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About the growth of entire functions
solutions of linear algebraic q-difference

equations

JEAN-PIERRE RAMIS(1)

Annales de la Faculté des Sciences de Toulouse Serie 6, Vol. I, nO 1, 1992

Qu’un cui de dame damascene.

GUILLAUME APOLLINAIRE, La chanson du mal-aimé.

RESUME. - Nous prouvons un q-analogue d’un résultat de Valiron
[VI, , 2]. . Une fonction entière f, solution d’une equation différentielle
lineaire algébrique D f = b, a une croissance exponentielle d’ordre fini
k > 0 et de type fini. De plus les valeurs optimales de k sont des nombres
rationnels appartenant a un ensemble fini explicitement calculable a partir
du polygone de Newton de D. Ce result at a d’abord été prouve par Valiron
(1926).
Notre principal résultat est un q-analogue (q étant un nombre complexe,
avec |q| > 1) : : une fonction entière f, solution d’une equation aux q-
différences lineaire algébrique S f = b, a une croissance q-exponentielle
d’ordre fini k > 0 et de type fini. De plus les valeurs optimales de k
sont des nombres rationnels appartenant a un ensemble fini explicitement
calculable à partir du polygone de Newton de S.

Ce résultat se déduit facilement, par "dualité et résidus" d’un résultat
recent de Bezivin sur des estimations q-Gevrey pour les solutions series
formelles d’equations aux q-differences linéaires analytiques. Mutatis
mutandis la preuve est semblable a celle du théorème de Valiron que
nous avons donnée dans (Ral~ . .

Nous en déduisons que si une fonction entiere f est solution com-

mune d’une equation différentielle lineaire algébrique et d’une equation
aux q-différences linéaires algébrique 0,1), alors f est un

polynôme. Plus généralement, si une série formelle f est solution com-
mune d’une equation différentielle lineaire algébrique et d’une equation
aux q-differences lineaire algébrique ( avec q ~ ~ 0,1, ou q ~ = 1 et q

transcendant), alors f est le developpement à l’origine d’une fraction ra-
tionnelle f E 

(1) ) I.R.M.A., 7 rue Rene Descartes, F-67084 Strasbourg Cedex (France)



ABSTRACT. - We prove a q-analog of a result of Valiron [VI, 2]. .

If f is an entire function solution of a linear algebraic differential equation
D f = b, then f has an exponential growth of finite order k > 0 and of finite
type. Moreover the optimal values of k are rational numbers belonging to
a finite set explicitely computable from the Newton polygon of D. . This

result was first proved by Valiron (1926). .
Our main result is the following q-analog (q being a complex number,
with q ( > 1): : if f is an entire function solution of a linear algebraic
q-differential equation S f = b, then f has a |q|-exponential growth of
finite order k > 0 and of finite type. Moreover the optimal values of k
are rational numbers belonging to a finite set explicitely computable from
the Newton polygon of S.

This result follows easily by "duality and residues" from a recent theorem
of Bezivin about q-Gevrey estimates of formal power series solutions of
linear analytic q-difference equations. Mutatis mutandis the proof is
similar to the proof of Valiron’s theorem given in .

As an application we prove that if an entire function f is a common
solution of a linear algebraic differential equation and of a linear algebraic
q-difference equation (with ~q) ~ 0, 1), then f is a polynomial. More

generally, if a formal power series expansion / is a common solution of a
linear algebraic differential equation and of a linear algebraic q-difference
equation 0, 1, or with |q| = 1 and q transcendental), then / is
the expansion at the origin of a rational function f E C(a?).

1. Preliminaries

In all this paper q is a non zero complex number, 1; and we
set p = q-1. .
We recall the notations (for a n E IN):

and, if n E IN * :

and, if ~ q ~  1:



We have:

We set:

We have:

We have the following identities:

If > 1, ~n~ q ! is equivalent to

There are some analogies between q-difference equations on one side and
difference or differential equations on the other side.



We set

and we denote the C-algebra of q-difference operators. ~e have
the commutation relation

We set

There are analogies and the and

~T~, with respectively commutation relations

and

It is well known that it is possible to identify the study of linear q-
difference equations with polynomial coefficients with the study of linear
difference equations with coefficients polynomial in an exponential. We

identify the algebra  [x][03C3q] and the algebra [qt][T] (with T f (t) = f(t+1)),
by the identification x = qt . Then T : : t - t + 1 corresponds to

uq : : x - qx. The x-complex plane ~* without the origin is identified
with the cylinder where ( is the t-complex plane and where T is
defined by r = Log 

So we identify

with the elliptic curve

We set z = T~. Then z = = q~ = 
To the lattice in the t-plane corresponds the lattice in

the z-plane. Below we will relate some elliptic and 03B8 functions associated
to the periods 1 and r and q-difference equations.



There is a first set of analogies between q-difference equations and
difference or differential equations based upon the analogy between an
arithmetic progression and a geometric progression:

A second set of analogies between q-difference equations and differential
equations is based upon the remark

(Cf. Heine (He]):

We have T = é/dz - 1 and ~c~~ = (q~ - 1)/(q - i). .



2. Entire functions whose rate of growth
is q-exponential of finite order

In all this section q is a real number, with q > 1.

LEMMA. - Let k 
be a non zero real number. For an infinite sequence

of complex numbers, the following conditions are equivalent:

i) there exist real numbers C, A > 0, such that

ii) there exist real numbers C’, A’ > 0 such that

iii) we k/Log q ; there exist real numbers C", A" > 0, such that

iv) there exist real numbers Co, Ao, such that

v ) we set  = k/Log q ; there exist real numbers Ca, Ao, such that

We remark that we get the same conditions for (q, k ) and (q’, k’) if

k/Logq = k’/Logq’.
DEFINITION . - Let k be a non zero real number. A formal power series

+oo

expansion , f = ~ E ~ ~x~ is

n=0

i~ q-Gevrey of order s = (or of level ~~, if there exist real numbers
C, A > 0, such that



ii~ q-Gevrey-Beurling of order s = (or of level ~~, if for every real
number A > 0, there exists a real number CA > 0 such that

For k > 0 this definition was introduced by J.-P. Bezivin [Be1]. (Be
careful; what Bezivin denotes q is our p...)

If I e C ]z] is q-Gevrey (resp. q-Gevrey-Beurling) of order s, we will
denote E  [[x]]q,s (resp. E  [[x]] q,(s)). We will say that a convergent
power series expansion (resp. an entire function) is q-Gevrey (resp. q-

Gevrey-Beurling) of order s = 0, and will denote C [[x]]q,0 = C(z) (resp.
C ((z) q>(°) = O(C) We will say that is exactly of order q, s , if e C ((z) q>3’ ,
and if, for any s’  s, f £ C ((z) , .

q,3

We remark that, if s Logq = s’ Logq’, then C ((z) = C ((z) , , .q,3 q ,3

DEFINITION. - Let k be a non zero real number. Let q be a real number,
with ]q] > 1. An entire function f has a q-exponentiel growth of order k
and a finite type, if there exist real numbers K > 0, a, such that

or equivalently

or equivalently

PROPOSITION 2.1. - Let k be a non zero real number. Let q be a real

number, with |q| > 1. Let f = 03A3+~n=0 anxn be a formal power series
expansion. Then the following conditions are equivalent:

i~ the series f is q-Gevrey of order -~;
ii~ the series f is the power series ezpansion at the origin of an entire

function f having a q-ezponential growth of order k and a finite type.



Using this result we can found q-exponential growth estimates of entire
functions if we know q-Gevrey estimates on their expansions at the origin.

Proposition 2.1 follows from

LEMMA 2.2. - Let k > 0 be a real number. Let f be an entire function,
with the expansion ,f = 03A3+~n=0 anxn at the origin. Then (|x| = r):

i) if there exist real numbers C > 0, a such that

then:

a) for every .1 > 1 there exists a real number G’~ > 0 such that

b~ for every E > 0 there ezists a real number Ke > 0 such that

ii) if there exists real numbers K > 0, a such that

then

If g is a given real number, with g > 1, we can reformulate this

lemma with A = I /Log g, e’~~- = ?-~~- and ~(L.~)’+.L.gr ~
l/LogrB2

Example
Let g be a real number, with q > 1. We set



Then an = q. ! is equivalent to

and, for every E > 0 there exists KE > 0 such that

We will improve this result later (cf. proposition 5.5 below).
It remains to prove lemma 2.2.

We will first prove that

We set = + (a - n~ Log r. We have

Then = 0 for Log r = -(a - n) /k, r = ro = e n-a k . We have

Proof of i i)
We suppose that

We set M ( , f r) = . Then, using Cauchy inequalities, we get

for every r > 0.

Then



Proof of 2~
We suppose that

Then

for every p > 0.

We choose p = Ar, with A > 1:

We have

Such results are well known (cf. [N]).

3. Newton polygon of a linear q-difference equation
In this section we recall (and complete) the definition of the Newtonpolygon of a linear q-difference equation (first introduced by Adams I ~and we give some useful notations. 
We are studying linear analytic q-difference operators

with a, ~ We set



We denote by Jr the closed quadrants of IR2 (r = 1, 2, 3, 4) : :

For (a, b) E IR2, we set ~,. (a, b) = (a, b) + ~~., and we denote by the

union of the quadrants Jr (i, j) for i E [0, m and j ~ Z such that ai,j ~ o.
We denote by P.,..(S) the convex hull in IR2 of M.,..(S), and we set: 

Nl(S’) is the lower Newton polygon of S, Nu(S) is the upper Newton polygon
of S, and N(S) is the Newton polygon of S.

If ai E ~-1 ~ ] (i = 1, ... , m), then the Newton polygon N(S) is

the convex hull in IR2 of the set ~ { i, j ) E 712 ~ ~ 0 ~ . If one of the

~~ x , ~-1 ~, then N(S) = Nl(S).
We will introduce now some notations. The parameter k will take the

following values: k E IR*, l~ = oo, k = Oz or Ou. .

First we suppose that > 1.

If k E IR* and if the intersection of Nl (S) and its contact line with slope
k is reduced to only one point, we will denote by {i(k), j(J~)) the coordinate
of this point. If k E IR* and if the intersection of Nl {S) and its contact line
with slope k is not reduced to only one point, then this intersection is a

segment ~22(~)~.?2(~)~J (with (22(~)~~2(~))~
i1(k)  i2(k)). Then ji(k)  j2(k) if k > 0 and > j2(k) if k  0. In

that case we will say that k is a lower exceptionnal value (k E Q). We will
call the positive lower exceptional values the lower irregular slopes of N(S),
and the negative lower exceptional values the lower regular slopes of N(S).

The horizontal side of Nl (S) is denoted by

(with  ~1(~d~ = 

The right vertical side of Nl (S) is a segment or a half line, denoted by
C (Z(°°J - a 

= n, (with jl  j2 



We suppose now that ai E ~[a’,a’ ~] ~ (i = 1, ... , m). If k E IR* and

if the intersection of Nu(S) and its contact line with slope k is reduced

to only one point, we will denote by (i(~), j(k)) the coordinate of this

point. If k E IR* and if the intersection of and its contact line

with slope k is not reduced to only one point, then this intersection is a

segment ~ (22(~)~ ~2(~1~~ (with (ii(k), gi(~)) ~ (Z2(~)~.~2(~))~
> i2(k)). Then  j2(k) if k  0 and > j2(k) if k > 0. In

that case we will say that k is an upper exceptionnal value (k E Q). We
will call the upper positive exceptional values the upper irregular slopes of
N(S), and the upper negative exceptional values the upper regular slopes of
N(S). .

The horizontal side of is denoted by

(With il(ol) > 22(~l))~
Now we suppose that |q|  1.

If k E IR* and if the intersection of Nl (S) and its contact line with slope
- k is reduced to only one point, we will denote by (i(h), j(k)) the coordinate
of this point. If k E IR* and if the intersection of Nl (S) and its contact line
with slope -k is not reduced to only one point, then this intersection is a

segment ~i2 (~)~ ~2 (~)l ~ (With ~ (22 (~)~ ~2 (~)) 
il(k) > z2 (k)). Then  j2(k) if k > 0 and jl (k) > j2(k) if k  0. In

that case we will say that k is a lower exceptionnal value (k E Q). We will
call the positive lower exceptional values the lower irregular slopes of N(S),
and the negative lower exceptional values the lower regular slopes of N(S).

The horizontal side of is denoted by

(with il(ol) > z2(~l))~
The left vertical side of is a segment or a half line, denoted by

[(2(00)~1(00)) , a (2(~)~ .~2(~)l ~ (with jl (oo)  
We suppose now that ai E ~~ x , ] (i = 1,..., m). If k E IR* and if

the intersection of Nu (S) and its contact line with slope -k is reduced

to only one point, we will denote by (i(1~), j(k)) the coordinate of this

point. If k E IR* and if the intersection of and its contact line

with slope -k is not reduced to only one point, then this intersection is a



segment .?1(~)) ~ (22(~)~ .~2(~ll J (with (ii(~), 31(~)) ~(Z2(~)~ ~2(~)) 
 i2(k)). Then ji(k) > j2(k) if k  0 and  j2(k) if k > 0. In

that case we will say that k is an upper exceptionnal value (k E Q). We
will call the upper positive exceptional values the upper irregular slopes of
N(S), and the upper negative exceptional values the lower regular slopes
of N(S) (be careful, in that case the corresponding sides of the Newton
polygon have slopes opposite to these slopes !).

The horizontal side of Nu (S) is denoted by

(with i1(0l) > i2(0l)).
If N(S) has none lower (resp. upper) irregular slope, we will say that S

is fuchsian (or regular singular) at zero (resp. infinity). If S is fuchsian at

zero and infinity, we will say that it is Fuchsian.

4. Index theorems for linear analytic
q-difference equations acting on entire functions spaces

In this section we prove some dualities between some spaces of q-Gevrey
power series expansions (extending a classical result of Silva ~Si~, ~G~). Then
we get index theorems for spaces of entire functions with q-exponential
growth from Bezivin’s index theorems.

If

are formal power series expansions, we denote

their Hadamard product:

We set

We have o = 1.



The map

induces isomorphisms of complex vector spaces

and

U sing these isomorphism we transport the DFN topology of C(z) on
C (zj , and the FN topology of O(C) on C [[x]]q,(s ).q,S q, S

and if the series anbn+1 converges, then we set

We denote by P1 (~) _ ~ U ~oo~ the Riemann sphere. Let K be a closed
disc centered at the origin in ~. We will set U = P1 ( ~) - K. Let f be
a function holomorphic on an open disc V centered at zero, containing K.
We denote by f (ac) = its expansion at 0. Let g be a function

holomorphic on the open disc U. We denote by g(x) = ~~_° 1 bnx-n its
expansion at infinity. If y is a simple closed curve (positively oriented) in
V - K = U r1 V, then (by Cauchy’s residue formula) we get



So we get a pairing (that is a C-bilinear map)

We have the classical result ~G~:

PROPOSITIONS 4.1

i~ If the vector space is endowed with its natural DFN topology,
and the vector space ~-1 C~ ~P1 (~~ - ~0~~ with its natural FN topology,
then the pairing

induces a topological duality.

ii) If the vector space ~ is endowed with its natural FN topology
(product topology), and the vector space ~-1 ~~~-1~ with its natural
DFN topology (direct limit of the classical topology on finite dimen-
sional subspace ), then the pairing

induces a topological duality.

From this result we get easily

PROPOSITION 4.2. - Let k be a real number, k > 0. Then :

i~ the pairing

induces a topological duality between the DFN -space  [[x]] .1 
and the

FN-space x-1  [[x-1]]q;(- 1 )



the pairing

induces a topological duality between the FN-space [[x]] ql 1 ) 
and

the DFN-space x -1 [[x-1]]q;- 1 ;

iii) the pairing

induces a topological duality between the FN-space and the

DFN - space .

LEMMA 4.3. - For the pairing

I(z) = £ anxn, §(z) = bnx-n) the adjoints of the operators z and

uq are respectively the operators z and pup. The adjoint of the operator
(I, j G Z) iS = 

Using Newton polygons, we can reformulate Bezivin’s index theorems
[Be 1] :

THEOREM 4.4.- Let k, q be real numbers, k > 0, ]q] # 0, 1. Let
~ ~ £l=o ~li ~ ~(~’) (~ ~ ~’ ... ’ ’l) . 

I) the operator

is a Fredholm operator with index x 1 = -j1(k);



ii~ the operator

is a Fredholm operator z.vith index ~ S; [[x]] q; 1 = -j2(k);
iii ) the operator

is a Fredholm operator with index x ~S; ~ ~~x~ ~ _ - jl ~Ol ~ .

Using duality (S* operates by defini-

tion) we get

COROLLARY 4.5.- Let k, q be real numbers, k  0, ~q~ ~ 0, 1. Let

S = Li 0 ai E ~2 = 1, ... , n), and S* = its

adjoint. Then:

i~ the operator

is a Fredholm operator with indez

ii~ the operator

is a Fredholm operator with index

iii) the operator

is a Fredholm operator with index



If we replace x by and Uq by ~p = g(pz)) in S = 
we get S’ = A monomial is replaced by z -~ ~’z p .
Therefore the Newton polygons N(S) and N(S’) are symmetric relatively
to the horizontal axis. (Be careful: N(S) is a q-polygon and N(S* ) is a
p-polygon.)

The adjoint of S = ai03C3iq (with a2 E (i = 1, ... , n)) is
S’* = . Then N ( S) = N ( S* ) (however N(S) is a q-polygon
and N ( S* ) is a p-polygon).

Therefore N(S’*) and N(S) are symmetric relatively to the horizontal
axis. (These two polygons are q-polygons.) Then the lower irregular slopes
of N(S’*) correspond by symmetry (that is with the opposite sign) to the
upper regular slopes of N(S).
Now replacing x by z-1 and S by S’* we apply 4.5 (as in [Ral]).

We get an extension of 4.4 to negative values of k (~ ~~~ .---1- = C[z],

[[x]]q;1 (0,l) = [[x]], and  [[x]]q;1 ~ = [[x]q;0 ={x}).

THEOREM 4.6. - Let q E IR, |q| ~ 0, 1. . Let k E IR* U {(0, d), (0, u), oo}.
n

Let S = L with a2 E (i = 1, ... , n). . Then:
i=o

i) the operator

is a Fredholm operator with index x .S;  [[x]]q;1 k) = -jl (k);

ii~ the operator

is a Fredholm operator with index x ,S‘;  [[x]] 
1 )) = -j2 (k) .

Using [Ral, lemme 0.13, p. 5], we get

PROPOSITION 4.7. - Let q E IR, (q, ~ 0, 1. . Let k E IR* U ~ (Ol~, (0~~, .

n

Let S = ~ with az E (i = 1, ... , n~. . Then:
i=O



i~ the operator

is a Fredholm operator with index x (S; ~~~~~ _ - jl (Ou);
the operator

is onto and the complex dimension of its kernel is finite and equal to

X (Sj (IT x II q;~) - x (s~ ~~~~) = ,?1 (~)~

iii) the operator

is onto and the complez dimension of its kernel is finite and equal to

When k varies from 0~ to 00 (in ~IR* ) the dimension of the space

Ker S :  [[x]]q;( 1 /[x] ~ [[x]]q;( 1 /[x]) increases. It remains con-

stant between critical values of h (that is regular upper slopes) and jumps
for such critical values. Then mimicking a method of we get

THEOREM 4.8. - Let q be a non zero complex number, with |q| ~ 1. . Let
f be an entire function satisfyirtg a dinear analytic q-difference equation

b E ~~~~~. . We denote by kl, ... , k~, the absolute values of the upper
regular slopes of the Newton polygon N(S). We set qo = .

Then the entire function f is a polynomial or there exists k > 0 such that
f has a qo-exponential growth of ezact order 1~~ and of finite type: there
exist real numbers K, a > 0, such that

and there exists no real k’ > 0, k’  k, such that f has a qo-exponential
growth of order and of finite type. Moreover k is equal to one of the

~Z ’s. .



This result is in general false for solutions of non-linear analytic q-

difference equations: the exponential e~ is a solution of the non-linear

equation _ (, f ( x ) ) 2 and its growth is clearly not 2-exponential!

5. q-difference equations of order one,
q-analogs of exponential function

and Jacobi 6-functions

In this section we solve some elementary linear algebraic q-difference
equations of order one, and introduce various q-analogs of exponential.
Then, following an idea of G. W. Starcher we get some relations
with Jacobi 6-functions. From Jacobi triple product formula [J] we derive
important asymptotic estimates. We will use notations of [GR, p. 9~{2~.

It is possible to read sections 6 and 7 without reading section 5.

An algebraic linear q-difference equation = R(ae),f (x) (where
R E is a rational function) can be solved "formally" by formal infinite
products:

and

If one of these products converges, we get an actual solution.

PROPOSITION 5.1. - Let q be a non zero complex number, with ~q~ ~ 1
(p = q-1 ~ . We consider the q-difference equation

i~ This equation admits a unique formal power series solution Eq such
that Eq (0~ = 1 :

(l) ) Be careful there is a small error in Starcher’s formulae [St, p. 578]: replace qn by
q’~~ in the second member of the identity (4).

2 ~ Be careful there is a small difference with Hahn’s notations : cf. [Ha, p. 342].



If ~q~  1 this series converges in all the complez plane and defines an
entire function Eq. If ~q) > 1 the radius of convergence of this series
is ~q~ and its sum defines a holomorphic function Eq in the open disc
of convergence.

ii) If ~ q  1

The function Eq has zeros only at -1, -p, ... ... (these zeroes
are simple~.

iii) If ~q~ > 1

for ( > 1. The infinite product p~ ~ converges in all the

complez plane and the function Eq admits a meromorphic extension
to all ~ (that we denote always by Eq ). The function Eq has no zeros
and poles only at -q, -q2, ... , ... (these poles are simple~.

If f is a solution of the equation

then = 1 /~ f ~ ~ ~ is a solution of the equation

If we replace x by px in (Iq) , we get - ( 1 = 0

If we replace ac by in (Iq), we get (1 + x)h(px) - xh(x) = 0

(h(xl = 

PROPOSITION 5.2. - Let q be a non zero complex number, with ~q) ~ 1
(p = q-1~. Consider the q-difference equation



i~ This equation admits a unique formal power series solution eq such
that = 1 °

If ~q) > 1 this series converges in all the complez plane and defines an
entire function eq . If (q~  1 the radius of convergence of this series
is one and its sum defines a holomorphic function eq in the open unit
disc.

ii) If ~q~ > 1

The function eq has zeros only at q, q2, ... , qn, ... (these zeroes are
simple ).

iii) If ~ q  1

for ~ x ~ > 1. The infinite product q~ ~ converges in all the complez
plane and eq admits a meromorphic eztension to all ~ (that we
denote also eq). The function eq has no zeros and poles only at

1, q, ... qn, ... (these poles are simple~.
iv~ We have = 1, = Eq(-x), and eq(x) = 1.

We will denote

and

We have



and expq is a solution of the q-difference equation

We have

Using our second set of analogies we have got two q-analogs of the
exponential function (two because the invariant, up to conjugation, of an
homography with two distincts fixed points is a pair (q, p)... ). . Later, using
our first set of analogies we will get two new q-analogs of the exponential
eq  1) and Eq; eq is strongly related to Jacobi’s 81 function and Eq
is "highly ramified" .

If the function f is a meromorphic solution of

and the function g a meromorphic solution of

then the function h = f g is clearly a meromorphic solution of the equation

Let q be a complex number, with Iql  1. Using propositions 5.1 and 5.2
we verify that the entire function f(x) = Eq(x) = is a solution

of (1), and that the entire function e~,(-x-1) _ q~~ is a
solution of (2). Therefore the entire function

is a solution of the q-difference equation (Oq).
If q is a complex number with Iql > 1, the meromorphic function

is a solution of the q-difference equation (Oq).



PROPOSITION 5.3. - Let q be a non zero complex number, with ~q) ~ 1
(p = q-1 ~. Consider the q-difference equation

i~ This equation admits a unique formal Laurent series solution fq such
that = 1 :

ii~ If ~q~  1, the Laurent series ,fq converges on ~*. Its sum fq is an

holomorphic solution of on ~* .

iii) If ~q~  1, we have the Jacobi triple product formula

A nice application of Jacobi triple product formula [J] is a formula due
to Euler  1):

(We change q in g~ in the triple product formula and set x = q.)
Assertions i) and it) are easy to prove. In order to establish iii) we will

first prove a preliminary result [St, p. 578].

LEMMA 5.4. - Let q be a non zero complex number, with |q|  1. We

have the identities



The second identity follows from the first one (setting x = 1). In order

to prove i) we remark that the meromorphic function f(z) = eq(qx) is a
solution of the q-difference equation

It is meromorphic on C and holomorphic on ~ - ~p, p2, ... ...~, with
f t0) = 1.
We search for a formal q-factorial series solution of this equation

We verify easily that there exists a unique such solution with co = 1:

The series g converges uniformly on every compact of the open set

~ - ~p, p2, ... ...~, and defines a solution g of the equation g(qx) -
( 1 - qx)g(x) holomorphic on ~ - ~ p, p2 , ... , p’~, ...~ . This solution is holo-
morphic at the origin and we have g(0) = 1. But the function f has the
same properties. Then using the unicity in proposition 5.2 we get f = g.
Now we can go back to the proof of assertion iii) of proposition 5.3.

The function ~(x) _ ~-x; q) ~ q) ~ is a solution of the q-difference
equation

holomorphic on ~* . From "unicity" of Laurent expansions at the origin of
solutions of (Oq) (fq(O) = 1), we get = It remains only to
prove that h(0) = 1/ (q; q) ~’ .
We have the identities



Then fq(0) is the sum of the products of terms involving xn in the first
expansion by the terms involving in the second expansion:

Finally in order to get the triple product formula, we have only to change

When ~q~  1, the Laurent series

appearing (up to the sign) in the triple product formula is simply related
to Jacobi 03B8 function. It is a solution of the q-difference equation

holomorphic on ~* . This q-difference equation is an analog of the differential
equation

, , ,

So eq(z) appears as a q-analog of the exponential e 1 x.
We set 

~

The function Eq is ramified holomorphic without zero "on" C*. It is a

solution of the q-difference equation

1
It also in some sense a q-analog of e l .



The function

satisfies the q-difference equation

It is a "constant" for the theory of q-difference equations. We will call q-
constants the solutions of the equation (Cq); the field of q-constants will be
denoted by Cq

Be careful, the notation Eq is abusive; this function depends of the choice
of a Logarithm Log q of q. If we change the determination of this Logarihm
we replace by ^qtx) = 

The function 
1 

is also a solution of the equation (Cq). . It is a q-

constant 
1 
= 1). For a E t we set = There is also

an ambiguity with this notation: we have to choose a such that qQ = a.
Then

The function Eq;a is a solution of the q-difference equation

For a = -1 we will (in general) choose a = q. Then

is a solution of the q-difference equation

The field generated by the function , and the functions Oq;a
(a G ~*; Oq,a(*c) = is a "field of constants" for the theory of
q-difference equations. I think that it is in some sense the minimal field

of constants if one wants to deal with "q-difference equations reducible up
to elementary transformations to fuchsian q-difference equations" (cf. [B]).
Anyway such a field cannot be smaller:



If Iql > 1, it is easy to check that the function

is a solution of the q-difference equation

But the function

is also a solution of the same equation. Then

where p is a q-constant (cf. [B], p. 560). We have

We have

and

The equation (lq) is not fuchsian (it is fuchsian at zero but irregular at

infinity). If we want to deal only with fuchsian q-difference equations we
can try to use a smaller field of q-constants, that is the field Cq,F generated
by the function and the functions ££ (a, b E C*)(1) (we have
Dq;a;b = = = qQ, b = q03B2).

(~) This works for "generic" linear algebraic fuchsian q-difference equations. A rational
linear q-difference system of order one and of rank n, up to rational equivalence, is
associated with a representation of a free non abelian group with two generators
in GL (n; (the q-holonomy representation) [Ra2].



We remark that

is an elliptic function (in the variable t) if and only if

If this condition is satisfied, we have

We will prove below that the field of elliptic functions is a subfield of 

Now we will get asymptotic estimates of 0q and Eq. Some asymptotic
estimates on Eq are well known [H], [Li], [Wa]. Usually they are derived by
quite complicated methods. Here we will see that they follow easily from
the fact that Dq is a q-constant and from the Jacobi triple product formula.

We use this formula for t = u + with v E ~ [ 0 , 1 [. In the corresponding
strip in the t-plane the periodic function Dq is bounded. Then we get an
inequality:

for some C > 0 (independant of x) and Arg Arg q E ~ [ 0 , 21r [.
We have Oq(a’) and is holomor-

phic on a neighborhood of infinity. Then we get an inequality

for some C’ > 0 and x in a neighborhood of infinity and such that
Arg x - u Arg q E [ 0 , 2~ ~ , and an inequality

in the same conditions.



The only zeros of the functions 0q and Dq on the strip

in the t-plane, are the points t = u + (r ~) = u + ~ Z

(z = e 2). These zeros are simple. The function

has the same zeros with the same order, and is periodic with period 2 in
the variable t. Then, if we set

the functions Gq and G-1q are bounded on the strip

in the t-plane.

If we set

we get

There exists p, K2 > 0 such that

for |x > pi and such that Arg x - u Arg q E [ 0 , 203C0 [.
For an entire function f, we set M ( f r) = sup I f ( ae ) I .



PROPOSITION 5.5. - We set

and

Then:

i~ there ezists p, Kl , K2 > 0 such that 0  Kl  I  KZ for ~
such that > p and Arg ac - u Arg q E ~ 0 , 2~ [;

ii~ if q is real, 0  q  l, , we have

with 0  Kl  (  K2, for a~ = such that r > p, and

SP E ~-’~~ ~’~~

iii~ if q is real, 0  q  1, we have

iv) if p is real, p > 1, we have

The assertion ii) is due to G. H. Hardy [H, (54), p. 172]. The assertion
iv) seems "well known" (cf. [Wa, p. 331]). The assertion i) implies some
results of Mellin [M] and Littlewood [Li].
We can now reformulate the definition of the q-exponential growth:



PROPOSITION 5.6. - Let q and k be real numbers, with q > 1 and k > 0. .
Let f be an entire function, with

Then the following conditions are equivalent:
+ o0

i) the series = 03A3 anxn is q-Gevrey of order -k;
n=0

ii~ the entire function f has a q-exponential growth of order 1~~ and a
finite type:
there exist real numbers K > 0, a, such that

iii) there ezist real numbers Ko, Ao > 0, such that

Proposition 5.6 follows easily from lemma 2.2 and proposition 5.5.

To end this section we will explicit a simple relation between the function

Oq and Jacobi 8-function 81: 81 (z, T~, with z, r E ~ and Im T > 0.

Usually q = We will use this relation at the beginning. At the end
we will set q = . We set also x = e2i7rz. .

We have ~~ =  1.

By definition



So using the variable a*: :

Changing now our notation, we set q = (in place of q = . We

get:

that is

with x = q = 

There are similar relations for the other Jacobi 9-functions 92, 83, 90 (cf.
[St (11), (12), (13), p. 580]).

It is easy to check that the field (generated by the function and
the functions (a, b G t*)) contains the field of elliptic functions
associated to the lattice Z (B rZ.

We express Jacobi 9-functions 92, 90, 93 with Da(x) for some values of
the parameter a: a = = -1, a = a = . Then we

use classical relations between Jacobi 9-functions and Weierstrass elliptic
functions p and p’ (cf. [MOS, p. 389]) and we prove that p, p’ E Cq,F.
That ends the proof (the field of elliptic functions is generated on  by p
and ~’ )



6. An application: common solutions
of differential and q-difference equations

If = x"t, = and = so the function

, f ( x ) = satisfy the linear algebraic differential and q-difference equations:

and

More generally it is easy to check that every polynomial P is a

common solution of a linear algebraic differential equation and of a linear
algebraic q-difference equation:

If the degree of P is m, we have

Conversely the only entire functions satisfying such a condition are polyno-
mials :

THEOREM 6.1.2014 Let q be a non zero complez number, with ~q) ~ 1.

Then, if an entire function f satisfies a linear algebraic differential equation

and a linear algebraic q-difference equation

(ai, bj, c and d E ~~x~~, then f is a polynomial.

We can suppose |q| > 1. If an entire function satisfies equations (2) it

admits a q-exponential growth (of some order k > 0), then it admits an

exponential growth of order zero. But if an entire function is solution of a
linear algebraic differential equations and admits an exponential growth of
order zero it is a polynomial [Ral, th. 3.2.8, p. 80].

There is also a similar result for formal power series expansions:



THEOREM 6.2. - Let q be a non zero complex number, with |q| ~ 1.

Then, if a formal power series expansion (resp. a Laurent series with a

finite number of negative terms) , f satisfies a linear analytic differential
equation 

I ,

and a linear analytic q-difference equation

(ai, bj, c and d E ~~x~~, then ,f is convergent.
Moreover if ~q~ > 1, if ai, bj, c and d E and if an is a non zero

complez constant, then f is a polynomial (resp. f E ~~ z J~.

The proof is easy. We can suppose |q| > 1. First we have inclusions

~ ~~x~ $ C ~ ~~xD q~$" for every s > 0 and every s~ > 0. If f satisfies the
equation (1), then f is Gevrey of some order: f E ~ ~x~ $, for some s > 0.
Then / E ~, for every s’ > 0. The convergence of f follows then from
Bezivin’s comparison theorem. ([Bel, proposition 3.4]).

If ai, bj, c and d E t[.c], and if an is a non zero complex constant, then
using equation (2) we can extend the sum f of f to an entire function
satisfying equations (1) and (2) and thence f is a polynomial (theorem 6.1).
The case of Laurent series is similar.

7. Problems and conjectures

We consider the entire function J(z) = 2Z - For n E IN, f(n)
is an integer: the entire function f takes entire values on the arithmetic
progession 0, 1, ... n, ... The following result is well known (cf. [Bo,
th. 9.12.1, p. 175]):

THEOREM 7.1.2014 Let f be an entire function of exponential order one
and type less (strictly) than Log 2. If f (n) is an integer for n E IN, then f
is a polynomial.

There is a similar result if we replace the arithmetic progression
0,1,..., n, ... by a geometric progression 1, q, ... , , qn, ... (with q an inte-
ger, q > 1) and the exponential growth by the q-exponential growth. This
result is due to A. O. Guelfond ([Gel], [Ge2, th. VIII, p. 179]):



THEOREM 7.2. - Let q be an integer, with q > 1. Let f be an entire
function satisfying

with lim cv (r) _ 
r-++oo

Then, if f( qn) is an integer for n E IN, f is a polynomial.

So we see that it is interesting to get some information on the exponential
(resp. q-exponential) order of an entire function, but even more interesting,
if the type (resp. q-type) is finite, to get estimates of this type (resp. q-

type). For entire functions solutions of linear algebraic differential equations
it is possible to compute explicitely a finite list for the possible types using
the characteristic equations of the negative slopes of the Newton polygon
[Ra1]. . First one get precised Gevrey estimates on the formal solutions using
the characteristic equations of the positive slopes of the Newton polygon.
I conjecture that mimicking the methods of [Ra1], it is possible to get
precised q-Gevrey estimates for the formal solutions of a linear analytic
q-difference equation, using the characteristic equations of the slopes of its
Newton polygon (introduced by Adams [Al], [A2]), and after, by duality,
to compute a finite list for the possible q-types for entire functions solutions
of a linear algebraic q-difference equation.

For a fixed q-exponential order k, the q-type is defined mimicking the
usual definition of the (exponential) type (cf. [Wa]):

DEFINITION . Let q, k be real numbers, q > 1, k > 0. Let f be an

entire function of q-exponential order k and of finite type. Then the q-type
of f (the q-order k being fixed~ is

Ao = Inf{A E IR such that there exists an inequality M( f; r)  CaM(eq;.lrk), ,
with Cx > 0 (independant of r) ~ .

Theorem 6.1 is in general false for ~t = 1 (that is q = a E IR): if

q = -1, then an even entire function (like cos a~) satisfies the q-difference
equation - ,f (x).

PROBLEM 7.3 .

Does Theorem 6.1 remain true with q = , with ~l E 



PROBLEM 7.4

Let q be a non zero complez number, with ~q~ ~ 1 (or q = with

A E IR - ).
i) What can be said of an entire function which is a common solution

of a linear algebraic difference equation and of a linear algebraic q-
difference equation ?

ii) What can be said of an entire function which is a common solution
of a linear algebraic differential equation and of a linear algebraic
difference equation ?

Some Praagman’s results [Pr] could be of some use in these problems.
Notice that the entire function cos 203C0x is a common solution of the differ-

ential equation y" + y = 0 and of the difference equation T y - y = 0.
It is well known that the entire function 1 /r( x) (which is a solution of the

difference equation xT y - y = 0) cannot be a solution of a linear algebraic
differential equation. Using "Stirling formula" (for Arg x = 3~/4) we see
that the entire function cannot have a ( q ~-exponential growth. Then,
using our theorem 4.8, we get:

PROPOSITION 7.5. - Let q be a non zero complez number, with 1. .

Then the entire function cannot be a solution of a linear algebraic
q-difference equation.

Using G. K. Immink’s results [I] about asymptotic expansions at infinity
of solutions of analytic difference equations it is possible to derive large
generalizations of this last result (and of the similar result for differential
equations). We conjecture that an entire function, which is a common

solution of a linear algebraic difference equation and of a linear algebraic
q-difference equation 0, 1), is necessarily a polynomial. We

conjecture that an entire function, which is a common solution of a "purely
irregular" linear algebraic difference equation and of a linear algebraic
differential equation, is necessarily a polynomial.

The following precised version of theorem 6.2 is due to J.-P. Bezivin:

THEOREM 7.6. - Let q be a non zero complex number with ~q~ ~ 1, or
with |q| = 1, and q transcendental. Then, if a formal power series expansion
(or more generally a Laurent series with a finite number of negative terms)

satisfies a linear algebraic differential equation



and a linear algebraic q-difference equation

(ai, bj, c and d E ~~x~~, then f is a rational function : f E .

We first suppose 1. From theorem 6.2, we get that / is
convergent. We denote by f its sum. Then f is a solution of the linear
algebraic q-difference equation (2); it follows that it can be extended in a

meromorphic function f on ~. This function f is a solution of the linear
algebraic differential equation (1), so it admits only a finite number of poles,
and there exists a polynomial h such that h f is an entire function. This
entire function is also a common solution of a linear algebraic differential
equation and of a linear algebraic q-difference equation. Then (using
theorem 6.1) h f = g is a polynomial and f = g/h E 

J.-P. Bezivin also pointed out the possibility to get the same result

when |q| = 1 and q is transcendental. Everything takes place in a finitely
generated extension of Q in (. We set = 

. We denote

by KN the subfield of C generated on Q by q, the coefficients of the

polynomials ao, ... , an , bo, ... , bm, , and co ... cN. . If N is sufficiently big
the field KN = K is independent of N and contains all the coefficients

cn (n E lN): f is a solution of (1) and we can compute the cn’s from the
co, ... , cN by a recursion formula. We choose a transcendence basis of K
over Q containing q and we fix an arbitrary transcendental complex number
q’. Then there exists an isomorphism ~p of the field K on a subfield L of ~,
containing q’, such that = q’. We can choose q’ such that Iq’l  1, and
apply the preceding result.
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Appendix(1)

This paper was already accepted when I discovered some old and new
related works. I give here some new references and I make some comments.

In the following q is a complex number, with |q| > 1.

In a set of papers ([P], [Pil, 2, 3, 4, 5]) H. Poincaré and E. Picard
have studied rational systems of q-difference equations (linear and non-linear
cases), and more precisely entire solutions of such systems:

(where Y is a unknown function with values in ~"t, and R a rational function
of n scalar variables).

They said that, "generally speaking", entire functions solutions of such
equations are "new transcendental functions" (Poincaré: classe nouvelle de

transcendantes, Picard: transcendantes nouvelles). It is interesting to try

~) May 1992.



to give a precise meaning to this assertion. In order to do that the idea of G.
Valiron was to try to get some information about the growth of such entire
functions: if that growth is "unusual", then the corresponding function is
a "new transcendental function" (... determiner leur type de croissance, J
ce qui permettra de reconnaître si ces fonctions sont d’une espèce nouvelle.

[V3, introduction, p. 2]). He began to apply this program for simple cases
of linear algebraic q-difference equations; he studied equations (using our
notations)

(where ~~x~), and proved that, for an entire function
solution f :

for some positive constant K’. And more precisely that:

if the degree  of bm-1 is greater than the degree of the bj ’s ( j = 0,..., m-2)
and d.

Such entire functions are "new transcendental functions" : : they have an
exponential growth of order zero and "classical transcendental functions"
have an exponential growth of finite non zero order.

So some simple particular cases of our results are already in [V3]2014 and
our work give a complete answer to the problem of "new transcendental
functions" raised by Poincaré’s and Picard’s works for the linear case.

Unfortunately the non-linear case remains open and seems difficult to

handle: Valiron remarked [V3] that, if q and a are positive integers, with
q > 1, then the entire function is a solution of the non-linear q-difference
equation 

with ,Q = qa . More generally he proved exponential growth estimates (of
finite non zero order) for entire solutions of some classes of non linear q-
difference equations.

In a recent paper [Gr], F. Gramain presented an attempt to prove

Gelfond’s theorem [Gel] by transcendental methods (as M. Waldschmidt
for Polya’s theorem). In that direction he proved a converse version of
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one of our results for entire functions taking entire values on a geometric
progression: proposition 4.4, p. 133. I think that such a result could be

improved using the improvements of our results (that is estimates on the
q-type given by roots of characteristic equations associated to a Newton
polygon) conjectured above.
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