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Fluid flow in macromolecular systems
and related perturbation problems

PIERANGELO MARCATI(1) and ALBERT MILANI(2)

Annales de la Faculté des Sciences de Toulouse Vol. XI, n° 3, 1990

RESUME. - On prouve l’existence et 1’unicite des solutions faibles du

problème aux valeurs initiales et limites decrit dans 1’equation (1) de
l’introduction. Cette equation modélise le flux d’un fluide visqueux et
incompressible a travers un objet élastique et permeable.

ABSTRACT. - We establish existence and uniqueness of weak solutions
to the initial-boundary value problem presented in equations ( 1 ) of the
introduction, which describes the flow of a viscous, incompressible fluid
through an elastic permeable medium.

AMS MOS (1980) Classification Subject : 76505-35L99

1. Introduction

We are interested in the model proposed by Wiegel in [13], section 28,
to describe the flow of a viscous, incompressible fluid through an elastic,
permeable medium (typically, a macromolecular system), at low values of
the Reynolds number. This model plays an important role in many branches
of applied chemical physics and biophysics; it is described by the equations

where v and p are the "macroscopic" velocity and pressure of the fluid
and u is the displacement of the medium; the positive constants é, ..., A
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will be described later. Equations (1) are obtained combining the familiar
linear Navier-Stokes equations for incompressible fluid with Darcy’s law, and
coupling them with the equations of elasticity, describing the deformations
of the medium through which the fluid flows. Indeed, quite often the porous
medium is represented as a rigid object, such as a cookie or a piece of
chalk; in some instances, however, the fluid may cause deformations in the
medium, which can then reasonably be assumed to respond and behave like
an elastic body (Schneiddeger, [12]). Some remarks are in order in relation
to equations ( 1 ) : we follow closely Wiegel’s discussion of [13], sections 1

to 5, to which we refer for most details. We first consider the complete
Navier-Stokes equations for incompressible fluids

where v and p are the "microscopic" velocity and pressure of the fluid, po its
mass density and r~p its viscosity. In many conditions of practical interest,
the nonlinear term po(v. can be neglected when compared to the linear
term since the ratio of these terms is of the order of the Reynolds
number R. For instance, for a macromolecular coil in 10-6

(Wiegel, [13]): for such small values of R, the nonlinear equations (2) can
be approximated by their linear version

Next, we note that the fields in (2) and (3) usually display a rapidly
oscillating behavior in space and time; however, linearity in (3) allows

averaging, and the corresponding "macroscopic" quantities, which are then
slowly varying functions of space and time, satisfy similar equations. For

example, the macroscopic velocity is defined by

where ? is the microscopic velocity, ~ a ball will center at x, r an interval
with center at t; the sizes for cv and r are conveniently chosen, relative to
the characteristic macroscopic dimensions of the system and to the typical
sizes of its repeating units. Thus, we consider all quantities in equations (3)
to be macroscopic, and proceed to a more specific exam of the interaction
of the fluid with the medium through which it flows. The fluid is subject



to two forces, the resultant of which should be inserted in equation (3.1):
a force -Vp due to the macroscopic pressure in the fluid, and a frictional
force F exerted on the fluid by the medium. According to Darcy’s law, the
first force is proportional to the macroscopic velocity of the fluid:

where 5 > 0 is the reciprocal of the hydrodynamic permeability, a physical
quantity of dimension [length] 2 . If the medium is at rest, the two forces

cancel, so that

and combination with Darcy’s law (4) yields

if the medium is not at rest, but suffers deformations, causing its particles
to move with (small) velocities ut, then the frictional force (6) is modified
into

If we assume the response of the medium to be that of an elastic

body, subject to Hooke’s law, the equations of elasticity describing its

displacement read

where pi is the mass density of the medium and A and ~ are the Lame’s
constants. The explicit form of the total force F exerted on the medium will
in general depend on its rheological properties, but will in any case contain
an additive term like (7), due to the interaction with the fluid. Combination
of the elasticity equations (8) with Darcy’s lav (7), coupled with equations
(3), yields systems (1), where we have added the constant E > 0 to measure
the effect of the inertial forces in the fluid. We propose to study system (1),
subject to initial data

and to homogeneous boundary conditions, either of Dirichlet type or of

tangential or normal type; for definiteness, we shall impose conditions



We remark that Darcy’s modified law (5) + (7), that is

can be formally obtained from equation (l.a) when E = 0: the question then
naturally arises, whether Darcy’s law is actually a consequence of equations
( 1 ) when inertial forces are negligible. Also, in many situations one typically
has, other than E « 1, either 170 « 1 (small viscosity) or 5 « 1 (large
permeability), so that it is of some interest to study the behavior of the
solutions of (1) when these quantities vanish. We shall see that indeed the
solutions of (1) possess, at the vanishing of E, 6, suitable limits which

are solutions of the formal limit equations, obtained from (1) by setting
é = 0, 5 = 0 and 170 = 0 respectively, so that equations (1) can be regarded
as perturbations of these limit equations. Perturbation processes of this

type arise in quite a few physical situations; a similar study for two related
nonlinear one-dimensional problems is carried out in [8] and [9] ; see [10] for
an analogous problem concerning the quasilinear Maxwell equations. For a
general treatment of this type of perturbation problems, see Lions [6]; see
also [11] for a partial extension to smooth solutions of nonlinear problems.

2. Functional spaces

We shall consider some Sobolev type functional spaces, which have turned
out to be quite convenient for the study of Navier-Stokes equations; we recall
their definition and main properties from [1], [3] and [5].

Given H C IR3, a simply connected (for simplicity; indeed, [3] and [7] deal
with multiply connected domains) bounded open set with smooth boundary
aQ, having (again for simplicity) only one connected component, we set
L2 = L2 (SZ), ~C2 = (LZ )3, H1 = H1 (SZ), etc.; in general, if E is a space, we
set £ = E3 . We define the spaces

which are Hilbert spaces with respect to the norms

respectively (here, and in the sequel, )) . )] denotes the usual L2 norm).
These spaces are dense in because D ( SZ ) 3 is dense in them ([2], chapter



VII, sections 4, 5); this also allows us to define tangential and normal
components on c~~ for elements in H(curl) and H(div) respectivley, as

elements of ?~-1~2(aSZ) and H-1~2(a~), so that the following integration
by parts formulas hold:

where ( ~ , ) is the L~ scalar product, and ~ ~ , ~ ~ is the duality between
H 1~2(8SZ) and H1~2(~SZ).
We shall actually indicate by (’, -) the duality product between a space

and its dual, specifying these spaces whenever they are not clear in the
context.

Of particular interest in the sequel will be the spaces

As a matter of notation, if E and F are two Hilbert spaces, we write
E - F to mean that E is densely and continuously embedded in F; if
T > 0, we abbreviate L2 (0, T; E) into L2 (E), and similarly for L°° (0, T; E),
C(0, T; E); finally, if E ç ,C2, we set

We shall consider the spaces

of which we recall the following properties:

PROPOSITION 2



c) R= uE.C2) ~ pE ;

d) Y is a closed subspace of xa, on which curl is a norm,

equivalent to the one induced by ?-C1; ;
e~ Y 

PROPOSITION 3

a ) V u E Ho(curl), curl u E H ;
b ) V u E L:2, curl u E H-1(curl);
c) V u, v E H 0 ( curl), (curl2 u v ~ = (curl u, curl v) = (u , curl2 v)

(duality between Ho(curl) and 

d) curl2 Y --> y’ is an isomorphism.

We postpone the proof of these propositions to section 7 at the end of
the paper.

3. Statement of results

We now consider system (1) + (9) + (10), and set po = pi = ~u = 1 for

simplicity. We are interested in two classes of weak solutions, in relation to
the regularity assumed of the initial data (9). At first we assume

and consider the following

Problem 7.2014 find u e L~(~) with ~ e L~(/:~), v C with

vt ~ L~(~), curl~ C ~(/:~) such that
i) = uo, = ~o;

it) V~e~(~),



We note that problem I is well stated : indeed, ?-Co ~ ;~2 and Y ~ .Cd
(by e) of proposition 2), so that theorem 3.1 of [7], chapter I, applies and
guarantees that, in particular, 03C6 E C(,C2 ) if Sp E L2(H20) and 03C6t E L2 (,C2 );
analogously for u and v. Moreover, if u and v are solutions of problem I,
(3.2) implies that for almost all t E [0 , T’], setting

F(t) E .C~ and F(t) 1 By a) and c) of proposition 2 then, F(t) E R so
that F(t) _ -~p(t) for some p E L2(~I1): it is in this sense that equation
(1) holds. Finally, note that if u E so that curl u and div u are defined

in x 1 ~ 2 ( a~ ~ and H 1 ~ 2 ( aSZ ) respectively, then from proposition 1 we would

have, since 0:

We claim then:

THEOREM 1.2014 There exist unique u E v E solutions

of problem I. Moreover, ut E ) and vt E L°° (.Cd) .

Proof . See section 4.

We now consider a weaker class of solutions, assuming only

we state the following

Problem II. - Find u E L2 (,C2 ) and z~ E L2 (Y) such that



Again, we note that problem II is well stated; in particular, cp E 

and 03C6t E L2(H10)~C(L2) if 03C6 E L2(H2~H10) and 03C6tt E L2(L2); analogously
for £. Also, note that now c~ E ?~2, so that if u E ?-Co, (3.4) could be
continued into

Analogously for v: if curl v E ,C2, then curl v E fl1 because of a) of

proposition 3 and proposition 1.4 of [3] ; hence, curl v|~03A9 could be defined
and from (2.1) we would have, for ~ E Y :

(curl2 v, ~) = (curl v , , curl ~) - (n x ~ , curl v) = (curl v curl ~) . (3.9)

On the other hand, we do not have as straightforward an interpretation
of equation (1) as we did for problem I; however, note that since div ~ _
div 03BEt = 0 if 03BE E Tv by proposition 1.3 of [3] there exists Ç E x 1 such that
~ = curl Ç (we could actually show, as we did for v in (3.9), that Ç E 
since ~ E Y). Thus, (3.7) implies that curl F = 0 as a distribution, so that
F can be interpreted as a gradient. Also, we shall see that the solution to
problem II can be found as a limit of sequences of solutions to problem I, for
which equation (1) had sense; in either case, this shows that F is a gradient
whenever it is in ,C2. We claim:

THEOREM 2. - There exist unique u E E 

solutions of problem II. Moreover, ut E L°° (x-1 ) and vt E L2 (~Cd) .

Proof. - See section 5.

We remark that the additional space regularity enjoyed by v with respect
to u, in both problem I and II, is due to the fact that equation (1) is

essentially parobolic in v, while (3) is essentially hyperbolic in u.

4. Proof of theorem 1

We proceed as in [7], chapter III, section 8, using a Faedo-Galerkin
approximation: let and be total bases for ?~o and Y respectively,
and set, V n E IN , Vn = span[wi, ... , wn], , Yn = span [y1, ... , . We

choose sequences in ~~, and vo E Yn, such that

uo in ?~0 , --~ ui in ,C2 ; , . v~ -~ vo in Y (4.1)
as n - oo, and state for all n



Problem III. - Find un = E ~n and vn = E Yn such that
for all j = 1, ..., n:

where f = 1 + A. Problem (4.2) is then equivalent to a system of

ordinary differential equations in the unknowns {a1 (t), ... , an(t)} and
(t), ... , , ,Qn(t)}, as defined by un(t) = and v’~(t) _

. We proceed now to obtain a priori estimates on the (local
in time) solutions of (4.2). At first, we multiply equation (4.2a) by 
and equation (4.2b) by 2,Q~ (t): summing for j = 1, ..., n, and integrating
by parts, as is admissible (compare to (3.4)), we obtain (we omit the index
n for convenience):

from which, summing and integrating in [0, t], t E ~ ] 0, T] :

Because of (4.1) and (3.1), we deduce that, as n --~ oo,

Next, we specialize the choise of the basis to that of the eigenvalues
of curl2, i.e. such that V n, curl2 wn = we multiply (4.2a) by 



and then, with wj so replaced by curl2 by again: summing for
j = l, ... , n, we obtain

splitting then

we deduce from (4.7), because of (4.1), (4.2) and (4.6b), that

Estimates (4.6) and (4.8) are sufficient to conclude the proof of theorem 1;
there exist in fact fields u and v such that, for suitable subsequences un, vn,

Let now $ e : since U~~1 Yn ~ Y ~ there exists an

approximating sequence ~~~,~ such that V n, ~~ E Yn and in 

strongly; in particular, = 
, for suitable functions a~ E

C([0, , T ~ ~ . Multiplying then (4.2a) by aj(t), summing for j = 1, ... n,
integrating by parts and letting ?t 2014~ oo, we obtain equation (3.2). We act
analogously for equation (3.3), approximating any c~ E T by a sequence

where V n, cpn(t) = ~~ 1 bj(t)wj E W~, and the b~ are suitable



C1 ( ~ 0 , T]) functions such that = 0. In particular then, u and v
solve the equations

in distributional sense. That these solutions are unique, can be seen as in
[7], loc. cit.; it would be an immediate consequence of estimate (4.5), with
the initial data replaced by zero, provided a cutting off the value of u(T )
be previously made; we omit the details. D

5. Proof of theorem 2

We need a preliminary result:

PROPOSITION 4. - Consider the operator A : u ~ curl2 u - .~~ div u.
Then

In b), we have written ~ . ~-1 the norm in H-1, , and ~ . ~1 is the norm
in defined by

this norm is equivalent to the usual one, as shown in ~,~~, chapter VII,
section 6.

Proof

i) Let u E and 4’ E then

since D(SZ)3 ~ this shows that A is linear continuous on 

ii) Given f E ?-C-1, the problem



is coercive on xo and, therefore, produces a unique solution to the
equation Au = f; hence, A is bijective.

iii) Given u E ~o, let f = Au: then if v E and  1, we see from

(5.1) that, as in i) above,

but also, letting v = u in (5.1)

To prove theorem 2, we proceed as in [7], chapter III, section 9. Since

H10  L2  H1 and Y - £§, we can select sequences ug, u? and vg such
that

By theorem 1 we can find, for each n E IN , solutions un, vn of problem I,
corresponding to the initial data ug, ~cl we refer to these as solutions

to problems In. We can obtain estimates independent of n, considering
sequences wn e E such that

this is possible by proposition 4 and d) of proposition 3, since in particular
u~ (t~ E ?~C-1 and E ~’~ for almost all t. We multiply then the equations
in (4.9), where now u = un, v = vn (the solutions to problems In), by 2z’~
and 2wn respectively (this is rather ambiguous, since now the index n is used
with a different meaning; in fact, there are two limit processes involved: one,
to establish the existence of solutions to problem In ; the other, to establish
the existence of a solution to problem II. Since the estimates are the same,
however, no confusion should arise). Noting that, for instance,



and analogously for v, we obtain

from which, summing and integrating in [0, t ] :

Because of parts b) and d) of propositions 4 and 3, we have that

hence, we obtain from (5.6)

because of (5.2), the right side of (5.8) is uniformly bounded with respect
to n, so that as n - oo we have

Recalling then (5.7) and that div vn = 0 V n, we can modify (the
analogous of) estimate (4.3) as follows:



so that, integrating in [0, t ~ and using (5,9b), we have that

bounded set of n L2 (Y) , as n - ~. (5.11)

Finally, we multiply (4.9a) by 2zf and integrate on 0 , ~ ~, obtaining, as
before

from which again, as r~ --~ o0

There exist therefore subsequences and fields u, v such that, as
m --~ o0

To prove that u and v are solutions of problem II, we specialize in (3.2)
and (3.3) of problems In, ~p E Tu C T and ~ E Tv C L2 (,Cd): (3.6) and (3.7)
are then easily obtained from (5.14) and (5.15) after integration by parts
and letting m -~ +00. As for uniqueness, we repeat the remark we made
for problem I.

6. Perturbations processes

We now consider the solutions of (1) as dependent of the parameters 5,
r~o and e, and address the question of their convergence, at the vanishing of
these quantities, to the solutions of the corresponding limit problems

when b ~ 0 and é, r~o are kept fixed;



when 

when E ~ 0 and ~, r~o are kept fixed. We note that a consequence of these
limit processes is the uncoupling of the elasticity and the fluid dynamics
equations in ( 6.1 ) and (6.2); also, convergence in (6.3) will be singular in
time for v, due to the loss of the corresponding initial condition. Finally,
note that (6.3a) shows that we recover Darcy’s law (11) when the internal
forces become negligible. Of course, we interpret equations (6.1), (6.2) and
(6.3) in analogy to problems I and II, when we formally set b, r~o and E equal
to zero in equations (3.2), (3.3) or (3.6), (3.7).

We start with the more regular solutions : assuming (3.1), we claim:

THEOREM 3

a) Let u = us and v = vb solve problem I for b > 0. There exist u and v
such that, as b ~ 0:

u~ --~ u in L°° (?-~o ) weak*, , ut -~ ut in weak*; ;

vb - v in L°° (Y) weak* , vt -~ vt in L°° (Gd) weak* ;

moreover, u and v solve problem I with b = 0.

b) Analogous statement for u = u~ and v = , when ~ = ~0 ~ 0.

THEOREM 4. - Let u = uE and v = vE solve problem I for E > 0. There
exist u and v such that, as E ~ 0 :

uE -~ u in L°° (~Co ) weak* , , ut --~ ut in ;

v~ -~ v in L°° (.Cd) ;

moreover, u and v solve problem I with E = 0.

Proof. - Theorem 3 is an immediate consequence of estimates (4.5)
and (4.7), which are independent of b and r~Q if b  1 and r~o  1; more
specifically, these estimates show that, as 03B4 ~ 0 and ~0 ~ 0,



hence, the conclusion follows from (6.4) and (6.5), letting 5 ~ 0 and 770 ~ 0,
in (3.2) and (3.3). As for theorem 4, these same estimates are not sumcient
to pass to the limit when 6 B 0; yet, note that (4.5) are independent ofe if
E  1, so that in particular, when 6 B 0,

using then (6.6b) back in (4.3), we see that, also,

Given then ( E L2 (,Cd), let ~"z E Tv be such that ~’~’z - ( in ~2 (,Cd~:
specialize ( = ~’’’’z in (3.2), integrate by parts in time and space, then let
E ~, 0 to obtain, V m:

where

as from (6.6a) and (6.7).
The conclusion then follows from (6.8) letting m ~ ~. D

We new turn to the weaker solutions: assuming (3.5) only, we claim:

THEOREM 5

a~ Let u = u~ and v = v~ solve problem II for ~ > 0. There exist u and

v such that, as 03B4 ~ 0 :

ub -~ u in weak* , ut -~ u~ in L°° (?-~C-1 ) weak* ; ;
vb --~ v in L°° (Y~) weak* ;

moreover, u and v solve problem II with b = 0 and, in ~3. ?’~, (v, ()
replaced by (v, (), duality between Y~ and Y.



b ) Analogous statement for u = v = , when r~ = r~p ~ 0. .

c) Analogous statement for u = uE, v = vE, when E ~, 0. .

Proof. - We note that estimates (5.8) are independent of ~, r~p and E (if
E  1); more precisely, we have that, when $, r~p and E vanish,

But then obtain from (5.4), because of (6.9b) and recalling (5.9), that

from which we deduce that, as 6, r~ and E vanish,

Given then ( E Tv, choose ~’’~’z such that curl2 ~"~ E L2(,G2~ and ~’’~ --> ~
in Tv ; specialize ( = ~’~’z in (3.7) and integrate by parts in space; let then
b ~ 0 or r~o ~ 0 in (3.6) and in the transformed equation, and use (6.9),
and (6.10) when é B 0: the conclusion then follows letting m --~ 

7. Proof of propositions 2 and 3

Proof o f proposition 2

a), b), c) are proved in sections 1.1, 1.2 and 1.3 of [3]. From [2],
chapter VII, theorem 6.1, we know that

and that there exists ci = such that, for all u in such space,

A similar argument holds for the boundary condition n x u: thus, d) is
a consequence of (7.1) and of Friedrichs’ inequality ([4])

where c2 = and, again, u is in either space above.



Finally, we deduce from [2], sections 4 and 5, that

is dense in ~ so that V ~ ~ ~ ~ since Dd C Y G ~.
Proof of proposition 3

a) We first note that since div curl u = 0, curl u G H(div) so that n.curl u
is defined in H-1/2(~03A9). Given then any 03C8 ~ let 03C6 C 

be such that 03C6|~03A9= 03C8 (for instance, let 03C6 solve {1039403C6 = 0 03C6 - 03C8 = 0
then by proposition 1 we have

Thus, n ~ curl u = 0 in and hence in H-1~2 (aS~), since

Hl~2~a~~ ([7], chapter I, section 7.3).
b) We know from [2], chapter VII, remark 4.2, that ~D(SZ~~ 3 ~ Ho(curl);

if u E ,C2 and ~p E {D{aS~~~ 2, we have

so that curl u E H-1 (curl).
c) If u, v E Ho(curl), by b) curl2 u and curl2 v E H-1(curl), and

(curl u , v) = (curl u, curl v) _ (curl2 v u~ . .

d) Since Y = Ho(curl) n ~Cd ç Ho(curl), H-1(curl) ç Y’ so that by b)
curl2 u E Y’ if u E Y. To verify that curl2 : Y -~ Y’ is one-to-one,
assume that curl2 u = 0 and let v = curl u: then since curl v = 0,
div v = 0 and n . v = 0 (by a)), Friedrichs’ inequality (7.2) implies
that v = 0; then, curl u = 0, div u = 0 and n x u = 0 imply u = 0 as
well. To verify that curl2 : Y --~ Y’ is onto, let fEY’ and consider
the problem

by d) of proposition 2, this problem is coercive in Y and, by c), its

unique solution u is such that curl2 u = f.



Finally, to verify that ) ) ~curl2 u II Y, = ~I u I I Y = I curl u I ( , let f = curl2 u: if
v E Y and ~v~( Y = ~curl v I I  1, from c) we have

SO that  ~u~Y; but also

so that ~ 0
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