
ANNALES DE LA FACULTÉ DES SCIENCES DE TOULOUSE

ENRICO VITALI
Convergence of unilateral convex sets in
higher order Sobolev spaces
Annales de la faculté des sciences de Toulouse 5e série, tome 11,
no 3 (1990), p. 93-149
<http://www.numdam.org/item?id=AFST_1990_5_11_3_93_0>

© Université Paul Sabatier, 1990, tous droits réservés.

L’accès aux archives de la revue « Annales de la faculté des sciences de
Toulouse » (http://picard.ups-tlse.fr/~annales/) implique l’accord avec les
conditions générales d’utilisation (http://www.numdam.org/conditions).
Toute utilisation commerciale ou impression systématique est constitu-
tive d’une infraction pénale. Toute copie ou impression de ce fichier
doit contenir la présente mention de copyright.

Article numérisé dans le cadre du programme
Numérisation de documents anciens mathématiques

http://www.numdam.org/

http://www.numdam.org/item?id=AFST_1990_5_11_3_93_0
http://picard.ups-tlse.fr/~annales/
http://www.numdam.org/conditions
http://www.numdam.org/
http://www.numdam.org/


- 93 -

Convergence of unilateral convex sets
in higher order Sobolev spaces

ENRICO VITALI(1)

Annales de la Faculte des Sciences de Toulouse Vol. XI, n° 3, 1990

RESUIvtE. - Nous obtenons une caracterisation de la convergence au
sens de Mosco dans la classe des convexes unilatéraux de )
(m > 1) de la forme {u E u > 03C8 sur fZ } . . Étant donnés les
obstacles (03C8h) h et 03C8, cette caractérisation s’exprime par la convergence
au sens de Mosco des ensembles unilateraux associés aux fonctions car-

acteristiques des ensembles de niveau > t} et {03C8 > t}. Dans le cas
p = 2, en développant ce resultat nous obtenons des conditions necessaires
et suffisantes formulées au moyen de la convergence des (m 2)-capacites
des intersections > t} r1 A entre les ensembles de niveau et une con-
venable famille d’ ouvert s A . .

ABSTRACT. - We establish a characterization of the Mosco conver-

gence for the class of unilateral convex sets in Wo ’P ( S~ ) (rn > 1 ) ) of
the form ~ u E u > ~ on S~ } . . For given obstacles ~~h ) and
~ this characterization is expressed in terms of the Mosco convergence of
the unilateral sets determined by the characteristic functions of the level
sets > t~ and {~ > t~. In the case p = 2 we further develop this
result obtaining necessary and sufficient conditions in terms of the con-
vergence of the (m, 2)-capacities of the intersections > t~ n A of the
level sets with a suitable family of open sets A.

Introduction

The purpose of this paper is to give necessary and sufhcient conditions
for the convergence in the sense of Mosco of a sequence of convex sets of

(unilateral) obstacle type in higher order Sobolev spaces.
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This notion of convergence was introduced by U. Mosco in [22] for the
class of closed convex subsets of a reflexive Banach space and, through
the epigraphs, for the class of convex lower semicontinuous functionals.

The range of application covers a number of situations in perturbation
or approximation of optimization problems (see [22], [23] and [3]). In

particular, if A is a (possibly non-linear) operator from a reflexive Banach
space X into its dual and (Kh) is a sequence of convex subsets of X which
converges to a set K in the sense of Mosco, then, under some natural
assumptions on A, it can be proved that the solutions uh of the variational
inequalities

converge strongly in X to the solution u of the variational inequality

Therefore, a study was developed to determine significant conditions

which could imply the Mosco convergence (see, for instance, [25]). Here

we focus our attention on the important class of the convex subsets of

(Q open subset of IRn, m > 1, 1  p  +00) associated to an
obstacle function, i.e. of the form I~~(~), where 1/; : 0 --+ [-00, is any

function, and

We point out that in order to consider also thin obstacles ~, namely
obstacles given on sets of Lebesgue measure zero, we have to pass to the
more refined concept of Cm,p-capacity (defined from the norm of 
and specify, up to sets of null capacity, both the values taken by u and the
set where the inequality u > ~ has to be considered.

Given a sequence (~h ) of obstacles, it is clear that a strong enough
convergence of to Ç implies the convergence of to Ko(~).
The question is then to find minimal assumptions on the obstacles which

guarantee the Mosco convergence.

In this connection, for the case m = 1, we must mention the result
obtained by H. Attouch and C. Picard in [5], which unifies previous studies
on the same line (see the references in [9]). As a consequence, it is proved
that the convergence of the obstacles in a suitable LP-space constructed by



means of the C1,p-capacity, as well as the weak convergence of (03C8h) to Ç
in for some s > p, turn out to be sufficient to yield the Mosco
convergence of the corresponding convex sets (see also [6]).

These results (quite satisfactory for C1,p-quasi continuous obstacles) were
refined, by means of new techniques, by G. Dal Maso in [9], where necessary
and sufficient conditions are established for the convergence in the sense
of Mosco of a sequence in Wo’p(~). Here no regularity on the
obstacles is assumed.

In this paper we aim to find an extension of the characterization given in
[9] to the case of higher order Sobolev spaces. More precisely, we begin by
presenting, in section 2, some properties of the class of subsets of Wo ’p(S~)
we deal with. Here, on the basis of the concept of unilateral convex set in

(see [4]), we introduce an analogous notion for Wo ’p(S~) (requiring
that, if u and r are in the set, then the same holds for every w > u A v
(minimum between u and za)). It is proved that every closed unilateral
convex set in Wo ’p(S~) is a convex set of obstacle type. This extends the

corresponding result given in [4] for the case m = 1, and allows us to
obtain the closedness, under the Mosco convergence, of the class of obstacles
constraints in 

The subsequent sections can be divided into two parts. In the first one

(sections 3 and 4) we take into consideration the sets in 

(m > 1) associated to a sequence (~h) of obstacles, and we characterize
their Mosco convergence to a set in terms of the Mosco convergence
of (Ko(l~.~h~t~)) to K~(1~,~>t~), where l~,~h~t~ and 1~,~>t~, denote the
characteristic functions of the level sets ~~~ > t~ and ~~ > t~, respectively,
and t varies in a dense subset of IR. This result is first achieved in section 3
for a sequence of obstacles which take the value -oo (i.e. give no constraint)
outside a fixed compact subset of Q on which they are equi-bounded from
above. Next (section 4), these conditions are weakened by means of a proper
control on the range of the functions ~~ and on their behaviour near the
boundary of H.

In a second part (section 5), we give necessary and sufficient conditions
for the convergence in of the sequence to Ko(lE),
where Eh and E are subsets of O. Here (Theorem 5.1), the characterization
in expressed through the convergence of the capacities of Eh n A to the
capacity of E r1 A, where A is taken in a sufficiently large family of open
subsets of Q. In particular, if we specify the sets Eh to be the level sets

sequence of obstacles, then we obtain the main result of



the paper: the characterization of the convergence of to in

terms of convergence of capacities of level sets (Theorem 5.12). The results
in section 5 are confined to the case p = 2.

Finally, we want to point out that the main difficulty in the attainment
of these results is the loss of the lattice structure passing from Wo’~’(~)
to (m > 1). This is overcome making use chiefly of suitable
approximation lemmas for Cm,p-quasi continuous functions, and of the
representation of the elements in as a convolution between an

function and a non-negative kernel (the Bessel kernel).

1. Notations and preliminaries

Throughout this paper n and m are positive integers, p a real number
with 1  p  +00 and Q an open subset of IRn (not necessarily bounded).
We denote by the space of functions u E whose distribu-

tional derivatives Dau are in for every multi-index a with m.

We equip with the usual norm

will stand for the closure of in Moreover

we set = and = Wo ’2(S~). If u E by
u E we mean that the restriction of u to Q is in Wo ’p(S~).
We denote by A(O) the class of all open subsets of 0, and by the

03C3-field of all Borel subsets of Q. If A and B are subsets of IRn, we write
A C= B if the closure A is compact and contained in B. A family t~IR 

of

elements of is said to be a chain in if As C At whenever s, t E IR
and s  t. . We say (see [13], [17]) that a subset R of is:

(a) cofinal in ~, if for every subset B of SZ with there exists A E R
wit h B C A;

(b) dense in .~4.(S~), if for every pair A1, A2 in ..4.(SZ), with Al C= A2, there
exists A with A1 (E A (E ~42;

(c) rich in ,,4.(SZ), if for every chain in the set ~t E ]
At ~ ~Z~ is at most countable. 



It is easy to see that every rich set is dense and that every dense set is

cofinal. Moreover the intersection of a countable family of rich sets is rich.

Lp, H’’’z, .r4. and l3 will stand for 

and respectively.
For every s, t E IR we set

By IR+ and IR- we indicate the sets ~t E IR ~ t > 0~ and ~t E IR I t  0~,
respectively.

For every subset E of IRn we denote by lE the characteristic function
of E with respect to IRn, defined by = 1 if x E E and = 0

if x E E. Moreover we set xE(x) = 0 if x E E and xE(x) = -oo if
x C E.

The abbreviation a.e. will mean almost everywhere with respect to the

Lebesgue measure.

Recall now some notions we shall need in the subsequent sections.

1.1. Bessel potentials and Sobolev spaces

We define a linear map Jm : LP by setting for every f E LP and
for every x E IRn (see, for example, [26] chapter V):

where Gm is the L1 function on IRn whose Fourier transform, defined

through 
A

for every ( E IRn, is given by (1 + 4~2 ~~ ~ 2~ "2~2 . It is known that Gm > 0

and 1. The function is called the Lp-Bessel potential of f
of order m.

THEOREM 1.1 ([26] chapter V, theorem 3). - Jm establishes a bijective
correspondence between LP and Moreover there exist two positive
constants cl and c2 such that for every f E LP

Hence Jm is an isomorphism of Banach spaces between LP and 



The spaces ,C~ = Jm(LP) of all LP-Bessel potentials of order m coincides
with It will be equipped with the norm induced by Jm

which turns out to be equivalent to the norm ~ . ~m,p introduced in (1.1).
Remark 1.2. - For every u E there exists a function v E 

with v > u+ and Indeed, if f = ( J?.,.z ) -1 u, t hen it

suffices to define v = ,Jm f + .

1.2. Capacities and quasi-topology

If K is a compact subset of we define

We extend Cp and Bp to all the subsets of IRn as external capacities
in the usual way (see, for example, [7]). The equivalence and

!!! ’ !!! implies that Cm,p and Bm,p are equivalent capacities; thus the

notions involving sets of zero or arbitrarily small capacity are the same for
both of them. In such cases the symbol "cap" will be often used instead of

Cm,p or ~

Given a subset E of IRn, if a statement depending on x E IRn holds for
every x E E except for a set N C E with cap(N) = 0, then we say that it
holds (m, p)-quasi everywhere ((m, p)-q.e.) on E (we usually omit E if it is
IRn).
We say that a function f : E -~ iR is (m, p)-quasi continuous if for every

é > 0 there exists an open subset A oflRn with cap(A)  E, such that 

is continuous on E B A. The definition of (m, p)-quasi lower semicontinuous
(l.s.c.) and (m, p)-quasi upper semicontinuous (u.s.c.) function is given in
a similar way.

turns out to coincide with the capacity defined in [20], paragraph 8,
and in [21] by means of the Bessel kernel Gm. Hence we have, in particular,
that every function u E has an (m, p)-quasi continuous representative,
denoted by S, which is unique up to (m, p)-q.e. equivalence. Indeed (lemma
5.8 in [20]), if f and g are (m, p)-quasi continuous and f > g a.e., then



f > g (m, p)-q.e. If u E the restriction to SZ of the (m, p)-quasi
continuous representative of any extension of u to a function of is

well defined and denoted by u.

It can be proved that for every f E ~~’ the function Gm * f is (m, p)-quasi
continuous. Moreover, for any E C IRn

As for Cm,p we have

We point out that Bm,p is countably subadditive.
We say that a sequence (fh) of functions from IRn into IR converges in

(m, p)-capacity to a function f from (Rn into IR, if for every E > 0

PROPOSITION 1.3 ([21], theorem 4). - If is a sequence in 

which converges to u in then converge to u in (m, p)-capacity
and there exists a subsequence which converges to u (m, p)-q. e.

PROPOSITION 1.4. If (fh) and (gh) are sequences of functions from
into IR which converge in (m, p)-capacity to the functions f and g,

respectively, then the sequences ( fh n gh) and ( fh u gh) converge in (m, p)-
capacity to f n g and f v g, respectively.

Proof. - Apply the inequality

and the analogous one for V. 0
We shall use some other topological notions connected with capacities;

to handle them it is more convenient to deal with countably subadditive
capacities, though most of the results still hold for equivalent capacities.
We refer to [17] for a systematic account.



Let E, Ei and E2 be subsets of IRn. We say that E1 is (m, p)-quasi
contained in E2 if cap(E1 B E2) = 0; consequently, we say that E1 is (m, p)-
equivalent to E2 if cap(E1 0 E2) = 0 (where 0 denotes the symmetric
difference).
E is said to be (m, p)-quasi open (resp. quasi closed, quasi compact, quasi

Borel ) if for every E > 0 there exists an open (resp. closed, compact, Borel)
set A such that cap(E 0 A)  é.

It is easy to see that A is (m, p)-quasi open if and only if IRn B A is
(m, p)-quasi closed, and that any countable union or finite intersection of
(m, p)-quasi open sets is (m, p)-quasi open. Moreover A is (m, p)-quasi open
(resp. quasi closed) if and only if lE, or equivalently xE, is (m, p)-quasi
l.s.c. (resp. quasi u.s.c.).

It can be proved that a function f : IRn -~ iR is (m, p)-quasi
l.s.c. (quasi u.s.c.) if and only if the sets {r E IRn > t} (resp.
~ ~ E > t } ) are (m, p)-quasi open (resp. quasi closed) for every
t E IR .

Let u E and t > 0; by approximating u by functions it

is easy to see that the set {a* E IRn u‘(~) > t~ is (m, p)-quasi compact. It

follows that an (m, p)-quasi closed set with finite capacity is (m, p)-quasi
compact.

It can be shown ([17], theorem 2.8) that for every subset E of IRn there is
an (m, p)-quasi closed set E which is (m, p)-quasi contained in every (m, p)-
quasi closed set which (m, p)-quasi contains E; E is unique up to sets of
null capacity and it will be referred to as the (m, p)-quasi closure of E.
We will sometimes drop the prefix (m, p) in the foregoing notations.

PROPOSITION 1.5. - Let E and Z be subsets of IRn. Then the following
conditions are equivalent:

(a) every (m, p)-quasi open set G with cap(G n Z) > 0 is such that

cap(G ~ E) > 0;

(b ) Z is (m, p)-quasi contained in E.

Proof

(a) =~ (b) Consider the quasi open set G = IRn B E. Since cap(G r1 E) =
cap(E B E) = 0, we have, by condition (a), cap(Z B E) = cap(G n Z) = 0,
i.e. Z is quasi contained in E.

(b) =~ (a) Fix a quasi open set G; let us assume that cap(G n E) = 0
and prove that cap(G n Z) = 0. Consider the quasi closed set F = E B G.



Since E ~ F is (m, p)-equivalent to E n G, we have cap(E B F) = 0, i.e.

E is quasi contained in F. Hence E is quasi contained in F, thus F is
(m, p)-equivalent to E. This means that cap(G n E) = 0 and therefore

’ 

cap(G n Z) = 0, as G n Z is quasi contained in G n E by assumption. D
Finally, for any function ~p : --~ ~ [ 0, ] we define

1.3. Convergence in the sense of Mosco

Let V be a Banach space with norm )) . 

DEFINITION 1.6. - Let (Kh) be a sequence of subsets of V .

(i~ The strong lower limit of the sequence (Kh) in V is the set

s-lim infKh of all u E V with the following property : there exist

an index k E IN and a sequence (uh) converging to u strongly in V
such that uh E Kh for every h > ~. .

(ii) The weak upper limit of the sequence (Kh) in V is the set

w-lim sup Kh of all u E V with the following property : there exist a

sequence converging to u weakly in V and a subsequence 
of (Kh) such that u~ E K~k for every k E IN . .

Note that s-lim infKh C r 

DEFINITION 1.7. Let (Kh) be a sequence of subsets of V and let K be
a subset of V . We say that (Kh) converges to K in the sense of Mosco in
V (see ~2,~~~, and we write

Remark 1.8. - s-lim inf Kh and w-lim sup Kh are the lower and upper

limits of the sequence (Kh), in the sense of Kuratowski, taken with respect
to the strong and, respectively, to the sequential weak convergence in V
(see for instance [22]; [23] and [3] for a more general treatment of these
concepts).



An important general property of the strong lower limit is that it is

strongly closed in V. Moreover we shall need the following result.

PROPOSITION 1.9 ([22], theorem B).2014 Assume that V is reflexive; let
(Kh) be a sequence of convex subsets of V which converges to a subset K of
V in the sense of Mosco (in V~. Then

In the sequel we shall take as V one of the spaces or

(see definition 2.15).

DEFINITION 1.10.2014 Given a function 03C8 from IRn into IR, for every subset
B of IRn me define

while, if B C SZ,

By proposition 1.3, K(~, B) is a closed convex subset of and

B ) a closed convex subset of Wo ’~’ ( S~ ) . We shall denote K (~, IRn ) and
by K(~) and respectively; note that K(~, B) is nothing

but where

If (~~) is a sequence of functions from IRn into iR and B a subset 
we shall use the notation

if B = IRn we shall simply write K’ ( ( ~~ ~ ~ and K" ( ( ~h ) ~ , respectively.
! B~ ~ Ko {(’~’h~ ~ B~ (for B C S~), and are

defined in the obvious way.



2. Approximation lemmas and convex sets

In this section we first state two approximation results (lemmas 2.1 and
2.3), which will be widely used. Next we define the class of closed unilateral
convex sets in and prove that it coincides with the class of convex

sets of obstacle type in (proposition 2.9). This generalizes the
analogous result given in [4] (theorem 3.2) for the case m = 1. Moreover,
we show the closedness of the class with respect to the convergence in the
sense of Mosco in (proposition 2.12). Finally we point out a
useful connection (proposition 2.19) between the Mosco convergence for

convex sets of obstacle type in and in the space (see defini-
tion 2.15).

Let us recall a result from [9] (lemma 1.5):

LEMMA 2.1. - Let f : IRn -~ iR be an (m, p)-quasi u.s.c. function.
Assume that there ezists a function w E with iv > f (m, p)-q.e.
Then there ezists a sequence in such that (ich) decreases and

converges to f (m, p) -q. e.

Before giving the other fundamental approximation result, we need a
theorem from non-linear potential theory (see theorem 3.2 in [1]).

THEOREM 2.2. - There exists a constant c depending only on n, p and
m such that

LEMMA 2.3. - Let ( fh) be a sequence of functions from IRn into IR and
let ,f be a function from IRn into IR. Then the following statements hold:

(i~ let fh be (m, p)-quasi u.s.c. for every h E IN . . If (Ih) is decreasing
and converges to zero (m, p)-q.e., and there ezists a function w E

such that iv > ,fl (m, p)-q.e., then ( fh) converges to zero in
(m, p)-capacity;
if (Ih) converges to zero in (m, p)-capacity and there ezists a se-

quence (z,u~), which converges strongly in such that fh  ivh
(m, p)-q.e. for every h E IN, , then converges to zero;



(iii) if u is a function in and (Bm,p((fh - u)+~ ~ converges to

zero, then we can find a sequence in which converges
to u strongly in and for which ich > fh (m, p)-q.e. for every
hEIN. .

Proof

(i) For every h E IN and t > 0 the sets > t ~ = ~ ~ E IRn ( f h ( x ) > t }
are quasi closed and have finite capacity, hence they are quasi compact.
The continuity of Bm,p on decreasing sequences of quasi compact sets (see
theorem 2.10 in [17]) yields that t~~~ converges to zero.

(ii) Let w be the limit of (wh) in For every h E IN and t > 0 the
subadditivity of Bm,p gives:

On account of remark 1.2, from theorem 2.2 we easily obtain that

Since (Bm,p ~ ~ f h > t ~~ ~ converges to zero for every t > 0, we can apply a
version of the Lebesgue dominated convergence theorem with respect to the
measure dtP, so that

Now we conclude by theorem 2.2.

(iii) is an easy consequence of the definition of Bm,p on non-negative
functions. D

Remark 2.4. - lemma 2.3 is a slightly extended version of lemma 1.6 in
[8], and in fact it can also be directly proved by a similar argument.



DEFINITION 2.5. We say that Ko ~is a unilateral convex set in

if Ko is a subset of Wo ’p(S~) with the following property: if
u, v E Ko, w E and 2v > u n v a. e. in ~, then w E Ko .

We point out that Ko immediately turns out to be convex.

DEFINITION 2.6. - We say that a subset Ko of Wo ’p(S2) is C~-convex

when the following condition holds: if u, v E Ko and ~p is a function in
with values in ~ 0 , 1 ~ and bounded derivatives of every order, then

03C6u + ( 1 - E Ko .

It is clear that the unilaterality condition implies C~-convexity. We

now show that actually the two conditions are equivalent for every closed
unilateral convex set Ko provided it is stable under addition of non-negative

functions, i. e. such that

if u ~ K0, v ~ Wm,p0(03A9) and v ~ u a.e. in 03A9, then v ~ K0; (a)

If Ko is a subset of we put

where the intersection runs over all the open sets cv C= Q.

LEMMA 2.7. Let Ko be a C~-convex set in Wm,p0(03A9), closed in

and satisfying condition (a~ introduced above. Then K:(Ko) is

a C~-convex set in closed in for which (a) holds and

where = ~ u E Moreover, if Ko = then

K:(Ko) = (where T~ is defined in ~1.3~~.

Proof. - Assume 0, otherwise there is nothing to prove; then we
can suppose 0 E Ko.

By C°°-convexity, if u E Ko and ~p is a function taking its
values in [0,1], then Spu E Ko. The closedness of now follows

easily by means of standard cut-off functions, as well as the equality
K:(Ko) = in the case Ko = C~-convexity of K:(Ko) is

immediate. Les us check condition (a). Consider u E K:(Ko) and v E 



with v > u a.e.; we fix two open sets w and w’ such that w C w’ (c H, and
a function ~p E with ~p = 1 on w and 0  ~p  1. Since u E 
there exists a function Uo E Ko equal to u a.e. on w’, thus cpv > wuo a.e. in
o and Spuo E Ko; by condition (a) which holds for Ko, Ko. Moreover,
v = ~pv a.e. on w and then v E because of the arbitrary choice of w.

Let us prove (2.1); only the inclusion Ko 2 is
not trivial. Let u E JC(Ko) with Wo ’~’(S~). Fix E > 0; since

there exists a function r~ E such that 0  r~  1 and

(see theorem 3.1 in [18] and theorem 5 in [19]). Let 
be an open set containing spt ~; since u E and hence ~u E 
we can find a function wo E Ko equal to r~u a.e. on w. Consider a function
cjo E Cf (w) with c,p = 1 on spt r~ and 0  ~  1; we have r~u = = cpwp
a.e. on H and 03C6w0 E K0. Since E > 0 is arbitrary and K0 is closed in

we conclude that u E Ko, therefore Ko. 0

PROPOSITION 2.8. - Let Ko be a closed subset of Wo ’p(S~) satisfying
condition (a) above. Then K0 is a unilateral convex set if and only if K0
is 

Proof. - Assume that Ko is C°°-convex and let us prove that it is a

unilateral convex set.

(i) Case SZ = Let u, v E Ko, w E with > u n v a.e. in S~; we
have to prove that w E Ko. Fix h E IN ; the sets ~4i = ~ u > v + and

A2 = ~ v > u -f-1 /~ ~ are quasi closed and have finite capacity, thus they are
quasi compact: we can find compact sets c1 and C2 and open sets wi and
w2 such that

Let 5p~ be a function in with 0  1 and ~ph = 0 on Ci,
cp~ = 1 on C2. For every é > 0, if 2/~ ; ~ the subadditivity of Bm,p yields:

this means that the sequence + (1 - converges to E A v in

(m, p)-capacity. For every h E IN put now fh = + (1 - V i5; by
proposition 1.4 (fh) converges to  in (m, p)-capacity, therefore, on account
of remark 1.2, we can apply lemma 2.3 and find a sequence in 

which converges to ~rv strongly in and with Wh > fh (m, p)-q.e. for



every h E IN . By Coo-convexity and condition (a), wh E Ko for every h E IN ,
hence w E Ko because Ko is closed in 

(ii) Consider now the general case of SZ open subset of IRn . By lemma 2.7
the set is closed in Wm,p, C°°-convex and satisfies condition (a). .
Hence we can apply the foregoing part (i) of the proof and get that 1C(Ko)
is a unilateral convex set in the same is true for Ko in 
it follows from the equality Ko given in lemma 2.7 ~

Let us now show that any closed unilateral convex set is of obstacle type.

PROPOSITION 2.9. - Let Ko be a non-empty closed unilateral convex set
in Wm,p0(03A9). Then there exists an (m, p)-quasi u.s.c. function 03C8 : 03A9 ~ IR

such that Ko = ~ is uniquely defined on SZ up to (m, p)-q.e.
equivalence.

Proof

(i) Case H = First of all let us prove that for every k E IN, k > 2, the
following statement holds:

Since (,Q) 2 holds by assumption, it suffices to show that for every k > 2
(,Q) ~ implies (,Q) k-~-1 . Fix k - > 2, a subset ... , u~, in Ko and
a function v E with v > u1 n ~ ~ ~ A uk+1 a.e. The function

f = ul A ... A is (m, p)-quasi continuous, hence, by lemma 2.1 we can
find a sequence in such that (Wh) decreases and converges to
f (m, p)-q.e. Observe that by assumption (,~3) ~, u~~ E Ko for every h E IN .
The sequence A uk+1 ) V v) h decreases and converges (m, p)-q.e. to v:
by remark 1.2 and lemma 2.3 there exists a sequence (Vh) in which

converges to v in and for which v‘h > (wh A u~+1 ) v v (m, p)-q.e.
for every h E IN . By definition of unilateral convex set, v~ E Ko (since
wh E Ko ) for every h E IN ; the closedness of Ko in implies that
v E Ko and thus we have proved that (~C3) ~+1 holds.

Since is a separable metric space, there exists a sequence (vh) of Ko
dense in Ko. For every h E IN let ~h = vi (~h is defined up to sets
of zero (m, p)-capacity). The sequence (03C8h) is decreasing and its infimum 03C8
is (m, p)-quasi u.s.c. since each function ~~ is (m, p)-quasi continuous. We
now prove that Ko = K ( ~ ) .



Let us show that Ko ç K(~). Let u E Ko. There exists a subsequence
of which converges to u in by proposition 1.3 we may

suppose that (Vhk) converges to S (m, p)-q.e. Since for every k E IN,
03C8hk ~ Vhk (m, p)-q.e., we get 03C8  u (m, p)-q.e., i.e. u E K(03C8). Therefore

Ko c 

Let us prove now that K (~ ) C Ko. Consider u E K ( ~ ) and for every
h E IN let fh = ~h V u; then ( fh) decreases to u (m, p)-q.e. By lemma 2.3 we
can find a sequence (uh) in which converges to u in and such

that for every h E IN, h > fh (m, p)-q.e. By (,Q) h, uh E K0 for every h E IN,
hence u E Ko since Ko is closed in . We conclude that K ( ~ ) ~ Ko.

If ~1 and ~2 are two (m, p)-quasi u.s.c. functions such that .K(~1 ) _
K(~2) = Ko, we get easily that = ~2 (m, p)-q.e. by approximating both
of them (m, p)-q.e. by means of lemma 2.1.

(ii) Consider the general case of H open subset of IRn. By part (i) of

the proof and by proposition 2.8 there exists an (m, p)-quasi u.s.c. function
~ : IRn -~ iR such that = K(~); moreover Ç  0 (m, p)-q.e. on 
Now from the equality Ko = Wo ’p(S~), stated in lemma 2.7,
we obtain that Ko = with 03C803A9 (m, p)-quasi u.s.c. Finally, the
uniqueness of such an obstacle function follows from the corresponding
property for D

PROPOSITION 2.10.2014 be a function such that Ko(~) ~ ~.
: 03A9 ~ IR is the (m, p)-quasi u.s.c. function, given in proposition 2.9,

for which Ko(~) = Ko(~), then is the (m, p)-quasi u.s.c. envelope of y~
~i.e. the least (m, p)-quasi u.s.c. function f : SZ -> IR with f > ~ (m, p)-q.e.
on 0).

Proof. - Assume at first 0 = By lemma 2.1 we easily obtain that
1f > ~ (m, p)-q.e. Fix now an (m, p)-quasi u.s.c. function f : SZ --> iR with
f > ~ (m, p)-q.e. By lemma 2.1 we can find a sequence (uh) in such

that decreases and converges to f (m, p)-q.e. Since f l~ ~ > ~
(m, p)-q.e., we have u~ E for every h E IN, then ~i~ > ~: taking the
limit (m, p)-q.e. we have f > ~, i.e. f > ~ (m, p)-q.e. We conclude
that ~ is the (m, p)-quasi u.s.c. envelope of ~.

Consider the general case of Q open subset of IRn. Let denote the

(m, p)-quasi u.s.c. envelope of then  0 (m, p)-q.e. on S~.



By lemma 2.7 and what just proved we have

Moreover it is easy to check that ~~ is the (m, p)-quasi u.s.c. envelope

Remark 2.11. Consider a subset E of SZ and its quasi closure E. If

7~ 0, then E is quasi contained in Q and = (indeed,
if u E Ko(lE), quasi closed and quasi contains
E). Hence, in particular, the capacities and Bm,p we are dealing with
are "quasi stable" in the sense that every set has the same capacity as its
quasi closure (see [17]).

It is now immediate to prove the closure, with respect to the Mosco

convergence, of the class of closed unilateral convex sets in 

PROPOSITION 2.12.2014 If (~h) is a sequence of functions from SZ into IR,
then the strong lower limit Ka ((~h)) of the sequence is a closed
unilateral convex set in 

Proof. - We have already remarked that is strongly closed in
Wo ’~’(S~2). Let us show that conditions (a) holds (stability with respect to
addition of non-negative functions).

Fix u E and v E with v > ~u a.e. on SZ; we can find
a sequence (uh) converging to u in with uh E whenever
h > k, for a suitable index k E IN . If we put vh = uh + (v - u) for every
h E IN, then we obtain a sequence (vh) converging to v in and
such that vh E for h > k. Thus v 6 Ko ((~h)) .

Since we have just proved condition (a), and is trivially
we conclude by proposition 2.8 that Ko ((~h)) is a unilateral

convex set. D

We state now two useful consequences of proposition 2.12.

COROLLARY 2.13. - Let a sequence of functions from SZ into IR
such that 0. Then

where the intersection runs over all the open sets w C ~.



Proof. - Only one inclusion is not trivial.

Let us fix u E Ko ((’~h) , c,~) and show that u E Ko ((~h)) . As

Ko ((~h)) ~ 0 it easy to see that there is no loss of generality if we assume
03C8h  0 (m, p)-q.e. on 03A9 for every h E IN . Consider open sets W and w’ with
w C= cv’ C= n and a function 03C6 E with w = 1 on w and 0  03C6  1.

Since u E w~) we get Spu E By propositions 2.12
and 2.9 there exists a function ~ : : S~ -; iR such that = 

Therefore S = (m, p)-q.e. on c~. Since cv is arbitrary we conclude

PROPOSITION 2.14. - Let f and ( fh) be a function and a sequence of
functions, respectively, from SZ into IR. Let u E Wo ’~’(SZ). Assume one of
the following hypotheses:

~i~ fh is (m, p)-quasi u.s.c. for every h E IN, ( fh) is decreasing
and converges to u (m, p)-q.e. on S~, and there exists a function
W E such that ua > fl (m, p)-q.e. on 03A9;

( fh) converges to ic in (m, p)-capacity and there exists a sequence

(wh), which converges strongly in such that fh  +h
(m, p)-q.e. on 03A9 for every h E IN.

Then we can find a sequence (uh) in Wo ’~’(S~), which converges to u
strongly in W~ ’~’(S2), and for which uh > fh (m, p)-q.e. on SZ for every
h E IN . .

Proof. - Assume (i) (case (ii) can be handled in a similar way); we may
suppose that f~  0 (m, p)-q.e. on SZ for every h E IN. Let us consider

the functions f~ and u as defined all over IRn with value zero on IRn B 0:
( fh) is a sequence of (m, p)-quasi u.s.c. functions on and u E 

Then lemma 2.3 yields that u E K’(( fj~)), thus u E l’C ~Ko (( fh)) ), as one
can easily check. By propositions 2.12 and 2.9, Ko ( ( f h ) ) is a unilateral

convex set of obstacle type; on account of the definition of K (K’0 ( (, f h ) ) ) we
conclude that u E Ko ~ ( f h ) ) . This is what we had to prove. 0
We conclude this section with a few remarks about the connection

between convex sets of obstacle type in the spaces and .

The spaces have a kind of convergence naturally modelled on
but their elements are not required to possess derivatives: so they

may be more suitable when truncation arguments are involved. LP-spaces
with respect to a capacity were introduced in [2] for the Riesz capacity.
We recall now the definitions and some properties we shall need (see [5]).



DEFINITION 2.15. Let denote the space of (m, p)-quasi continu-
ous functions from into IR (with the equivalence relation of (m, p)-q.e.
equality). Define

and for every f E 

PROPOSITION 2.16

~ II ’ II an increasing norm on with respect to which

is a Banach space;

(ii) is continuously imbedded in LP(Bm,p). .

The proof can be easily obtained as in proposition 1.2 of [5] taking into
account theorem 2.2.

Remark 2.17. Let (fh) be a sequence of functions in which
is decreasing and converges (m, p)-q.e. to a function f E LP(Bm,p). . Then it
immediately follows from lemma 2.3 that (fh) converges to f in .

By proposition 1.3 we also have that convergence in LP(Bm,p) implies
convergence in (~n, p)-capacity and, up to a subsequence, convergence

(m, p)-q.e.
Moreover, we observe that if f E LP( Bm,p) and g is either an (m, p)-quasi

continuous non-negative function or g E then f n g E ;
furthermore the mapping f A g is continuous from into

. A similar statement holds for v.

For every 03C8 : IRn ~ IR define

We remark that ~(~) contains ~(~) (provided that the functions of
~(~) are identified with their continuous representatives).
Moreover, ~(~) is closed in more precisely:

PROPOSITION 2.18. - the closure 



Proof. - Let f E K(~); by lemma 2.3 there exists a sequence (u~)
in such that (u~) decreases and converges to f (m, p)-q.e. Then

uh E K ( ~ ) for every h E IN and, on account of remark 2.17, ( uh ) converges
to f in Therefore f is in the closure of K(~) in LP(Bm,p). ~

Given a sequence of functions (~h) from IRn into iR, we set

PROPOSITION 2.19. K~~~ C K~ ~~~h~~ if and only if K~~~ C

~~ ~(’~~)) ~

Proof. 2014 Assume that K(03C8) C K’((03C8h)). By proposition 2.16,
K~ ~(~~~~ C K~ ~(~h~~ so that proposition 2.18 yields

since K~ ((~h)) is closed in LP(Bm,p). Therefore K(~) C K~ ((~~)) .
Assume now that K(~) ç K~ ((~~)) . Let u E K(~). Since K(~) C

K ( ~r j~ ) , we can find an index k E IN and a sequence ( f h ) in 

converging to S in LP(Bm,p) such that fh E K(~h) for every h > ~. By
remark 2.17 and lemma 2.3 there exists a sequence (uh) in which

converges to u in and for which uh > fh ( m, p)-q. e. We conclude
that u E K~ ((~h)), therefore K(~) C K~ ((~y~)) . ~

3. Convergence of obstacles and level sets:
the case of equi-bounded obstacles on a compact set

Following the study carried out in [9] for the case .m = 1, we now
characterize the Mosco convergence of the sequence (I~o(~h)) to the set

through the Mosco convergence of to 

for t in a dense subset of IR (if f : SZ --~ iR is any function and t E IR, by
~, f > ~~ we denote the level set {x , f (x ) > ~})’ . The main result in this
section is theorem 3.1, where the obstacles are assumed to be equi-bounded
from above and equal to -~ outside a fixed compact subset of H. These
additional conditions will be considerably weakened in the next section.



THEOREM 3.1. - Let (03C8h) be a sequence of functions from 03A9 into IR and
let 03C8 be a function from 03A9 into IR. Assume that there exist a set 03A9’ C SZ and
a constant > 0 such that for every It E IN: :

Then

if and only if there exists a dense set D in IR such that for every t E D

Moreover, condition ~3.1~ is equivalent to

Finally, D can be chosen so that iR B D is countable.

Throughout the following preliminary lemmas, Ç and ("ph) are a function
and a sequence of functions, respectively, from IRn into IR.

LEMMA 3.2. - Let 0’ C= SZ. If and K(~) are non-empty, and

~~ = ~ (m, p)-q. e. on IRn B SZl for every h E IN , then the following conditions
are equivalent:

(a) Ko(~h.) ~ 
(b) -; K(~) in 

Proof. - Let 03C6 e C~0(03A9) such that 03C6 = 1 on a neighborhood 0" of 03A9’

(a) =~ (b) Assume (a). Since ~o(~) 7~ 0 we may suppose that ~, ~h  0

(m, p)-q.e. on 0 for every h E IN. Let us prove that K(~) ç K’ ((~h)) .
Take u E K ( ~ ) . As c~~ E Ko ( ~ ) , there exist an index k E IN and a sequence

converging to ~pu in such that t’h E Ko (~h ) if 1~ > ~ . Let

~ E with ~ = 1 on SZ’ and 0  ~  1; then ~vh + (1 - ~)u E 
for every h > k, as = ~ on and + (1 - converges to

u in We conclude that u E K’ ((~h)) , hence K(~) C K’ ((~h)) .
Moreover, it is simple to see that if u E K"((~~)) then cpu E 

and E > ~ (m, p)-q.e. on S~’. This means that u E K(~), therefore
K" ((~h)) C 

(b) =~ (a) It can be proved in a similar (and even simpler) way. 0



LEMMA 3.3. Let ~~ be a subset of ~ with SZ’ C= Q. Assume that

converges to in the sense of Mosco in 
Then for every t E IR

Proof. - Consider a function ~p E with ~p = 1 on ~’; then it

suffices to observe that ~’~ = and Ko(~-~-t, ~’) =
Ko (~, ~’) + o

LEMMA 3.4. - Let (fh) be a sequence of functions in LP which converges
weakly in LP to a function f. . Let be a sequence of negative real numbers
converging to -~ and assume that to every i E IN there corresponds a
function gi E LP such that

Then

Proof. - Fix a non-negative function v E LP’, where l/p+ = 1.

Let M be an upper bound of the sequence for every E IN we

have 
A A 

Moreover, by Chebyshev’s inequality  I tends to zero as i - 

uniformly with respect to k. Thus

uniformly with respect to k, and then

For a general v E it suffices to consider its positive and negative
parts. 0



LEMMA 3.5. - Let T be an unbounded set of non-positive real numbers.
Then the following conditions are equivalent:

(a) V t) --> K(~ V t) in for every t E T;

(b) - K(’~) in 

Proof

(a) ~ (b) Let us show first that K(~) ç K’((~h)). Let u be in

K(~) and (ti) a sequence in T converging to -oo. If u = with

f E LP, put vi = Gm * ( f V ti ) for every i E IN . By assumption (a),
vi e V ti) C V then for every i E IN, v2 is in I~’ ((~h)~ .
This latter is closed in and (vi) converges to u strongly in 
hence u E K’ ((~h)) . Therefore K(~) ~ K’ ((~h)) .
Now we prove that K"((~h)) C K(~). Let (hk) be a strictly increasing

sequence of positive integers and let u be the weak limit in of a

sequence such that uk E for every k E IN . If f = 
and /~. = (k E IN), then (,f~) converges to ,f weakly in LP. Let

(ti ) be a sequence in T which converges to -oo; by means of a diagonal
argument we may suppose that for every i E IN there exists a function

gi E Lp such that fk V ti converges to gi weakly in Lp as k ~ +~. Since

Gm Vti) E Vti) and (Gm Vti)) converges to Gm * gi weakly
in as k --~ +00, by assumption (a) Gm * gi E K(zG V ti) C I~(~) for
every i E IN. By the previous lemma, (Gm * gZ) converges weakly in 
to Gm * f = u, so that u E ~’(~) as ~"(~) is convex and strongly closed in

We conclude that K" C K(~).

(b) ~ (a) Fix t e T. We show that V t) ç V t)). Let
u E V t) and u = Jm f , with f E LP; in particular u E K(~r/~) thus,
by assumption, we can find an index k E IN and a sequence (Vh) which
converges to u in and such that vh E for every h > k. If

f h = put zh = Gm * ( fh V f ) for every h E lN ; when h > l~ we
have

therefore z~ E V t ) . Moreover, (Zh) converges to u in as ( fh)
converges to f in LP, so that u e V ~)) . Therefore V t) C

V t)) .
Finally, if u is a function in V t ) ) , then u > t (m, p)-q. e. and

u E K"((~h)); by condition (b), u e V t). We have thus proved that
V t)) c V t). o



COROLLARY 3.5. Let (Eh) be a sequence of subsets of IRn and let E
be a subset of IRn. If there exists a set 03A9’ C 03A9 which contains E and the

sequence (Eh), then the following conditions are equivalent:

Proof. - By lemma 3.2 it suffices to consider the case 0 = 

(b) =~> (a) It immediately follows from lemma 3.3 and part (b) =~ (a) of
lemma 3.5.

(a) =~ (b) Consider a bounded open set Q’; it is easy to check

(see the proof of lemma 3.2) that condition (a) implies the convergence
of ( K ( 1 ~h , to K (1 E Q"). On account of the boundedness of by
lemma 3.3 (K ( 1 ~h -1 , S~") ) converges to K ( 1 E -1, and then for every
real t  0, t , 0")) converges to t , SZ"). Part (b) ~ (a)
of the previous lemma now gives that

By part (a) =~ (b) of the same lemma, we conclude that (K(xEh)) converges
to 

LEMMA 3.7.2014 Assume that K(~~ ~ 0; let ~ be the (m, p)-quasi u.s.c.
envelope (see proposition .~.10~. . If t E IR+, , then ~ n t and - t) + are
the (m, p)-quasi u.s.c. envelopes of ~ l~ t and (~ - t) +, , respectively.

Proof. . ~ A t is quasi u.s.c. and majorizes ~ A t. On the other

hand, let f : IRn -~ iR be a quasi u.s.c. function with f > ~ A t
(m, p)-q.e.; since f + (~ - t~ + > ~ n t -f- (~ - t~ + _ ~ (m, p)-q.e., then
f + (~ - t~ + > ~ (m, p)-q.e. Moreover 9  (m, p)-q.e. as K (~ ~ 0;
hence f > ~ - (~ - t~ + _ ~ n t (m, p)-q.e. We conclude that ~ n t is the
quasi u.s.c. envelope of 03C8 ^ t. The case (03C8 - t)+ can be handled in a similar
way. D

LEMMA 3.8..Let t E IR+. . Assume that

Then K(~) C K’~(~h)~.



Proof. - By proposition 2.19, lemma 3.8 may be restated in the follow-
ing form: given t E IR+, if

then K(~) C K’((~h)). This follows easily from the identity ,f = (,f n t) +
(,~ - t)+. a

LEMMA 3.9. Assume that K(~) ~ 0 and that (K(~h)) converges to

K(~) in . Then

for every t G 

Proof.- Fix t e !R+. Let us prove that ~(~ G ~~((~ 
by showing that ~(~ A) G ~~((~ A~)) (see proposition 2.19). Let

f ~ ~(~ A~). By assumption and by proposition 2.19, ~(~) C ~~((~)).
Consequently, for every function ~ G ~(~) there exists a sequence (~)
converging to g in such that gh C for h large enough.
By remark 2.17, A t) V f) converges to (g A t) V f in and

(~ V f C A t) for h large enough. Then (g A t) V f C ~ ((~~ A )).
Let 03C8 be the quasi u.s.c. envelope of 03C8 (see proposition 2.10); by lemma 2.1
it is possible to find a sequence ( fh) of quasi continuous functions, which
decreases and converges to 03C8 (m, p)-q.e. Take the elements of (fh) as g in the
previous result: ((fh V f) is a sequence in ~~((~~ A)) which decreases
and converges to f (m, p)-q.e., as f > 03C8^t (m, p)-q.e. by lemma 3.7; actually
we have convergence in LP( Bm,p), by remark 2.17. Since i~((~ A~)) is
closed in it must contain f, too. Therefore

In a similar way one can obtain the inclusion

Let us now prove that K"((Çh - t~+~ C K ((~ - t~+~ . Let u E

K" ( ( ~h - t ~ + ~ . There exist a strictly increasing sequence of positive



integers (hk) and a sequence converging to u weakly in such that

u E for every k E lN . The inclusion A t) C K’ n t))
proved above yields that for every v E K(’~ ~ t) there exist an index ko and

a sequence converging to z? strongly in Wm,p, such that vh E A t)
for every h > ko. We may assume that ko for every k E IN. The

sequence (u~ + converges to u + v weakly in Moreover, for every

k E IN

thus, by the assumption on u -f- v E K(~), i.e. u -~- v E K(’~) for
every v E n t). By lemma 2.1, there exists a sequence (wh) in K(~ 
such that converges to 03C8 ^ t (m, p)-q.e. If we take the functions wh as

v, passing to the limit we obtain

this implies that

on the other hand,  > 0 (m, p)-q.e. as u E K" [((03C8h - t)+)]. We conclude
that u E K ((’~ - t)+) and therefore

In a similar way on can prove that

LEMMA 3.10. - Let X be a separable metric space, I an open interval

of IR (possibly unbounded) and (Kt) tEI a family of closed subsets of X ,

increasing for t ~ I li.e. Ks C Kt whenever s, t ~ I and s  t). Then

there exists a countable set T C I such that for every t ~ I B T we have

Proof. - See the proof of theorem 2.7 in (9~ . ~



Proof of theorem 3.1. . - Observe that corollary 3.6 gives the equivalence
between (3.1) and (3.1~). .
Part I Assume that there exists a dense set D in IR such that (3.1) holds
for every t e D. Suppose Ç and ~~, for every h E IN, to be defined all over
IRn with value -~ outside 03A9. Let us prove that

which implies the convergence of (7~o(~~)) to in by
lemma 3.2.

We note that we may assume the obstacles ~~ and Ç also equi-bounded
from below on 0’. Indeed, by lemma 3.5 (part (a) => (b)), (3.2) follows
from the convergence

for every s E IR- . Observe now that if s E IR- and h E IN , we have

and the corresponding equality for ~. Therefore, in view of lemma 3.5 (part
(b) => (a)), to get (3.2) it suffices to prove that

for every s E IR- . Hence we may assume that the stronger condition
M on ~~ for every h E IN is satisfied. Moreover, since the

obstacles are equal to -~ outside a compact subset of 0, lemma 3.3 allows
us to assume that 0  ~ , ~h  M on 0’ for every h E IN . For the same
reason it is not restrictive to suppose that 0 E D.

In order to prove (3.2) we first show that K(~~ C ~((~)). . Fix
E > 0; by the density of D there exist to, tl, ... , tq in IR such that

 "’tq=M,~i-~i-1 EDfor
i = 0, ..., q - 1. For every h E IN define

We want to prove that



arguing by induction. Since

condition (3.1) for t = to = 0 immediately gives the first step, i.e.

n C K’ n tl ~~ . Assume now that

for some i = 1, ... , q - 1. Since

we have, by assumption, that

This inclusion, together with (3.4) and lemma 3.8, gives

Thus we have proved the inductive step, hence inclusion (3.3).
We are now in a position to prove that K(~) C K’ ((~~)) . Let u E 

and ~p E with ip = 1 on 0’. Then u + Ep E K() and, by
(3.3), u + E~p E K’((h)); since ~h > ~~ for every h E IN, we have

E K’ ((~~)) . We conclude that K’ ((~h)) contains u as it is closed in
and E > 0 is arbitrary. Therefore K(~) C K’ ((~~)) .

Now let us prove that K" ((~~)) C K(~). Let u E K" ((~h)) : there exist
a strictly increasing sequence of positive intergers (hk) and a sequence (uk)
converging to u weakly in such that Mj~ E for every k E IN.

If ~? is as above, for every fixed t E D we have

Our assumption, in the form (3.1’), together with lemma 3.2, implies
that u - tcp E hence ’ > t (m, p)-q.e. on the set ~~ > t~.
Since t is arbitrary in D we easily obtain that u E .K(~). Therefore

K’~ ~(~~)) C K(~). We conclude that (3.2) holds.



Part II Assume that

Let us prove that there exists a subset D of IR such that IR B D is countable
and condition (3.1) holds for every t E D. We point out that the following
proof does not use the assumption of boundedness of the obstacles.

By lemma 3.2 we have

Let s, t E IR+ with s  t and define

for every h E IN. By lemma 3.9, converges to K(g). Moreover

so that

Hence, for every t E IR+,

Apply now lemma 3.10: there exists a countable set To ç IR+ such that,
for every t E IR+ B To,

i.e.



By lemma 3.2 we conclude that

for every t E IR+ B To.
Since for every A E IR, condition (3.5) and lemma 3.3 imply that

what we have just proved allows us to say that for every A E IR the set Tx of
those t E IR with t > -À for which (3.1) does not hold, is at most countable.
Now it suffices to make À vary in 7l. 0

4. Convergence of obstacles and level sets:
The general case

In this section we extend the result of theorem 3.1 to the case of obstacles
dominated by a sequence of functions strongly converging in 

THEOREM 4.1.2014 Let a sequence of functions from ~ into IR and
be a function from S~ into IR. Then

if and only if the following conditions (a) and (b) are satisfied:
(a) there exists a dense set D in IR and a set ~’ C .,4,~5~~, cofinal in S~,

such that

for every t E D and every B E ~’;

(b) there exist a sequence (wh) in and an index k E IN such

that converges strongly in and wh E for every
h>k. .

Moreover, (~.1~ is equivalent to

Finally, we may assume that IR B D is countable and that B C 03A9 for every
B 



Before proving this theorem we state, without proof, a localization result
which can be obtained as theorem 2.7 in [9], and for which we use the
technical notion of rich set introduced in section 1.

PROPOSITION 4.2. - Let and 03C8 be as in theorem 4.1. Suppose that
0 and that

Then there exists a set ?Z C .,4.(5~~, rich in ,~l(~~, such that

for every A E R.

Besides, we need one more lemma, for which we refer to lemma 4.7 in ~9~ .

LEMMA 4.3. - Let ~ and be a function and a sequence of functions,
respectively, from IRn into IR; let T be an unbounded subset of IR+. . Assume
that

for every t E T, and that

Then

Proof of theorem l~ .1. . - The equivalence between (4.1) and (4.1’) for
B C= Q comes from corollary 3.6, while, by proposition 4.2, we may suppose
that B  03A9 if B ~ F.

Assume that converges to and that 0. Let us

prove that condition (a) holds with a set D whose complement in IR is at
most countable. By proposition 4.2 there exists a countable set :F C A(Q),
cofinal in H, such that B (c H and

for every B E .F. Since part II in the proof of theorem (3.1) does not
depend, as we remarked, on the boundedness of the obstacles, we obtain



that for every B there exists a set DB ç IR such that DB is

countable and

for every t E DB . . Since .7~’ is countable, we get condition (a) with a set D
such that D is at most countable.

Condition (b) is an immediate consequence of definition 1.7 of Mosco

convergence.

Assume now (a) and (b). As observed above, we may suppose that if
B E ~’ then B C= Q. First of all we want to prove that

for every B E ~.

We claim that (4.3) is implied by condition (b) together with the following
one

for every t E IR+. To prove this, it suffices to show that (b) implies condition
(4.2) of lemma 4.3. Let and k be as in (b); denote by w the limit of
(Wh) in and define f = and fh = for every
h E IN (here we consider w and wh as functions of Wm,p with value zero
outside Q). For every t E IR+ and h > ~ we have

we obtain (4.2) taking the limit as t -~ +00.
Now (4.4) follows from condition (a), lemma 3.2 and theorem 3.1 applied

to the sequence (TB n t)~ taking into account that

for r  t. We have thus proved (4.3).
From (4.3) and lemma 3.2 we obtain



for every B Since .~’ is cofinal in 0 and (b) holds, corollary 2.13 and
(4.5) yield

hence Ko(~) C I~o ((~~)) .
Finally, by (4.5)

hence We conclude that

and consequently by condition (b). ~
The next theorem presents a simple situation in which condition (b) of

theorem 4.1 is satisfied without requiring that the obstacles are bounded
from above. In the following characterization only the level sets of the
obstacles are involved.

THEOREM 4.4. - Let be a sequence of functions from S~ into IR and
let ~ be a function from SZ into IR. . Assume, in addition, the existence of a
set S~’ such that  0 (m, p)-q.e. on SZ B S~’ for every h E IN . . Then

if and only if the following conditions ~a~~ and ~b~~ are satisfied :
(a’~ there exists a dense set D in IR and a set .~’ C .~4.(SZ), cofinal in SZ,

such that

for every t E D and every B E ~’;

Proof. - By theorem 2.2, (b~) is equivalent to



As shown in the proof of theorem 4.1, this is implied by condition (b) (of
theorem 4.1).

Assume now (a’) and (b’), and let us prove that (b) holds. Since

0 outside ~~, in view of theorem 4.1 we obtain

for every t E IR+ . Therefore, by lemma 3.2,

On account of (4.6), we can apply lemma 4.3 and conclude that

Furthermore, since each obstacle is non-positive outside 5~~, from
(4.6) we easily get that there exists a sequence (wh) bounded in 
and such that iu~ > ~~ (m, p)-q.e. for h sufficiently large. We can extract
a subsequence which converges weakly in to a function w.

Therefore w E K~~ ((~~ )) and, by (4.7), u~ E K~ ((~h )) . It follows that

not empty, and this implies condition (b) by definition of Mosco
convergence.

Now, it only remains to apply theorem 4.1. ~

5. Convergence of level sets
, and convergence of capacities

In this section we consider the sequence of convex sets in

associated to a given sequence (Eh) of subsets of 03A9, and we express
its Mosco convergence to a set of the same form through a convergence
condition for the capacities of the intersections Eh n A with a rich family
of open sets A (theorem 5.1). Afterwards we link this result with the one

of the previous section by taking as (Eh) the level sets of a sequence of
obstacles (theorem 5.12).

In this section only the case p = 2 will be studied.

THEOREM 5.1.2014 Let (Eh) be a sequence of subsets of SZ and let E be
a subset of Sl. Assume, in addition, that there exists a set 03A9’ C 03A9 which

contains E and the sequence (Eh). Then



if and only if there exists a set ?Z C A(03A9), rich in A(03A9), such that

for every A E R.

Remark 5.2. - We observe that the existence of a set R C .~1.(SZ~, rich in
such that (5.1) holds for every A E R is equivalent to the existence

of a set D ç ,,4.(~~, dense in .r4(SZ), such that (5.1) holds for every A E D.
Indeed, one implication is obvious; conversely, define

for every A E .,4.(~). The functions a, a~ and a" are increasing on 
and coincide on a dense set, therefore they coincide on a rich set in 
(see, for example, proposition 4.8 in [16]).

The idea to derive the convergence of to Ko(lE) from the
validity of (5.1) for a rich family of open sets A, may be sketched as

follows. In a standard way we change the problem of Mosco convergence
into a problem of F-convergence (see definitions below) for an associated
sequence of functionals. By means of a compactness theorem we get a r-
limit, which can be identified as the functional corresponding to E thanks
to the possibility of recognizing E from the knowledge of A) for
sufficiently many open sets A.

Let us briefly recall the notion of 0393-convergence. Let (X, r) be a

topological space satisfying the first axiom of countability.

DEFINITION 5.3. - Let (Fh) be a sequence of functions from X into IR,
F a function from X into IR and u E X. . We say that (Fh) 0393()-converges
to F in u, and we write

if the following conditions are satisfied :

~i~ for every sequence converging to u in T



there exists a sequence converging to u in r such that

(Fh) is said to to F if (Fh) 0393()-converges to F in every
point u of X .

For a complete treatment of this kind of convergence see, for instance,
[15] and [3]. Here we limit ourselves to state one of the most significant
variational properties ofF-convergence (see, corollary 2.4 in [15]).

THEOREM 5.4. - Let (Fh) be a sequence of functions from X into IR
which 0393()-converges to a function F. . Suppose that there exists a r-compact
subset K of X such that

for every h E IN . . Then F attains its minimum in X and

Furthermore, if u~ is a minimum point of Fh in X for every h E IN, and

(uh) converges to a point u in r, then u is a minimum point of F in X. .

For any subset C of let us denote by Ic the indicator function
of C in i.e. the mapping which takes the value 0 on C and +00 on

C. Moreover, by Ho ( SZ ) we shall mean the space L 2 ( ~ ) . The following
proposition has a simple proof which we omit.

PROPOSITION 5.5. - Let K and (Kh) be a subset and a sequence of
subsets, respectively, of . Then

if and only if

where means that the F-convergence is considered with respect to
the topology of on the space 



For every B ~ B and u e define

Moreover, given a subset E we define

for every B C IRn and u E Hm. . A simple check shows that HE satisfies
the following properties, which we state for a functional H : 
[0, +~];

(i) for every A E A, the function H(., A) is lower semicontinuous in
.

(ii) for every u E the function H(u , ~) is a Borel measure on IRn;
(iii) if u, v E Hm, A and u = v a.e. on A, then H(u, A) = H(v, A);
(iv) if u, v E Hm, A E A and u  v a.e. on A, then H(u, A) > H(v, A).
Let us denote by ( H"z )+ the cone of non-negative functions of From

theorem 1 in [24] and theorem 3.3 in [14] we derive the next theorem.

THEOREM 5.6. - Let (Eh) be a sequence of subsets of lRn. Then there
exist a subsequence (E03C3(h)) of (Eh), a functional G x A ~ [0 , ]
and a set R~ ç A, rich in A, such that

for every A E R’ . Moreover, there exists a functional H : x B ~

~ 0 , -~-oo ~ satisfying ~i~ to (iv) above and such that ~5.,~~ and ~5.3~ hold with
and G replaced by and H, respectively. Finally,

for every u E and every A E A.



Step 1 Here we prove the existence of a subsequence of (Eh), a
functional G : x .~4. --i ~ [0, -~-oo ~, and a set ~Z1 ç A, rich in A, such
that (5.2) holds for every A E Ri . This step is rather standard (see, for
example, theorem 15.8 in [10] or theorem 4.15 in [13]) and it relies only
on the property that is a sequence of functionals increasing in the
second variable.

Let M’ and M" be the functionals defined, for every u E and for

every pair cv, A of open subsets with A ç w, through the equations

It is easy to see, by a diagonal argument, that the infima in (5.5) and
(5.6) are actually minima. Moreover, M’( ~ , w, A) and M"( ~ , w, A) are
lower semicontinuous on H"z with the topology of (see, for example,
proposition 1.8 in [15]).

Fix a countable dense subset D of A. Applying a general compactness
theorem with respect to F-convergence (see, for instance, proposition 3.1
in [15]) and a diagonal process, we can find a subsequence of (Eh)
such that the sequence [F( -, A) + GE~~ h~ ( ~ , A)~ has a for

every A E D.

If M’ and M" are the functionals defined by (5.5) and (5.6), with ( Eh )
replaced by then 1’VI’(u, A, A) = M"(u, A, A) for every u E H"’L
and A E D. Thus

for every A E A. Besides, since the functions ~4 ~ M’(u, A, A) and
A - M"(u, A, A) are increasing on A for every u E while M’( ~ A, A)
and M"( ~ A, A~ are lower semicontinuous in for every A E A, we can
apply proposition 14.14 in [10] (or argue as in proposition 1.14 of [13]). It



follows that there exists a set ~Z1 ç A, rich in A, such that

for every u E and A E Defining M(u, A), for every u E 
and every A E A, as the common value of both sides in (5.7), and setting
G(u, A~ = M(u, A) - F(u, A), from (5.7) and (5.8) we conclude that (5.2)
holds for every A E R1.

Step 2 It is rapidly seen that we can apply to the sequence an

argument quite similar to the proofs of theorem 1 in [24] and theorem 3.3
in [14]. Thus, passing, if necessary, to a further subsequence, there exist a
functional H : x ,~i -~ ~ [0, -f-oo ~, satisfying (i), (ii) and (iii) above, and
a set ?Z2 C A, rich in A, such that

for every A E R2 . Property (iv) can be obtained as in theorem 2 of [24].

Step 3 Let us prove that the functionals G and H just obtained satisfy
(5.4) for every u E and every A e A. To this aim, for every u e 
and c~, A E A with A C w, we set

where M’ and M" are defined in (5.5) and (5.6) (for the sequence (GE~~ h~ ) ) .
In the same way we introduce H’(u, A) and H"(u, A) from the sequence

The functionals G’, G", H’ and H" turn out to be lower
semicontinuous in with respect to the first variable.

We need the following properties:



Let us prove (Pi). We consider only the first inequality, the second one
being analogous.

Fix u E by definition of G’(u, w2, A2) there exists a sequence (uh)
in H"~ converging to u in and such that

. (5.10)
h.2014~-~-oo L ~ ~ J

Assume that G’(u, w2, A2)  otherwise there is nothing to prove.
Then, up to a subsequence, we may suppose that converges to u weakly
in H"z (w2 ~ and that the lower limit in (5.10) is actually a limit. Then for
i = 1, 2

where = 0. Since is increasing for every h E iN,
we have

Let us prove (P2 ). We consider only the first inequality, the second one
being analogous.

Let u E (Hm )+. As in the proof of (Pi), we may suppose that

H’(u, A, A)  +00 and that there exists a sequence in converging
to u in and weakly in (A), such that

Let us consider a set A" E A, with A’ C= A" C= A and let cp be a function

in with ~p = I on A" and 0  cp  1. Define vh = 

every h E IN. Then is a sequence in which converges to u in 



The finiteness of H’(u, A, A) implies the existence of an index k E IN such
that  +00 whenever h > ~, hence u~ > 0 (m, 2)-q.e. on A.
It follows that (H"L)+, thus

for every h > k. By the convergence properties of the sequence (uh), we
easily obtain, for h > k,

where lim~~+~ E~ = 0. Then, by (5.12)

and therefore, by (5.11) and (5.13),

We conclude taking into account that A~~ is an arbitrary open set such
that A’ C= A~~ C= A.

We are now in a position to determine the form of G. It is clear that

G(u, A~ = for every A E A and u ~ (H’’"~~+. On the other hand, if
u E (H"z)+, then by properties (P1) and (P2) we have

whenever A, A’ E A and A’ C= A (note that A)  A) for
every h E lN). Besides, G’(u, A, A) is increasing by (P1 ), thus the set
R4 of those A E A such that



is rich in A (see property (5.8) for M’). From (5.14), G’(u, A, A~ =
H’(u, A, A~ for every A E ~Z4. This, together with (5.9) and the result of
step 1, yields that G(u, A) = H(u, A) for every A in the rich family of open
sets R3 = n R2 Q R4; we pass to an arbitrary A E A observing that
G(u, . ) is increasing on A (as can be easily checked by using (P1)) and
G(u, A) = sup~G(u, A’~ ~ A’ E ,~4., A’ @ A~ for every .4 E A. Hence step 3
is proved.

Step 4 To accomplish the proof of theorem 5.6 we have only to show that
for a suitable rich family of open sets A the convergence in (5.3) takes place,
as well as the corresponding one for the sequence h~ ~ .

If u ~ (Hm)+ then = = = G(u, A) for
every A E A. In the case u E (H~ ~+, by (Pi) and (P2) we have, as in
(5.14),

We can now use an argument quite similar to the one applied in the previous
step to (5.14). Since the same holds for G", we obtain that (5.3) is valid for
a rich family of open sets A. Finally, as to (.H~ ...), we argue in the same
way, taking into account that for every u E and A, A’ E A with A’ C= A
we have

This replaces (P2) and can be proved in a similar (and even simpler)
way. 0

Now we represent the r-limit of the foregoing theorem by means of an
integral functional.

By a Borel measure on IRn we mean a non-negative countably additive
set function ~ : ,~ --> ~ [0, ] such that ~u(0) = 0. We indicate by 
the class of all Borel measures on such that = 0 for every B E B
with null (m, 2)-capacity. If  is a measure in Mm,2, we still denote by 
its completion, which is defined, in particular, on all (m, 2)-quasi Borel sets.

LEMMA 5.7.2014 Let (Eh) be a sequence of subsets of IRn. Then there exist
a subsequence (E~(h)) of (Eh), a measure ~ E and a set ?Z~ C A,
rich in A, such that for every A E ?Z’



where

for every u E H"~ and A E A.

Proof. - Let us apply theorem 5.6 and let G, R~ and H as in
that statement. The only step which remains is to determine the form of
H. Properties (i) to (iv) satisfied by H allows us to represent it by means of
theorem 5. 7 in [8]. Then there exist a Borel function f : : IRn x IR -~ ~ [ 0 , ]
and two non-negative Borel measures A and v on IRn such that

for every u E and every A E A. Furthermore, the same theorem
guarantees that A is a Radon measure which belongs to hence to

Mm,2, and that for every x E IRn the function f(x, .) is decreasing and
lower semicontinuous on IR.

If A is an arbitrary bounded open set of Rl, and cp a function in 
with cp = 1 on A, then A) = 0 by theorem 5.6. We infer that v - 0
and f( . , 1) = 0 A-a.e. on IRn. Moreover, since r-convergence is stable
under continuous perturbations (see, for example, theorem 2.15 in [3]), from
theorem 5.6 we obtain, for every u e 

where A is as above. Observe now that for every h E IN

whenever t E IR+ and u E H"~ are such that u > 0 a.e. on A and
tu + (1 - > 0 a.e. on A. This turns out to be a positive-homogeneity
property for the functional , A) = A) for every t E IR+
and v E with v  1 and tv  1 a.e. on A. As this property is preserved
by r-convergence (see, for instance, theorem 10.9 in [10]), on account of
(5.17) it also holds for the functional H and for the fixed A. By the



richness of ?~~ this is true for every A E A. We are now in a position to
apply the next lemma, which proves that

for every A E A and u E with u > 0 a.e. on A. We conclude setting
d~c = ~f ( ~ , 0~ da. D

LEMMA 5.8. - Let a E and let g : x IR -> ~ 0 , ~-oo ~ ] be a Borel

function such that

~i~ for every x E the function g(x, ~ ~ is increasing and lower
semicontinuous on IR;

g( x, 0) = 0 for .1-a.e. x E 

~iii~ for every A E A and u E with u  1 a. e., we have

whenever t E IR+ is such that tu  1 a.e.

Then 
A A

for every A E A and u E with u  1 a. e. on A.

Proof. - The result is standard if ~Rn g(x, u~ d.l  -f-oo for every

u E . In the general case we shall essentially follow the proof of lemma
2 . 3 in [12].

Let us consider the set

Since is a separable metric space, there exists a sequence (uh) in S
which is dense in S with respect to the strong topology of For every
h E IN we consider an (m, 2)-q.e. representative of and we shall keep it
fixed in the following arguments. Define E = now

prove that 

for A-a.e. x E ~ and for every t E IR with t  1.



Let h, k E IN ; since the characteristic function > 1/ k} is quasi
lower semicontinuous, by lemma 2.1 we can find a sequence in 
such that (Vh,k; i) is increasing (m, 2)-q.e. and

For every i E IN, we fix an (m, 2)-q.e. representative of i, as we have

done for the sequence (~h). Denote by Ni the (m, 2)-negligible set of the
points where i~ i fails to be increasing or to satisfy (5.20) for some
h, k E IN.

For every x E the function g(x, ~ ) is increasing on IR and, by (ii),
= 0 for every r~  0 and x E N2, where .1(N2~ = 0; then we

have

hence, by (iii),

We apply now the classical result. For every r E ~ [0, 1 ~, h, k, i E IN and

A E A, from (iii) we get

therefore there exists a Borel set N3 such that a( lV3 ) = 0 and

for every x E !R" B N3, h, E IN and r [ 0 , 1 ]. This equality actually
holds whenever r E ~ [0, 1 ~, since by (i) the function g(x, ~ ~ is continuous
from the left for every x E IRn . Let x E E B (Ni U N3 ) and to E IR with
0  to  1. By definition of E there exist h, k E IN such that uh ( x ) > 
then (5.20) yields that > to for a suitable index i E IN. For every
t E [ 0 , to we can apply (5.21) with r = so that



Let tl, t2 E IR with 0  tl  t2  1 and take t2 as to in the above

argument. Since in (5.22) the choice of the indexes h, k and i does not
depend on t, we have

by continuity from the left this inequality extends to t2 = 1. We conclude
that = g(x, for every x E E B (N1 U N3) and every t E IR with
0  t  1. Hence (5.19) follows for every x E E ~ (Ni U N2 U N3 ~ and t  1.

Now we claim that

for every u E with u  1 a.e.

Assume that the left hand side of (5.23) is finite. By the density of (uh)
in S we obtain that ~u > 0~ is quasi contained in E. Then, from (5.19)

this immediately implies that u satisfies (5.23).
At this point, to accomplish the proof of (5.23) for every u E with

u  1 a.e., it only remains to consider the case in which the right hand side
of (5.23) is finite. Let E > 0; as before we can find a sequence in 

such that increases and converges (m,2)-q.e. to Therefore, for
every h E IN

Hence vh E S for every h E IN . This implies that {Vh > 0} is quasi contained
in E, so that, by the arbitrary choice of é > 0, the set ~u > 0~ is quasi
contained in E. Finally, we get that u satisfies (5.23) by applying once
more equality (5.19).
We are now in a position to prove (5.18). Let A E A and u E 

with u  1 a.e. on A. For every open set A’ C= A let Sp E (A) with ~p = 1
on A’ and 0  ~p  1. Then, by (5.23)



As A’ is an arbitrary open set satisfying A’ (E A, we get

The opposite inequality, which can be obtained in a similar way, con-
cludes the proof of the lemma. D

It is now convenient to introduce an auxiliary notion of capacity (see
[11]).

Let v E .~1~~~2. For every (m, 2)-quasi Borel subset B of IRn, define

where we have put

for every u E Note that the functional ~F( ~ IRn) + Gv( ~ , B)~ is lower

semicontinuous in the strong topology of (use proposition 1.3) and
(strictly) convex, hence it is weakly lower semicontinuous in Then the

infimum in (5.24) is attained.
We shall need the following properties of cap03BD (see theorem 2.9 in [11]).

PROPOSITION 5.9. - Let v E .I~rn,2. . Then:

~i~ if (Bh) is art increasing sequence of (m, 2)-quasi Borel sets and
B = Uh Bh, then = suph 

for every (m, 2)-quasi Borel set B;

~iii~ for every (m, 2)-quasi open set A

Proof

(i) Since capv is obviously increasing, it suffices to prove that 

suph cap03BD(Bh) assuming that the right hand side is finite. For every h E IN ,
let wh E (-H~~)~’ be the unique solution of the minimum problem defining



the sequence (wh) is bounded in hence there exists a

subsequence, still denoted by (w~), which converges weakly in to a

function w E ( H’~’z ) + . By weak lower semicontinuity we have, for every
k E IN ,

We conclude taking the limit as k -~ +00.

(ii) It suffices to assume Cm,2(B)  and use, as a test function in

(5.24), the element w of (H’~’z )+ such that 2 
= and iu > 1

(m, 2)-q.e. on B. 

(iii) Let A be an (m, 2)-quasi open set with  (otherwise
there is nothing to prove). For every f > 0 there exists an open set w such
that  E and A is open; let wi and w2 be the solutions of the

minimum problems defining capv (A) and respectively. On account
of the fact that 1~1 and w2 are non-negative functions, for every 0  a~  1,
we have

and since, by (ii),  Cm,2 (w), it follows

Choosing u = E1~2, the right hand side tends to zero with E. This concludes
the proof. D

For every subset E define

for every B C IRn. It is clear that E 



In the following lemma we shall use the condition of convergence of
capacities stated in theorem 5.1.

. LEMMA 5.10.2014 Let (Eh) be a sequence of subsets of SZ and E be a subset
of S~. Assume the existence of a set R C .,4.(~~, rich in .A.(S~), such that

for every A E R. Assume, in addition, that E is (m, 2)-quasi closed. If

(E~~h} ~ , ~c and ?~~ are as in lemma 5. 7, then = for every
(m, 2)-quasi open set A C ~.

Proof. - VVe prove first that for every (m, 2)-quasi open set A C S~

Let us consider a bounded open set A in ?Z~~ = ?Z n’R’, which is a rich
set in .~4.(SZ). By the boundedness of the sequence ~)) and
recalling the definition of we can apply theorem 5.4 to the sequence

of functionals F( ~ , IRn) -f- G~~~ h~ ( ~ , A) , which r )-converges to

+ G ( ~ , A) ~ since ( 5.15 ) holds. Therefore, in view of ( 5 . 25 ), we
have

By (5.16) this implies the validity of (5.26) for every bounded A E ?~~~.
Observe now that (5.26) can be written as

Proposition 5.9 (i) and the richness of R~~ in yields that (5.26’)
holds for every A E .,4(SZ); finally, we pass to any (m, 2)-quasi open set
A ç n by means of proposition 5.9 (iii).
Now let us take, in (5.26), A = E, which is quasi open because E is

quasi closed. If w is the minimum point of ~F( ~ , IRn)+G~( ~ , A)~ in (H’~’z) +,
then tu = 0 and A) = A) = 0. Consequently, E) = 0.

To accomplish the proof of the lemma it is enough to show that for every
(m, 2)-quasi open and bounded set A C ~ we have



Assume  +~ and let (Hm)+ be such that =

and  > 1 (m,2)-q.e. on Since = 0, we obtain

A) = 0 and, by (5.26), t~ turns out to minimize [F(., ~)]
in (~f~)~. It follows that for every 0  6  1

hence, taking into account that (A B E) = 0 and  ~ 1 (m, 2)-q.e. on

E n A, we obtain

As this inequality holds for every 0  ~  1, we must have = 0, i.e.

Cm,2(E n A) = 0. Thus (5.27) is proved. D 

LEMMA 5.11.2014 Let E be a subset F its (m, 2)-quasi closure and A
an open Then the closure coincides

with the closure Q A up to sets of zero 
Consequently, jE’ Ft A and E n A have the same (m, 2)-capacity.

Proof. 2014 Let F and F’ be the quasi closures of E n A and F n A,
respectively. Since E n .4 is quasi contained in E D A, F is quasi contained
in F’. Let us prove the opposite inclusion. Let G be a quasi open
set such that cap(G n (E D A)) > 0; then G D A is quasi open and

cap((G n A) n F) = cap(G n (F n A)) > 0. By proposition 1.5 for Z = E,
we have cap((G n A) n E) > 0. Hence, cap(G n (E n A)) > 0 for every
quasi open set G such that cap(G f~ (jE’ F) A)) > 0. Apply now proposition
1.5 for Z = ~ D ~4.; then E D A is quasi contained in the quasi closure of
E 0 A. It follows that F’ is quasi contained in F. We conclude that F is
(m, 2)-equivalent to F’.

Finally, the quasi stability of the capacity (see remark 2.11) yields

Proof of theorem 5.1. 2014 Assume that

By theorem 3.1 this implies the convergence of -I-1 ~ ~ to 



Therefore, by means of proposition 4.2, we get the existence of a set ?Z ç
.A.(SZ), rich in ,,4.(SZ), such that (K0(~Eh~A + 1)) converges to K0(~E~A + 1)
for every A E R. Again from theorem 3.1 it follows that

for every A E R. In view of lemma 3.2

Therefore, proposition 1.9 yields (5.1) for every A E ?Z.

Conversely, assume that there exists a set R ç .A,(S~), rich in .,4.(~2), such
that (5.1) holds for every A E ?Z. Observe now that = (see
remark 2.11) and that, by lemma 5.11, A) = A) for
every open set A. Consequently, since E is (m, 2)-quasi contained in ~, we
may suppose that E is (m, 2)-quasi closed.

By lemmas 5.7 and 5.10, every subsequence (jE~./~B) of (Eh) contains a
further subsequence, still denote by (.E~~~)), for which there exist a measure

E and a set R~ C ,,4.( S~ ), rich in ,~.( ~ ), such that for every A E ?Z~

where

for every u e and A E A. Moreover, if A is quasi open, then
= It is now easy to verify that G(u, A) = GE(u, A) for every

u E and A E A. Indeed, for every 0  E  1 the set ~u  1 - E~ n A is
quasi open and

So far we have proved that the r-limit does not depend on the chosen
subsequence. In order to obtain that the whole sequence converges, it
is enough to apply proposition 15.5 and 15.7 (Urysohn property of F-
convergence) in [10] (see also propositions 4.11 and 4.14 in [13]). Therefore,
we obtain the existence of a set ?Zo C .,4.(SZ~, rich in .,4(S~), such that



for every A E Ro. From proposition 5.5 it follows that

hence by lemma 3.2,

for every A E Choose A E R0 with the property 03A9’ C= A C= 03A9; since the
sets Eh and E are contained in ~~, we conclude that

This completes the proof of the theorem. 0

THEOREM 5.12. - Let (~h~ be a sequence of functions from ~ into fR
and let ~ be a function from SZ into IR. Then

if and only if the following conditions ~a~ and ~b~ are satisfied:
(a~ there exist a dense set D in IR and a set ~Z C .r4.(SZ~, rich in 

such that

for every t E D and A E ~Z;

(b) there exist a sequence in Ho (SZ) and an index k E IN such that
converges strongly in and w~ E for every h > ~. .

For the proof it is convenient to recall a fact about the rich sets introduced
in section 1. Let a -~ IR be an increasing function, i.e. a(A)  a(B)
whenever A, B E and A C B. Let a- and a+ be the functions on

.A.(SZ) defined by

for every A E .~I.~SZ), with the usual convention inf0 = +00. It is easy to

prove (see, for instance, proposition 4.7 in [16]) that the set

is rich in .,4.~5~). Moreover the following result holds:



LEMMA 5.13. - Let a : --~ IR be an increasing function and let

.~’(a) be the set of all B E .,4.(SZ) for which

is rich in A(03A9). Then F(03B1) is rich in A(03A9).

Proof . Fix a chain in and consider a countable set

D = E IN} C which is dense in .~4.(SZ). For every k E IN it is

possible to find a chain such that Ao and the set  0~
is cofinal in For every k E IN and for every rational q, (Bs~Aks+q)s~IR is
a chain in .~~.(S~); since is rich in .~4.(S~), there exists a set C IR, at
most countable, such that Bs n E ?Z(a) for every s E Define
T = E IN , q E ~~; T is at most countable and

Let us fix s E T and put D~ = E IN , q E ~~; we now show
that D$ is dense in .,4.(~). Consider G1 and G2 in with G1 C= G2 and
let Uk E D be such that G1 C= Uk (= GZ. Since  0~ is cofinal in
Uk, there exists 03C3  0 with G1 (E Ak03C3 (E Uk. Let now q ~ Q be such that
cr  s + q  0. Then

We conclude that D$ is dense in 

Keep s fixed in IR B T; by (5.30) we have Bs n A E R(a) for every A E Ds,
I.e.

for every A e Ds . Since the increasing functions ~4 ’2014~ a _ ( Bs n A) and
A a+(Bs n A) coincide on a dense set, equality (5.31) actually holds for
a rich family of sets A (see proposition 4.8 in [16]). Therefore Bs E 
for every s E IR B T. . We conclude that .~’(a ) is rich in .r4( S~ ) . 0

Proof of theorem 5.1 Z - Assume that

and that 0. Then (b) follows immediately from definition 1.7 of
Mosco convergence. Let us prove (a). By theorem 4.1 there exist a dense
set D in IR and a set ~’ C .,4.(~), cofinal in Q, such that



for every t E D and every B E ~’. As observed in theorem 4.1, we may
suppose that .~’ consists of elements B (= SZ. Then, by applying theorem 5.1,
we get that for every t E D and B E .~’ there exists a set R(t, B) ç 
rich in .A.(SZ), such that

for every A E R(t, B~. Since we may suppose D countable, for every B E ~’
the set R(B) = B) ~ t E D} is rich in and (5.32) holds for
every t E D, B and A e R(B). It is now easy to see that the set

is rich in and satisfies condition (a).
Assume now conditions (a) and (b). Let D and R be as in (a). For

every t E D define at(A) = Cm,2 > t} n A) whenever A E .,4(S~). From
condition (a) it easily follows that if A is in the set R(at) introduced in
(5.29), then A satisfies (5.28) (indeed, if = lim inf Cm,2 > 

and = lim sup Cm,2({03C8h > then (a) implies (at)_ = (at)_ =
(at )_ and (at)+ = (at)+ = (at~)+). By lemma 5.13, is rich in

and, since it is not restrictive to assume D countable, also the set
~’ = ntED is rich in .,4.(SZ).

Therefore, for every t E D and B there exists a set R(t, B) C 
rich in A(03A9), such that A ~ B E R(at) for every A e R(t, B), hence

for every A E R(t, B). We may assume that if B E ~’ then B C= S~; hence
theorem 5.1 yields

for every t E D and every B E .~’. We are now in a position to apply
theorem 4.1 and conclude that

and that 0. D



Finally, we state a simple consequence of theorem 5.12 which can be
proved as theorem 4.4 and in which the conditions for the Mosco convergence
are expressed only trhough the capacities of the level sets of the obstacles.

THEOREM 5.14. Let (~h~ be a sequence of functions from S~2 into IR
and let ~ be a function from SZ into IR. Assume, in addition, the existence
of a set ~~ C S~ such that ~,  0 (m, on SZ’ for every h E IN. .
Then

if and only if the following conditions ~a~~ and ~b~~ are satisfied:
(a~~ there exist a dense set D in IR and a set R C .A.(5~~, rich in 

such that

for every t E D and A E R;
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