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Periodic solutions
of quadratic Lagrangian systems on p-convex sets

ANNAMARIA CANINO(1)

Annales de la Faculté des Sciences de Toulouse Vol. XII, nO 1, 1991

RÉSUMÉ. 2014 On prouve 1’existence d’une infinité de solutions pério-
diques pour un système lagrangien quadratique sur une certaine classe
d’ensembles non reguliers, c’est-a-dirc les ensembles p-convexes. On

emploie des méthodes variationnelles en analyse non linéaire et non

reguliere.

ABSTRACT. - We prove the existence of infinitely many periodic solu-
tions for a quadratic Lagrangian system on a certain class of non-smooth
sets, namely the p-convex sets. We use variational methods in non-smooth
nonlinear analysis.

Introduction

If M is a compact submanifold without boundary in IRn and 
denotes the normal subspace to M at x, the study of the Lagrangian system

has been carried out in [1], where the existence of infinitely many periodic
solutions 1 is proved under quite general assumptions.

The corresponding problem on manifolds with boundary has been treated
in [18], where the existence of a periodic solution is proved and in [5], where
the existence of infinitely many periodic solutions is shown. The feature of
unilateral constraints (cf. [6], [7], [14], [15], [16], [17], [18]) is that, even if
the manifold M is of class C°°, the corresponding variational problem does
not have a smooth structure.

(1) Dipartimento di Matematica, Università della Calabria, 87036-Arcavacata di
Rende, CS (Italy)



For this reason, it seems to be natural to allow for the set M itself a

certain kind of irregularity. The aim of the paper is to treat the case in

which M is a p-convex set (see Def. 1.3) and L is quadratic with respect to
y~, namely

The particular case a - Id, V = 0, which leads to the study of geodesics,
was already treated in [2] and [3].

The main tools are the techniques of non-smooth nonlinear analysis
developed in [8], [9], [10] and [11]. Actually, the main part of the paper, the
second section, is devoted to the proof that these techniques can be applied
to our situation.

1. Recalls of non-smooth analysis and the main result

We will recall some notions of non-smooth analysis as developed in [6],
[7], [8], [9], [11].

From now on, H will be a real Hilbert space, ) . and ( ~ , ~ ) its norm and
scalar product, respectively.

DEFINITION 1.1. - (see also ~6~ and ~9~~ Let ~ be an open subset of H
and f : SZ --; IR U a map.

We set

Let u belong to D(, f } . The function f is said to be subdifferentiable at u if
there exists a E H such that

We denote by the (possibly empty) set of such a’s and we set

It is easy to check that a-,f (u) is convez and closed ~ u ~ D( f ).



If u E f), grad- f(u) will denote the element of minimal norm of
a- f(u). .

Moreover, let M be a subset of H. We denote by IM the function:

It is easy to check that is a closed convex cone ~ u ~ M. .

We will call (outward) normal cone to M at u the set and

tangent cone to M at u its negative polar , , i. e.,

Remark 1.2. - Let us suppose that g : S~ -~ IR is Fréchet differentiable
at u E S~. Then:

and

Let us introduce the class of p-convex sets as defined in [2] and [3]. An
other characterization of this class is in ~4~ . .

DEFINITION 1.3. - A subset M of H is said to be a p-convex set if there
exists a continuous function p : M ~ IR+ such that

whenever u, v E M and a E .

Examples of p-convex sets are the following ones:

(1) The C1,1loc-submanifolds (possibly with boundary) of H;
(2) The convex subsets of H;
(3) The images under a diffeomorphism of convex sets;

(4) The subset of IRn : {x | max |xi|  1, 03A3 x2i > 1 } (note that it is not
included in the classes (1), (2), (3)).



Now, we can state the main result of the paper.
Let M be a p-convex subset of and let L : IR x IRn x IRn --> IR be a

Lagrangian of the form

where a, V are of class C2 on IR x IRn and the matrix a(s, q) is symmetric
and positive definite, that is there exists a constant v > 0 such that

Moreover, let us suppose that a and V are 1-periodic in the first variable:

THEOREM 1.4. - Let us suppose that M is compact, connected and
noncontractible in itself and that either

a~ ~rl (M) has infinitely many conjugacy classes
or

b) has a finite number of elements.

Then, there exists a sequence C IRn) such that V h E IN
i~ ~h is I-periodic and E M

ii~ - ~ ~3 ~_ in ~ 0 , 1 ~ I

iii) limh~~ fa L(s, ds = -f-oo .

In order to apply the critical point theory for non-smooth functionals
some other notions and results have to be recalled.

DEFINITION 1.5. - Let SZ be an open subset of Hand f : S~ - IR U 
a function. A point u E D( f) si said to be a lower critical point for f if
0 E a- f (u) ; c E IR is said to be a critical value of f if there ezists u E D( f )
such that

DEFINITION 1.6. - (see also ~8~, ~11~~ Let S~ be an open subset of H. A
function f : 03A9 ~ IR U is said to have a 03C6-monotone subdifferential of
order two if there exists a continuous function

such that



whenever

The notion of p-convex set is actually a particular case of the previous
notion. In fact, it turns out (see ~2~ ~ that a subset M of H is p-convex if
and only if IM has a ~-monotone subdifferential of order two.

THEOREM 1.7. (see ~10~~ Let f : H --~ IR U be a lower

semicontinuous function with a 03C6-monotone subdifferential of order two.
We set

Let us suppose that:

i~ inf H f > - o0

ii) every sequence C D(~-f) with suph f(uh)  and

limh grad- = 0 has a subsequence converging in H. .

Then, f has at least cat (D(,f ~ , d*~ = +oo, then

Let M be a p-convex subset of H.

DEFINITION 1.8. - Let us denote by A the set of u’s E H with the two
properties: .

ii) 3 r > 0 such that M E ul  r } is closed in H and not
empty.

Obviously, M ~ Â and:

PROPOSITION 1.9. - (see prop. 2.9 in [2]) Let M C H be p-convez and
locally closed. Then A is open and ~ u ~ A there ezists one and only one
w E M such u;~ = d(u, M). .

Moreover, if we set = w, then



Remark 1.10. - Let us set A = u E Â ~ 4p(~t(u~~ I u - ~(u~ I  1 .
Then A is an open set containing M and, by proposition 1.9 ü), : A --~ M

is Lipschitz continuous of constant two.

PROPOSITION 1.11.- (see prop. 2.2 in ~2~~ Let M C H be 
If {uh}h ~ M is a sequence converging to u E M and C H is a

sequence converging weakly to a with ah E a! then a E .

PROPOSITION 1.12. - (see prop. 2.12 in ~2~~ Let M C H be locally closed
and p-convez. Then

where Pu is the projection on the tangent cone to M at u.

PROPOSITION 1.13. - Let M C H be locally closed and p-convez. Let

be a sequence in M converging to u E M and let T E . .

Then

Proof. - Since is bounded, up to a subsequence is

weakly convergent to some £ E H. Since (r - E by
proposition 1.11 we have (T - ~~ E Therefore (T - ~ , T~  0,
which implies T (  ~ ~ ~ , hence

From the equality

the thesis follows. D



2. The variational structure of the problem

In this section, we want to supply our problem, that is the research
of periodic orbits of the considered Lagrangian system, with a variational
structure. Our aim is to characterize such periodic orbits as lower critical
points of the functional

defined in the following way:

where the space of the admissible paths is:

Since M is compact, we shall assume the function p of definition 1.3 to be
constant.

Moreover, if 03B3 e W1,2(0, 1; IRn) with y(s) E M and 5 E L2 (o, 1; !R"), we
set

where is the projection on the tangent cone to M at ~y(s~, according
to the scalar product

Let us also denote by 03C0s the projection on M according to the scalar product
(u, v~ s. By remark 1.8 and the assumptions on a, there exists an open set A
containing M such that each 03C0s is defined on A and is Lipschitz continuous
of constant 2.

Let us begin with a regularity result.

THEOREM 2.1.2014 Let us E X. . If a- ~ ~ then



and

Moreover, if 0 E a- then y E 1; 

For the proof of this theorem, we need some lemmas.

LEMMA 2.2. - Let us take b E 1; and y E 1; IRn)
such that EM, V s E ~ 0 , 1 ~ . .

Then the following facts hold:

b) for every sufficiently small t > 0, we have
+ E 1; 

and a. e. in ~ 0 , 1 [

c~ lim (y + tb)) ~ = y~ in L2 (0, 1 ; IRn) .

Proof. - a) First of all, let us remark that is measurable. By
proposition 1.12, we have

and, also

Then, by (2.2.1), we get

so, the proof of a) is over.



b) Let us consider the two scalar products

For every u E A, let wsi = 03C0si u the projection of u according to the scalar
product (u, i = 1, 2. We want to prove that

Let us observe that, by proposition 1.9, u - wsl E asl that is

Passing to the usual metric in IRn, (2.2.4) is equivalent to

By (2.2.5), it is easy to deduce that

Analogously,

Since M is a p-convex set, we have:

On the other hand, we have



By (2.2.6) and (2.2.7), we obtain

By hypothesis (1.1), it follows

and then

By substituting A with a smaller open set containing M, we can assume
that

hence (2.2.3) follows.

Now, let us consider s2 E ] 0, 1 [. We have

By i) and ü) of proposition 1.9, we have

where



Hence

Moreover/by applying (2.2.3), we get

Therefore

and we have a.e. in ] 0, 1 [

and

Hence we have a.e. in ] 0, 1 [



c) In L2 (0, 1; IRn) we can consider the following scalar product

Since, by a) + ~) -~ ~ in L~ and + ~))’ is bounded in

L~(0,1; !R") as t -~ 0, we have that

Moreover

and by b) we have

Combining (2.2.11) and (2.2.12), we get

LEMMA 2.3. - Let us take b E W1 ~2 (O, 1; and y E 1; IRn)
such that EM, V s E ( 0 1 ~ .

Then

Proof. - Let us fix t > 0 and let us take the path y + $. If t is small,
(~y + t~)(s) E A, V s E ( 0 , 1 ~.

By lemma 2.2 b), we have + tb) E 1 ; M) and



Combining lemma 2.2 c) with Lebesgue theorem, we get:

LEMMA 2.4. Let us take b E W1.2(0,1; IRn) with b(0) _ b(1) and
a E a- fCy). . Then

Proof. - Let us take b E W1~2(o, 1; with 6(0) = 6(1) and t > 0
small enough that

Let us observe that, by setting

from remark 1.2, we deduce that a ~ if and only if a = ~)
where S G 

Now, let us take a e ~*/(7). By proposition 1.12, we have:



Recalling that (’~s (’Y + t~~ - ’Y~ /t is bounded in L2 (0, 1; by lemma
2.2 c), proposition 1.12 and Lebesgue theorem, we get

Then, by definition 1.1 and lemma 2.3, we get the thesis. 0

LEMMA 2.5. Let us take a E L2(0,1; and y E W1~2(0,1; IRn~
such that E M, V s E ~ 0 , 1 ~ . Let us suppose that ~2.l~.1~ holds
V b E W1~2(O, 1; with _ 

Then



Proof. - Since ~b - ~  ~b ~, by applying Cauchy-Schwartz inequality
to (2.4.1), we obtain V 5 E W1~2(o, 1; with b(0~ = 6(1)

and then

By (2.5.1), we deduce that a(s, ~~y~ E L°° and

On the hand, by hypothesis (1.1)

which implies

Thus, 1" E L~ and

By using (2.5.3), we have



Since,

by (2.4.1) and (2.5.4), we have

So, we can conclude that

Moreover, by (2.4.1), we deduce that

It remains to prove that 03B3’ E 1; By hypothesis (1.1), we have

where



Since a(y), E W 1,2 (U, 1; and y~ E 1; we deduce
that

and

If we set

it turns out that ~ also satisfies (2.4.1) with a, V and a substituted by other
suitable maps. It follows that

hence

Since a- I~ (y(s~~ is a closed convex cone, to prove ü) is equivalent to prove
that a.e. V r~ E (-~(s~~ ~

Let us define the following functions:

where



Clearly, 6n E Wo’2(0, 1 ; and then by (2.4.1~ we get

By proposition 1.13, is continuous at so, hence passing to the limit as
s in (2.5.7), we obtain

Finally, we are able to prove theorem 2.1.

Proof of theorem ,~.1

As a direct consequence of lemmas 2.4 and 2.5, we get

and



If 0 E a- f (y~, it is evident that

Now, let us prove two properties of f.

THEOREM 2.6. - The functional f : L2(o, 1; -~ IR U ~-~oo~ is lower
semicontinuous and there ezists a continuous function 9 IR -~ IR such that

+ 5 E X and a E a- .

In particular, f has a 03C6-monotone subdifferential of order two.

Proof. - Let us take a sequence ~ yn } n C X such that

In order to prove that f is lower semicontinuous, it is enough to prove that
 c. Since,

and by hypothesis (1.1)

we can deduce that ~y~ }n is bounded in L2 (0, 1; and thus, by the
compactness of weakly converges toy in W 1 ~2 (0, 1; Besides,
L is continuous in the three variables and convex in the third one, so it is

weakly lower semicontinuous in W 1 ~ 2 ( 0, 1; IRn). This implies

Moreover, converges uniformly to y. Since M is closed, then y E X.



Now, let us take y E X n W2~2(o, 1; with y+(0~ = y~ (1) and
a E a- f (y~. Let b E W1~2(o,1; IRn) with b(o) = b(1) be such that E X.

Then, by Taylor’s formula, we have:

where ~ = y-~t~ for some t = t(s~ 6 ] 0, 1 [. Reordering terms, by hypothesis
(1.1), we get:

Thus, by p-convexity of M, we get:



Using the interpolation inequality:

we obtain:

Thus, by theorem 2.1 and hypothesis 1.1, we are able to conclude that:

THEOREM 2.7.- Let us consider a E L2(0, 1; IRn) and y E X r1

W2~2(0, 1; with y+(0~ = y- (1). . Then a E a- 1(1’) if and only if

Proof. - If a E 8- f (~~, we have the thesis by lemmas 2.4 and 2.5.
Viceversa, if

the proof of theorem 2.6 shows that a E a-,f (~y). D

Finally, we can state the already quoted characterization.



THEOREM 2.8. - Let us consider y e X. . Then 0 E if and only
E ’Y+ ( ~ ~ _ and

Proof. - If 0 E a-,f (y~, from theorem 2.1 y E W2~°°(0,1; IRn) and
y+ ( 0 ~ = y- ( 1 ~ . Moreover from theorem 2.7

Viceversa, it is enough to apply theorem 2.7 with a = 0. 0

3. The category of the space of the admissible paths

After theorem 2.8, our goal is to prove the existence of infinitely many
lower critical points for f on X by means to theorem 1.7. Therefore, let us
investigate the topological properties of X.

If Y is a topological space, we will denote by A(Y) the free loop space
of Y.

Let us recall that in [5], using results contained in [12], [13] and in [19],
it is proved the following theorem.

THEOREM 3.1.2014 (see theorem 3.3 in [5]) Let A be an open subset of
IRn, connected and non-contractible in itself. Moreover, let us suppose that
either

i) has infinitely many conjugacy classes

or

ii) has a finite number of elements.

Then cat A(A) = +0oo.

Now, let us consider X endowed with the Wl,2_topology and the space

endowed with the uniform topology.



THEOREM 3.2. - (see theorem 4.5 in [4]) The inclusion map i : X -

A(M) is a homotopy equivalence.

Now, we are to able evaluate the category of X.

THEOREM 3.3. - Let M C IRn be a connected, non-contractible in itself,
compact p-convez set. Let us suppose that either

i) ~rl (M) has infinitely many conjugacy classes
or

ii) has a finite number of elements.

Then cat(X) = +00.

Proof. - Let us consider A, the open subset of IRn defined in Remark
1.10. Clearly, M is a deformation retract of it. Then, A is homotopically
equivalent to M and A(A) is homotopically equivalent to A(M). By
applying theorems 3.1 and 3.2, the proof is over. D

Finally we are able to prove the main theorem.

Proof of theorem 1.4
We want to apply theorem 1.7. Let us consider the functional f defined in

section 2. By hypothesis (1.1) and theorem 2.6, f is a lower semicontinuous
function, bounded below and it has a 03C6-monotone subdifferential of order
two.

Moreover, let us observe that D( f) = X and that d* induces the 
topology on X. . By theorem 3.3, cat (D( f ), d*) _ 

Now, we will consider a sequence {03B3h}h C D(a- f) with suph f(yh) 
+00 and limh grad- = 0. Since M is compact, {03B3h} h is bounded in
L2 (0, 1; IRn). But also ~yh ~~ is bounded in L2 (0, 1; Thus, by Rellich’s

has a subsequence converging in L2 (0, 1; 
So, applying theorem 1.7 and theorem 2.8, the thesis follows. D
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