on r, (2.14) has a unique
solution in

C(R; HZ(~)) n ~1(R~ H1 (~))
Fix x° E .RN arbitrarily and introduce the same notations h+, r_, m(x),
Ro as in the preceeding subsection. We shall prove the following theorem.

THEOREM 2.5. - Let ho be an arbitrary subset of positive measure in
T and let I C R be an arbitrary compact interval of length ~I~ > 2Ro.
Then there exists a positive constant c such that for every initial data

(u°, E ayu° = 0 on r, the solution of (,~.1,~~ satisfies
the following inequality : :

Remark 2.6. In the special case Fo = r Theorem 2.5 was proven in
J.-L. Lions [2], by an indirect argument. It was later improved in V. Komor-
nik [1], [2] by taking ro = F+ and by giving a constructive proof; cf. also
J.-L. Lions [3].

Remark 2.7.-Applying HUM we may deduce from Theorem 2.5 the
exact controllability of the system

in suitable function spaces if T > 2Ro, cf. J.-L. Lions [2], [3]. . D

Proof of Theorem ,~.5. We shall apply Theorem B with H = 

V = H1 (SZ), a(u, v) = s = 1/2, ko = 2 and

The energy of the solutions is now given by the formula



We recall the following identity obtained by the same multiplier
2m . Vu + (N - 1 )u as in the preceeding subsection :

Let k > 2 be an arbitrary integer and assume that (UO, ~1 ) E Wk ~2. Then
we obtain easily from this identity the following estimate :

If T > 2Ro, then for k sufficiently large the factor of E is positive.
Furthermore, for k arbitrary, the factor of E is positive again if T is

sufficiently large. Finally it is clear that in the present case we have r~k > 0,
2. Using Remark 1.9 we conclude that the hypothesis (1.11) of

Theorem B is satisfied with a sequence intervals Ik such that To = 2Ro. .

Now we verify the condition (1.12). Since ko = 2 and 7yi = 0, in view of
Proposition C it is sufficient to prove that

This is easy to verify. Indeed, the elements of Zi are the constant
functions. If v is a non-zero constant function, then we have

since ro is of positive measure in A by hypothesis. This proves (1.12).
We may apply Theorem B and hence Theorem 2.5 follows. 0

3. Applications to the exact controllability of Kirchoff plates

Our standard reference in this (and in the next ) section is J. Lagnese and
J.-L. Lions [I], referred in the sequel by [LL] ; it contains also the physical



interpretation of the models considered below. The purpose of this section
is to complete the results of [LL] concerning the exact controllability of the
Kirchoff plate models.

Let H be a non-empty, bounded domain in R2 having a boundary F of
class C2, let T be a positive number and fix a point zo e R2 arbitrarily. We
introduce the same notations v(x) = (v1(x), v2(x)), rra(x) = x - x°, r+, r_
and Ro as in the preceeding section. After recaling, the state equation of a
Kirchoff plate is given by

where h denotes the width of the plate, and we have the usual initial
conditions

Following [LL], three kinds of boundary conditions will be considered,
given by (3.3), (3.4) and (3.5), respectively (we shall denote the normal
derivative by 8L ) : :

in the last case , denotes the Poisson’s ratio and B1w, B2 w are given by

where T = ( - v2 , v1 ) .
Our main goal is to prove the convergence of the optimal exact control

functions v (respectively Vi) 0..



3.1.-The first case

We shall consider in this subsection the system (3.1), (3.2), (3.3). Let us
denote by a the least positive constant satisfying the condition

We are going to prove the following theorems :

THEOREM 3.1. - Assume that T > 03B1R0h. Then for every initial data
(WO, E H20(03A9) x there exists a control 03BD E X (0, T)) such that
the solution of (~.1~, (3.,~~, (3.~~ satisfies w(T) = w’(T) = 0 in Q. a

Theorem 3.1 will be proved by the HUM method. Hence we obtain in
particular that among the control functions v there is a unique one, denoted
by vh, which minimizes the integral

THEOREM 3.2. - Let T > 0 and (c~°, wl E x L2 (S2) be given
arbitraly. Then vh - v in L2(r x (0, T)) weakly a3 h -~ 0. o

Remark 3.3. - The case h = 0 of Theorem 3.1 was already proven earlier
(by a nonconstructive way) by E. Zuazua [2]. 0

Remark 3.4. Theorems 3.1 and 3.2 were proven earlier in ~LL~ under
stronger hypotheses on T. D

For t he proof of t hese t heorems consider, following [LL], the homogeneous
system (3.1), (3.2) and

For every (cvo, c,~1 ) E x this system has a unique solution in
C((0, T}; n ~’1((0~, 2"’~; Defining the energy of the solution
by



it is independent of t E [0,T].
According to HUM, Theorem 3.1 will be proven if we establish the

estimates 
’

for all initial date from some dense subspace of x Ha (SZ),
where c is a positive constant, depending on T ( > aRo h) but independent
of the choice of (wO, 

Furthermore, Theorem 3.2 will follow from the same estimates (3.11 ) if
we prove that c may be chosen uniformly with respect to h ~ 0. Thus both
theorems will follow from the following stronger result :

THEOREM 3.5. Fa~ a positive number ho satisfying T > aRoho. . Then
there are two positive constants c and C such that for every 0  h  ho and
for every (wo, E (H4(S2) n x the solution of (~.1~, (~.,~~,
(~.9~ satisfies the inequalities

Proof. - We are going to apply Theorem A with the following choice :
we take H = L2 ( S2 ) if h = 0 and H = if h > 0, endowed with the
norm 

_ ,_

and we set V = Ho (SZ), a(u, v) = DuOvdx, s = 1/2, ko = 1 andn

We introduce the notations r~~ and Z~ ( j > 1) as in Theorem A (they depend
on h) ; note that ~1 > 0.

Let k E C1(n; R) be arbitrary function such that k = v on r. Multiplying
the equation (3.1 ) by k . and integrating by parts on 03A9 x (0, T), it is easy
to obtain the right side inequality of (3.12) with a constant C, independent
of h E [0, ho ~ ; cf. [LL]. In other words, using also Remark 1.5, the right side
inequality (1.8) in Theorem A is satisfied.



To prove the reverse inequality, let us recall the following basic identity
from [LL] :

this is obtained by the same multiplier method as above, using instead of k
the multiplier 2m . w.

We also need the following estimates :

For proving this we remark that

dividing by = and applying (3.14), hence (3.15) follows.

Furthermore, using (3.8) and (3.15) we obtain



From (3.14)-(3.16) we deduce for every t E [0, T] the following estimates :

Using these estimates we conclude from (3.13) that

Here the eigenvalues r~k depend on h. ’Using the variational characteriza-
tion of the eigenvalues it is easy to show that the eigenvalues are decreasing
functions of h > 0. Let us denote by Tik the eigenvalue r~k corresponding to
h = ho . Then it follows from (3.17) that the hypothesis (1.9) of Theorem A
is satisfied for example by choosing

and ck = 2/(Rok) (cf. Remark 1.5).
Let us observe that Ik and ck are both independent of h E [0, ho ~ . We

may therefore apply Theorem A (observe that condition (1.9) is now empty
) and Theorem 3.5 follows. D

3.2. The second case

This subsection is devoted to the study of exact controllability of the
system (3.1), (3.2) and (3.4). The following two theorems will be proved :

THEOREM 3.6. - Assume that T > Roh. Then for every intitial data
(wo, E x H-1 (SZ) there exist control functions vo E L2 (r+ x (o, T ))
and v1 E (H2(o, T; LZ(r+)))’ such that the solution of (9.1), (~.,~) and (9..~)
satisfies w(T) = w’(T) = 0 in S2. a

The controls vo, vl will be constructed by HUM; let us denote these
special controls by vo,h and vl,h. 

’



THEOREM 3.7. Let T > 0 and (w°, w1 ) E L2(~) X H-I (~) be given
arbitrarily. Then v0,h ~ vo,o in L2(0393+ x (0,T)) and ~ v1,0 in

(Hz(d, ~’; LZ(I’+))’ weakly as h --~ 0. 0

Remark 3.8. Theorems 3.6 and 3.7 were proven in ~LL~ under stronger
hypotheses on T. a

Similarly to the preceeding subsection, both theorems will follow from
estimates stated below concerning the homogeneous system (3.1), (3.2) and

Set H = if h = 0 and H = H 2 ( SZ ) n if h > 0, the norm of
H being defined by

and set V = {v E H 3 ( SZ ) : v = Av = 0 on r } . Then for every
(wo, E V x H the system (3.1), (3.2), (3.18) admits a unique solution
cv E C([0, T ~ V) n C ~ ( ~0, T ~ ; H ) If we define its energy by

then E does not depend on t E [0, T~ .
Let us introduce on V the bounded, symmetric, coercive bilinear form

a(u, v) = and then the operator A and the spaces W 8

associated to H, V and a(u, v) as in section 1.

THEOREM 3.9. Fix a positive number ho with T > Ro ho . . Then there are
two positive constants c and C such that for every h E [0, ho~ and for every

E the solution of (~.1~, (9.2), ~~1.18~ satisfies the estimates

We shall apply Theorem A with H, V, a(u; v) as defined above
and with s = 1/2, ko = I and



According to the notations of Theorem A, we denote and Z; the
eigenvalues and the eigenspaces of the eigenvalue problem .

We apply the multiplier method as in [LL]. Multiplying (3.1) by k ~ Vw
R) and k = v on r, we obtain easily the right side estimate

in (3.20) with C independent of h E [0, ho].
Secondly, multiplying (3.1) by 2m ’ ~039403C9 + Aw, we obtain the following

basic identity :

Assume that (cao, c,~l ) E for some k > 1. Then we have

Observe that the eigenvalue problem

has the same eigenspaces as (3.21), and the corresponding eigenvalues
are related to the as follows :

In particular, (3.24) implies that



Using (3.19, (3.23), (3.25) and the inequality (cf. [LL])

of the type considered in V. Komornik [I], the second integral in (3.23) may
be estimated as follows :

Using this inequality, from (3.22) we conclude that

Let us denote by k the eigenvalue ~k corresponding to h = ho . . Then
and so (3.26) remains valid if we replace qk by It follows that

the hypothesis (1.9) of Theorem A is satisfied with

Applying Theorem A, Theorem 3.9 follows. 0

3.3. The t hird case if I‘ _ ~ ~
Now we turn to the study of the system (3.1), (3.2) and (3.5). We shall

assume here that

The assumption (3.28) is made in order to avoid some lack of regularity of
the solutions ; for problems of this type we refer to P. Grisvard [1] and also



to V. Komornik and E. Zuazua [1], [2]. The case where (3.27) is not satisfied
will be considered in the next subsection.

First we introduce some notations. Let H be the Hilbert space L2(n) if
h = 0 and {v E H1 (S~) : v = 0 on r_ ~ if h > 0, equipped in both cases with
the norm 

Let V be the subspace of the Hilbert space defined by

and for u, v E V let us set

We recall that a(u, v) is a continuous, symetric, coercive bilinear form on
V. Let b the smallest constant satisfying

Let us also introduce the spaces W a as in Section 1.

where B1, B2 are defined by (3.6), ( 3. 7) . Given (w° , w 1 ) E V x H arbitrarily,
this system has a unique solution

furthermore, defining its energy by



it does not depend on t E [0, T ~ .

We shall prove the following estimate :

THEOREM 3.10. - Assume that T > 2bRoh. Then there exists a positive
constant c such that for every E W1/2, the solution of (3.1~, (Q.,~~
and (3. ~0~- satisfies the inequality

Remark 3.11.2014 Theorem 3.10 improves an earlier result obtained in

[LL], by weakening the assumption on T. Applying HUM as in [LL], it

follows that the system (3.1), (3.2), (3.5) is exactly controllable (in suitable
function classes) for every T > 2bRo h. 0

Remark 3.12. - Contrary to [LL], under this weaker assumption on T
we are not able to prove the existence of a constant c in (3.32) which is
independent of h -~ 0. Therefore we cannot prove the convergence of the
optimal controls as h --~ 0. D

Proof of Theorem ~.1 D. . - We shall apply Theorem B with H, V, a(u, v)
as defined above, with s = 1/2, ko = 1 and with

We introduce the notations r~~ and Z~ ( j > 1) as in Theorem B. Our starting
point is the identity.

proven in [LL] by multiplying the equation (3.1 ) by 2m . c,~.



Fix a positive integer k arbitrarily and assume that (w°, wl ) E W~ l2 
Then we have

Furthermore, interpolating between the spaces and we obtain

where B is a constant independent of k, w and t.

Using (3.29) and (3.35) we deduce, as in subsection 3.1, the following
estimates :

From (3.34)-(3.36) we conclude that for every t E [0,T],

Using this inequality we obtain from (3.33) the following estimate :

Hence, using Remark 1.5 and the positivity of 171 we obtain that the

hypothesis (1.11) of Theorem B is satisfied with a sequence I~ such that
To = 2bRo h.

Since ko = 1, the condition (1.12) is empty.
We may therefore apply Theorem B.and Theorem 3.10 follows. 0



3.4. The third case if r_ _ ~
We consider now the system (3.1), (3.2) and

where B1, BZ are defined by (3.f>), (3.7), and we assume that (3.39) m - v > 0
on r.

Let H be the Hilber,t space if h = 0 and if h > 0, equipped
with the norm 

,

and set V = We introduce the same bilinear form a(u, v) as in the
preceeding subsection. We remark that

It follows that condition (1.1) is satisfied.
Introducing the corresponding notations of Section 1, (3.40) implies that

r~1 - 0 and Zi consists of the constant functions. Let us denote by b the
least positive constant such that

for all v E ~, orthogonal to Zl in H.
Let ro be an arbitrary subset of positive measure in r. We shall prove

the following result :

THEOREM 3.13. - Assume that T > 2bRoh. Then there exists a positive
constant c such that for every E the solution of ~3.1 ~, (9.2)
and (;~. ~98~ satifies the inequality

Remark 3.14. - In [LL] Theorem 3.13 was proved under a stronger
hypothesis T > To > 0 with To independent of h. Applying HUM, Theorem



3.13 implies the exact controllability of the system (3.1), (3.2), (3.5) in
suitable function spaces if T > 2bRo h. ~ 

,

Proof of Theorem 9.1 ~. . - We shall apply Theorem B with H, ~, a(u, v)
as defined above, s = 1 / 2, J~o = 2 and with

We have now instead of (3.33) the following identity :

where E is defined by (3.31).
If (c,~o, w1 ) E for some k > 2, then ~k > 0 and the calculations of

Subsection 3.3 remain valid. We obtain

hence the condition (1.11) of Theorem B is satisfied with a sequence of
intervals Ik such that To = 2bRo h.

On other hand, condition (1.12) follows at once from the definition of Fo
and from the structure of Zl. Indeed, we have obviously

implying (1.12) in view of Proposition C.

Applying Theorem B, hence Theorem 3.13 follows. D



4. Applications to the exact controllability of Mindlin -
Timoshenko plates

The purpose of this section is to prove the uniform exact controllability of
some Mindlin - Timoshenko plate models with respect to the shear modulus.
As in Section 3, our standard reference is J. Lagnese and J.-L. Lions [I],
referred to by [LL] in the sequel; it contains also the interpretation of the
models considered below. ,

Let f2 be a non-empty, bounded domain in R2 having a boundary r of
class C2 and let r = ra U03931 be a partition of r. In order to ensure sumcient
regularity of the solutions of the systems considered in this section, we
assume that

In this section we shall use for brevity the following notation : we write
V f = (/z, /y); the normal and tangential derivatives of a function f will be
denoted by and 8T f respectively.

In the first subsection we shall study the exact controllability of the
following system (modelling a plate clamped along 



where p, h, ~, D, , K, T are suitable positive constants and p.  1/2.
In the second subsection we shall study the exact controllability of the

system (4.2), (4.3), (4.5) and

modelling a plate hinged along ro. (In fact we shall treat also the case where
I‘o - 0. )
We shall restrict ourselves to the proof of suitable a priori estimates. The

corresponding exact controllability theorems may then be deduced by HUM
as described for the cases considered here in [LL]. .

4.1. . - Clamped plates
Let us assume that

Consider the homogeneous system (4.2), (4.5),

Fix a point (x°, y°) E R2 arbitrarily and set
= (x - x° y - (x~ y) E 

~ 

F+ _ ~(x~ y) E F : m(x, y) y) > Q~~
: 

We shall prove the following theorem :



THEOREM 4.1. There exists a constant To, independent of K, such
that if T > To, then every sufficiently smooth solution of (4.2), (4.5), (4.8),
(,~.9~ satisfies the inequality

here c denotes a positive constant depending on K but independent of the
initial data. D .

Remark 4.2. As we shall see, the precise assumption on the smoothness
of the solution is that the initial data belong to the space W1/2 defined
below. D

Remark 4.3. In [LL] the estimates (4.10) were proven under a stronger
assumption of the form T > To(K) with To ( K ) ~ oo as K ~ ~. D

Remark 4.4. - We note that in the special case rl - ~ the reverse
inequality of (4.10) is also true. D

Remark 4.5. Theorem 4.1 implies the following exact controllability
theorem (cf. [LL]) :
if T > To, then for every initial data ((~°, cpo, wo ), (~i, wi ~) E V x H
there are control functions hi , h2, h3 and vi , v2, v3 driving the system (4.2)
- (4.5) to rest in time T. The controls hi belong to L2(ro x (0, T)) and the
controls Vi have the structure vi = 03BE"i + ~203BEi where 03BEi E L2(0,T;H1(03931)) n
H1 (©, T; LZ(r~ )). . D

Proof of Theorem H be the Hilbert space (L2{S~))3 endowed
with the norm

and let us introduce the Hilbert space



considered as a subspace of H1 (SZ~3 . For p, w), (~, Sp, w~ E V we set (cf.
[LL]).

Using the Korn inequality it is easy to verify that the bilinear form a( ~, ~ ) has
the property (1.1) of Section 1. Let us introduce the corresponding notations
WS, E, Wk Zk of Section 1. The system (1.2) is then equivalent to (4.2),
(4.5), (4.8), (4.9). Furthermore, the Korn inequality shows also that 7yi > 0.

We are going to apply Theorem B with s = 1 /2, ko = 1 and the semi
norm p being defined by

Fix the positive e (to be precised later). We recall from [LL] the following
identity, valid for all solutions with initial data in W1/2 :



As it was shown in [LL], this identity implies the following inequality :

where c’ and c" are positive constants, independent of K, T and e.
Now we observe that if the initial data belong to W:/2 for some positive

integer 1~, then the same reasoning yields the stronger estimate by replacing
~1 by ~k in the above inequality; furthermore the constants c’, c" do not
depend on k. Chosing êk = 1/(2 + this gives

In view of Remark 1.5 condition (1.11) of Theorem B is therefore satisfied
with a sequence of intervals Ik such that To = 2/c".

Since ko = 1, condition (1.12) is now empty. We may apply Theorem
B and Theorem 4.1 follows because (4.10) is a special case of the estimate
~ 1.13): ~ Q ~ ~ ....

4.2. . - Hinge d plates
Let us fix a positive number I satisfying I  ( 1 - ~C) f 2 and consider the



system (4.2), (4.5),

Fix (x°, y°) E R2 arbitrarily and introduce the same notations m(x, y),
Ro , r+, r- as in Subsection 4.1. Let r2 be an arbitrary subset of positive
measure in r.

We shall prove the following result :

THEOREM 4.6. - There exists a constant To, independent of K, such that
if T > To, then every sufficiently smooth solution of (4.2), (4.5), (4.11),
(4.12) satisfies the inequality

where c is a positive constant depending on K but independent of initial
data. a

Remark 4.7. The precise assumption on the smoothness of the solution
is that the initial data belong to the space W1/2, defined below. D

Remark 4.8. - In [LL] the estimates (4.13~ were proven under a stronger
assumption of the form T > To(K) with and with

r2 = r. 0 
’



Remark 4.9. - In Theorem 4.6 the case ro = f~ is not excluded ; however,
this is no more a "hinged" plate. D

Remark 4.10. Theorem 4.6 implies the exact controllability of the
system (4.2), (4.3), (4.5), (4.6) in suitable function spaces; cf. [LL]. D

Proof of Theorem H be the Hilbert space (L2(SZ))3 endowed
with the same norm as in the preceeding subsection and let V be the
subspace of ( H 1 ( S~ ) ) 3 defined by

V = ~’~~ ~P~ w) E (H1 (~))3 : : w = 0 on ~o }.

Let us define the bilinear and quadratic forms ao, al as in the preceeding
subsection. Furthermore, fix a positive number, satisfying 03B3  (1 - )/2
and set

(a(-, -) is not the same bilinear form as in Subsection 4.1). It is easy to

verify, using Korn’s inequality, that a( -, - ) has property (1.1). Introducing
the corresponding general notations of Section 1, it is clear that the system
(1.2) is now equivalent to (4.2), (4.5), (4.11), (4.12). Also, it is easy to show
that and

We shall apply Theorem B with s = 1 /2, ko = 2 and



Let e be a positive number (to be precised later) and consider a solution
of (4.2), (4.5), (4.11) and (4.12) with initial data in W1/2. We recall the
following identity from [LL] : ,

Contrary to the case of the clamped plates, this identity does not yield
directly an estimate of the type (4.13). Indeed, in the proof of Theorem 4.1
the Poincare inequality is used and here no such inequalities are available
because r~l = 0. This difficulty was solved in [LL] by strenghtening the semi
norm p and applying an extra argument of the type used in V. Komornik
[1], [2]. °
Now we give a simpler method. First we observe that if the initial data

belong to for some k > 2, then the proof of Theorem 4.1 may be
easily adapted, using an inequality of Poincare-Wirtinger type instead of
the Poincaré inequality. This leads to the estimate



where ~k = 1/(2 + and c’ , c" do not depend on k, K and T . It
follows that condition (1.11) of Theorem B is satisfied. (The choice ko = 2
is important here : for k = 1 the corresponding condition does not follow
by this way.)
We have to verify also condition (1.12) for k = 1. Let =

(ci, c2, c2 y - c3 ) be an arbitrary non-zero element of Zi (cf. (4.14).
Since r2 is of positive measure, we have

Using Proposition C hence condition (1.12) follows. We may apply Theorem
B and this completes the proof of Theorem 4.6 because (4.13) is a special
case of (1.13). D
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