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On a coupled problem between the plate equation
and the membrane equation on polygons

ABDERRAHMAN MAGHNOUJI and SERGE NICAISE(1)

Annales de la Faculte des Sciences de Toulouse Vol. 2, n° 2, 1992

RÉSUME. - Nous étudions un problème d’interface sur un domaine
polygonal du plan, ou les operateurs laplacien et bilaplacien sont con-
sidérés sur chacune des faces respectives. Nous précisons les conditions
nécessaires et suffisantes pour que l’opérateur associé soit de Fredholm
dans les espaces de Hilbert appropries. Lorsque c’est le cas, nous don-
nons une decomposition de la solution variationnelle en parties regulieres
et singulière.

ABSTRACT. - We study an interface problem on polygonal domains of
the plane, where on one face, we consider the biharmonic operator and
on the other one, the Laplace operator. We instigate if the associated
operator on appropriate Hilbert spaces is a Fredholm operator or not. If
it is, we give an expansion of the variational solution into regular and
singular parts.

1. Introduction

We introduce a new kind of interface problems on polygonal domains of
the plane. The novelty is that the order of the partial differential operators
is different on each face. We only study a model problem corresponding to
the mechanical example of a coupling between a plate and a membrane. We
expect that the methods we developed could be extended to more general
problems.

In classical interface problems (see ~3, 10] and the references cited there),
the variational solution has singularities at the common vertices between
the interface and the boundary. Therefore, we can expect the same type
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of results for our problem. Indeed, for interior data in L~, we can give the
decomposition of the variational solution of our problem into a regular part
with the optimal regularity and a singular one. The main idea is to use

a two steps argument by splitting up two of the interface conditions, and
use successively the decomposition results for an inhomogeneous boundary
value problem on each face respectively associated with the Laplace operator
and the biharmonic one.

For more regular data, we could argue iteratively as before, but this
induces too much geometrical conditions (on the angles of the domains).
Therefore we prefer a compact perturbation argument as for boundary
value problems with non-homogeneous partial differential operators [7, 2].
Indeed, we shall see that the difference of order of the operators on the faces
will induce interface conditions with non-homogeneous operators (i.e. it is

sum of operators of different order). This argument only holds under some
conditions on the Sobolev exponents. One of them is also necessary since
we shall show that if this condition fails then the induced operator is not
Fredholm.

We finish this paper by solving, in section 6, a differential equation with
operator coefficients

where A is a closed operator defined on a Hilbert space ~~, ~ E ~, q E lN U~O~
and fq E X. As shown in [11] (see also the references cited there), solving
(1.1) allows us tu solve explicitly some boundary value problems in a finite
cone of ~n with a right-hand side which is a linear combination of functions
of type

,

where (r, 8) are the spherical coordinates, a E C, q E IN U {0} and 03C6q is

regular enough. This result agrees with those of [6]. .

2. Formulation of the problem

Let S~2 be two bounded simply connected polygonal domains of the
plane such that their boundaries have a common side denoted by r. We
denote by Fi (resp. F2) the boundary of n1 (resp. n2) except I‘, i.e.

rj BYB for j = 1, 2.



For j = 1, 2, vj will denote unitary outer normal vector on the boundary
~03A9j of 03A9j and Tj the unitary tangent vector along ~03A9j so that j) is
a direct orthonormal basis. Along the common side r, we omit the index

by setting (v, r) = (v2, r2 ~. We shall denote Sjk, for k E ~1, ... , N~ ~,
the vertices of numbered according to the trigonometric orientation
for Hi and numbered clockwise for will be the interior angle at

5jk. Moreover, for convenience, we assume that 511 = S21 and S12 = 522
belong to F and denote them 51 and 52 respectively. We also denote by
17jk, a cut-off function equal to 1 in a neighbourhood of 5jk and equal to
0 in a neighbourhood of the other vertices. As previously, we may suppose
that: ~11 = 1721 =: 171 and 7712 = 1722 =: ~2. Finally, rj will denote the trace

operator on the boundary ~03A9j of 03A9j; 03B3j0393 will be the restriction of 03B3j to F.

For E > 0 and (j E ] 0, 1 [ (respectively the Young modulus and the
Poisson coefficient of the constitutive material of the plate S~2), we set
p = .~/( 1 _ and we introduce the boundary operator defined only on F

We recall that we use here classical Sobolev spaces, i.e. if H is a bounded

open set of R2 and s a non-negativite integer, then

its norm being denoted For other definitions, we follow Gris-
vard’s book [4].
We consider the following interface problem: given f 1 E 

f2 E Hs2 2(~2)~ h1 E h2 E ~s2 3~2(r) U Hsl 1~2(I‘~, for si,
s2 E IN with s2 > 2, find ui E u2 E Hs2+2(S~2), solutions of
(2.1)-(2.7) below:



We first give the variational formulation of this problem. We set

It is a Hibert space equipped with the inner product induced by x

H2 (SZ2 ) with the norm

We define the sesquilinear form a on V as follows:

where we take

LEMMA 2.1. - For all f 1 E f 2 E L2 (S22 ) ~ ~1 t ~2 E L2 (r), there
exists a unique solution u ~ V of

Proof. - In order to apply the Lax-Milgram lemma, we need to show
the continuity and the coerciveness of the form a on V.

The continuity is a direct consequence of the continuity of the form aj
on and of the Cauchy-Schwarz inequality.



Owing to inequality (2.15) of [12], we deduce that

where ~u~~ ~,~ . 

denotes the semi-norm of But for i E V, the

boundary conditions (2.3) and (2.4) respectively fulfilled by U1 and u2 imply
that the norms and the semi-norms are equivalent (see e.g. Theorem I.1.9
of [8]). Therefore the previous estimate leads to the coerciveness of the form
a on V. D

Let us now show that a solution of (2.8) is a weak solution of (2.1)-(2.7).
We follow the arguments of section 1.5.3 of [4]: we introduce the spaces

these are Banach spaces for the norms

Lemma 1.5.3.9 of [4] proves that is dense in E(A, L2 (S~1 ~~ ; analogous
arguments lead to the density into L2(5~2~~. .

LEMMA 2.2. - The mapping

which is defined on x D(SZ2), has a unique continuous extension as an
operator from E (0 , L2 (SZ1 )~ x L2 (S~2 ~~ into H1/2 (I‘)~ x H3/2 (r)~
(identifying F with a real interval, we recall that u E Hs (r) iff u, the

eztension of u by 0 outside F, remains in H$(R)~.

Proof. - Owing to theorem 1.5.2.8 and corollary 1.4.4.10 of ~4~, given
w2~ E H1/2(I‘~ x ~j3/2(r~~ there exists v = (vl, v2~ E ~ satisfying

and

where the constant Ci is independent of ~w2 .



For a fixed u = u2~ E x let ~a set

By integration by parts, we get (see lemma 2.3 of [12] for the biharmonic
operator) :

Therefore using the continuity of the form a on V and the estimate (2.10),
there exists a constant C2 independant of wl , w2 such that

By density, we deduce that l is a continuous linear form on H1~2(I‘) x
H3~2 (~). 0

Let us notice that the Green formula (2.11) still holds for every v E V
fulfilling (2.9) and every ui E L2(S~1)~, u2 E .E(~2, L2(~2)~, where
the left-hand side has to be understood as a duality bracket.

LEMMA 2.3.- Let 11 E V be the unique solution of ~,~.8~. Then u
fulfils (2.1) to (2. 7).

Proof. - Applying (2.8) with (vl, v2) E x D(SZ2), we see that ul
(resp, u2 ) fulfils (2.1) (resp. (2.2)) in the distributional sense. This also
shows that

U1 , u2 E .l~’ (02, ~2)) . .

Therefore, for arbitrary (z,vl, u~2) E .H1~2(I‘) x H3~2(I‘), comparing (2.8)
with (2.11), when v E V fulfils (2.9), we deduce that

This obviously implies that u satisfies (2.6) and (2.7). 0



3. Regularity for interior data in L2

In this paragraph, we look for conditions on /i E f2 E L2 (SZ2~,
h1 E I~3/2 (I‘), h2 E H1/2 (r), which ensure that ul and u2 have the optimal
regularity, i.e. ui E u2 E ~4(SZ2~; indeed we shall prove that
U1 and u2 admit a decomposition into a regular part with the optimal
regularity and a finite sum of singular functions. We shall see that this

decomposition result will be determined by analogous decomposition results
of two decoupled boundary value problems set in Hi and More precisely,
the first one is the Dirichlet problem in Hi with non-homogeneous Dirichlet
boundary conditions on r, i.e.

The second one is the following mixed boundary value problem for the
biharmonic operator in ~22 :

The regularity of the solution of problem (3.1) was given in theorem 5.1.3.5
of [4], while problem (3.2) was studied in theorem 5.2 of [12] (see also [1]).
In order to recall these results, let us define the singular exponents and
singular functions of problems (3.1) and (3.2).

For problem (3.1), we set

For A E the assosiated singular function is

where (r, 8) are polar coordinates with origin S1k (such that the half-lines
8 = 0 and 8 = contain the edges containing Slk).



For problem (3.2), in order to avoid too complicated notations, we only
recall that the singular exponents are the roots of the following characteristic
equation :

We only say that there exists a set A2k of roots of the equation (3.4) for
k  2 and of (3.5) for k > 3, repeated according to their multiplicity; to
each A E A2k corresponds a singular function denoted by ~~~ (see [12] for
more details). For I~ = 1, 2, the polynomial resolution (cf. § 3.C of [12] and
(2.9) of [1]) implies that A = 2 induces a singular function given by

where (r, 8) are polar coordinates with origin Sk and p~ is a polynomial
of degree 2 (in the cartesian coordinates). Remark that E H2 (S~2 ~ .
Therefore, for convenience, we shall add .~ = 2 to A2k, for k = 1, 2 and still
denoted it by A2k.

THEOREM 3.1. Let fl E g E Hsl ~1/2(I‘) fulfilling
= g(S‘2 ~ = 0, with sl E IN . . Suppose that

then there exists a unique solution u1 E of problem ~3.1~ which
admits the following expansion:

where u10 E c1k03BB ~ C depend continuously on fi and g, and

1k(s1) = 1k ~ ] 0 , s1].

THEOREM 3.2.- Let ,f2 E Hs2 2~5~2~, hi E Hs2 1~2~I‘~, h2 E

HsZ -3~2 (r~, with s2 E IN, s2 > 2. Assume that



then there exists a unique solution u2 E ~2 (~2 ~ of problem ~3.2~ such that

where u20 E Hs2+2(03A92), c2k03BB ~  depend continuously on f 2, hl , h2. Here
we denote 2k(s2) = {03BB E A2k 1  R03BB  s2 + 1}.

Let us now go back to our boundary value problem (2.1)-(2.7). Far

from the interface F, we see that it corresponds to (3.1) or (3.2) ; therefore,
the regularity of ul and u2 is given by the previous theorems. Analogous
arguments as those developed in the sequel show that ul and u2 have the

optimal regularity in a neighbourhood of a point of r. Therefore, we only
have to study the behaviour of ul and u2 in a neighbourhood of the common
vertices of S~1 and 5~2.

THEOREM 3.3.- Let f 1 E ,f 2 E L2 (~2 ~ ~ 1~1 E H~/~(C),
h2 E H1/2(r) and u = (ul, u2) E V be the solution of ~,~.1~-~2.7~. For

k E ~1, 2~, we have:

a) if 03C91k > 03C0, then ul admits the following decomposition in a neigh-
bourhood Vk of S~ :

where ulp E , ~k E C;

b) if 03C91k ~ 03C0, then ui E H2(Vk r1 

Proo,f . We may look ui E H1 (~1 ) as the solution of

Since u2 E H2 ~SZ2 ~ and fulfils (2.4), theorem 1.6.1.5 of ~4~ implies that

Therefore, applying theorem 3.1 with sl = 1 to problem (3. II), we get the
result except if = x. In this last case, (3.12) and theorem 1.5.1.2 of
[4] allow to reduce (3.11) in the neighbourhood Vk D Hi to a homogeneous



Dirichlet problem with interior data in L2. Classical regularity results on
smooth domains leads to the conclusion. 0

To study the regularity of u2, we now use the equations (2.2), (2.4), (2.6)
and (2.7), i.e. u2 is seen as a solution of

in a neighbourhood Vk of Sk.

~r, then and we may directly apply
theorem 3.2 with s2 = 2 to (3.13). But, if 03C91k > 03C0, only yl has

the adequate regularity H1/2, while the normal derivative of the singular
function 03C3k03C0/03C91klap has not. The idea is to compute explicitly the contribution
of this singular function. By theorem 6.1 hereafter, there exists a solution

T2 E H2~~2 n Vk) of

Therefore, the function u21 defined by

belongs to H2(03A92 n Vk) and is a solution of problem (3.2) in SZZ n Vk with
data f2 E L2~S~2 n Vk), hl - 0, h2 = E ~1~2(r n Vk).
Therefore, applying theorem 3.2 with s2 = 2 to u21, we obtain the following
theorem.

THEOREM 3.4. - Let u = u2) ~ V be the weak solution of (2.1)-
(2.7) with data f1 ~ L2(03A91), f2 E L2(03A92), h1 E H3/2(0393), h2 E H1/2(0393).
For k = 1 or 2, let us suppose that

~aE~~~a=3~n~12~=~,



then u2 admits the following decomposition in a neighbourhood of S k: :

where u2o E H4(S~2), c~ E ~C and the last term of the right-hand side

of (3.14) is zero x.

4. More regular data

In theorems 3.3 and 3.4, if we increase the regularity of the data, we
expect to increase in the same way the regularity of the regular parts. One
method is to use the same iterative procedure as in section 3; unfortunately,
it imposes too much conditions and is complicated. Therefore, we prefer to
use a compact perturbation argument.
We need to introduce the Hilbert spaces

The operator induced by the boundary value problem (2.1)-(2.7) is
clearly the following:

We look for conditions on sI, s2 which ensure that is a Fredholm

operator. To do that we split up into its principal part and
a remainder as follows:



Obviously, we have

THEOREM 4.1. - If sl E ( s2 - 1 , s2 + 1 ~ ] and the Fredholm conditions
(3.6) and ~3. 8~ hold, then ~ is a Fredholm operator and

But this is equivalent to the fact that u2 is a solution of (3.2) and ui is
a solution of (3.1) with g = 12ru2 on r. Therefore, applying theorem 3.2
to u2, we deduce that there exists a unique solution r2 E of (3.1),
which admits the decomposition (3.9). As in theorem 3.4, looking for ui we
use this decomposition (3.9) of u2. For all k E {1, 2}, A E A2k, theorem 6.1
below gives the explicit solution E of (4.6) in a neighbourhood
v~ of s~ :

Furthermore, theorem 3.1 proves the existence of a unique solution v1 E
of problem (3.1) with data fi, g = ;2ru20 E H~z+3/2 (r)

Hsl +1/2 (~), since sl  s2 + 1, which admits the decomposition (3.7). Let
us notice that in that decomposition (3.7), the coefficients c1k03BB depend
continuous on f 1 and 03B320393u20; and therefore continuously on , f 1, f 2 , h1, h2 . 
Setting

we have proven that there exists a unique solution u = (ul , u2 ) E V of
(4.5), which admits the decomposition



where Wo E E C depend continuously on fl, f 2, hl, h2 and
we have set

with the agreement that = 0, 3.

This establishes that if ( fi f 2 , hl , h2 ) E B~ sl ’s2 ~ is such that

then it belongs to the range of 

Reciprocally, if such a datum belongs to the range, then there exists a
solution of (4.5); then u2 is a solution of (3.2) and ul

of (3.1) with g = Due to theorem 3.2 and after theorem 3.1, this

implies that it fulfils (4.8). So we have proven that the range of is

closed and that (4.4) holds since is clearly injective. []

THEOREM 4.2. - If sl E s2 - 1 , s2 + 1 ~ ] and if ~3.6~ and ~3.8~ hold,
then J is a Fredholm operator and

Proof. - the assumption sl > s2 - 1 implies that is a compact
operator, because H81-1/2(r) is compactly imbedded into Hs2-3/2(I‘).
Using a classical perturbation theorem (see theorem IV.5.26 of [5], for

instance), we deduce the theorem. 0

Since we want to give the asymptotic behaviour of the solution of our
problem (2.1)-(2.7), we need the singularities of this problem, i.e. the

singularities of . As M. Dauge in ~2J for non-homogeneous operators,
we compute them by recurrence starting from the singularities of the

principal part In view of (4.7), we see that the singularities of
are the So we proceed as follows: for k = 1 or 2, we set



and for p E IN, is a solution of (4.11 ~ hereafter in a neighbourhood Vk
of S k :

Splitting up ~ ~ ~~ into its components,

problem (4.11) is equivalent to (4.12) and (4.13) hereafter solved in that
order using theorem 6.1.

The associated singularity of L~~1’$2 ~ is defined by (compare with § 5.C of
[2])

Let us recall that T ~~~ is called a singularity of L~s1 ~s2~ because it

belongs to V and not to while L~~1 ~s2 ~ T ~~~‘ belongs to B{$1 ~s2 ).
Let us check this last assumption. From (4.11) and (4.14), it is clear that

where pmax is such that

Therefore, E } iff



In view of the form of and theorem 6.1, ~ir(~/~)~~ i behaves
like in a neighbourhood of So (4.15) leads to the adequate
regularity.

Let us finally notice that the above procedure only concerns the singu-
larities induced by 5i and 52 (i.e. the for k = 1 or 2). Indeed, for

~ ~ 3, ~(~’~) ~ ~~~~~ in a neighbourhood so the singularities of

L~’’~ are those of Z(~’~B i.e.
=~~’~~~, V~~3.

We now recall lemma B.I of [2] concerning the relationship between the
index and a singularities space.

LEMMA 4.3 (M. Dauge [2]).2014 Let ~i C Ao and ~i C Bo be two pairs
of Hilbert spaces such that j4.i is dense in Ao and B1 is dense in Bo. Let

Mo be a Fredholm operator from Ao into Bo, which may be restricted to a
semi-Fredholm operator, denoted by M1, from Ai into B1.

We suppose that there exists a finite dimensional space E having the
following properties:

Then the following conditions are equivalent:

Ml is a Fredholm operator and dim E = ind Mo - ind M1, (4.20)

for any u E Ao such that Mu E B1 (4.21)
there exists v E Al and w E E such that u = v + w .

We are ready to prove the theorem 4.4.

THEOREM 4.4. - Under the assumptions of theorem l~ .2, given ( f 1, f 2,
hl, h2) E there exists a unique solution u E V of problem (2.1)-
(2.7), which admits the following decomposition

where p E ~ and E C.



Proof. - We apply the previous lemma with

where A is the natural isomorphism between V and VI defined by

Actually, is identified with a subspace of Bo by the fciowing
continuous injection: for F = ( fl, f 2, ~1, h2) E we set

The restriction of Mo to A1 is clearly Mi because Green’s formula (2.11)
implies that

The space is dense in V because we can prove that U SZ 2 ) is

dense in V. Since A is a isomorphism, we deduce that A(s1 ,s2) is dense in

V. This implies the density since 

Finally, the space E is the vector space spanned by the for

j E {1, 2}, A; E {1,..., A E We have previously checked that
it fulfils the assumptions (4.1?)-(4.19). ~

To finish this section, let us show that it is possible to hit the limit case
sl = s2 - 1.

THEOREM 4.5. - Let sl = s2 - 1, assume that ~~e conditions ~3.6~ and
~3.8~ hold and moreover that the Fredholm condition ~3.8~ holds for s2 - 1
too. Then the conclusion of theorem l~ .l~ still holds.

Proof. - We firstly apply theorem 4.4 with the same s1, but with s2
replaced by s2 - 1. Therefore, the variational solution u of (2.1)-(2.7)
admits the decomposition (4.22) with s2 -1 instead of s2 . So the regular part
o has the optimal regularity in Hi but not in S~t2. The second component
of this regular part is actually solution of a boundary value problem (3.2)



with data which are the sum of an optimal regularity part and a contribution
of the singularities. As in theorem 3.4, we compute explicitly the solution of
this boundary value problem with a singular right-hand side using theorem
6.1. The regular right-hand side induces a decomposition into a new regular
part in Hs2+2 (~2~ and singularities of the boundary value problem (3.2)
for ~a E ~ [ 1, s2 + 1 [, due to theorem 3.2.

This allows to show that ~ is a Fredholm operator of index given
by (4.9). At this step, we follow the arguments of theorem 4.4. ~

5. The non Fredholm property

The aim of this section is to show that in theorems 4.4 and 4.5, the
condition si E ~ s2 - 1, s2 + 1] ] is optimal. In other words, we shall prove
that if this condition fails then the operator L~’~) } is never a Fredholm

operator. The proof of this result is again based on a compact perturbation
argument.

In the sequel, we shall need the following technical result.

LEMMA 5.1.2014 Let X, , Y be two Hilbert spaces and A a linear operator
from X into Y. . Suppose that there exists a finite dimensional subspace E
of Y such that

R(A) D ~ . . (5.1)

Then the range of A, R(A), is closed and its codimension is finite.

Proof. - Due to (5.1 ), R(A) admits the following orthogonal decompo-
sition

R(A) = (R(A) n E) ~ E1 .

Since R(A) n E is a finite dimensional linear manifold of Y, it is closed.

Therefore, the previous decomposition implies that R(A) is closed. 0

In the following, we suppose that 81 > s2 + 1; the case si  s2 - 1 being
treated analogously.
We need to introduce a variant of the operator L~S1 ~s2 ~, which take into

account the non-homogeneous interface condition (2.5). We set



Let us notice that theorem 1.6.1.5 of [4] shows that is well defined.

LEMMA 5.2. - Suppose that the angles at the ends o, f I‘ are different from
?r, then Fredholm operator iff is a Fredholm operator.

Proof. - Clearly, and are injective ; therefore the asser-
tion only concerns their ranges.
. Suppose that (s1 ,s2) is a Fredholm operator. Then there exists a finite
dimensional subspace E of such that

But this implies that

where P is the projection in ~ on B{sl ~s~ ~. Since PE has a finite

dimension, lemma 5.1 allows us to conclude that is a Fredholm

operator.

. Let us now assume that L{$1 ~s2 is Fredholm. As previously, there exists
a finite dimensional subspace El of B{~1 ~s2 such that

Furthermore, using theorem 1.6.1.5 of [4] and the assumptions of the lemma,
we can prove that the operator

is onto. So it admits a continuous right inverse, denoted it by R.
Let us now fix ( F , h~ E satisfying



Then there exists u E such that

This means ( F , h) belongs to the range of (s1 ,s2 because v defined by

belongs to ~s~ and fulfils

Again, lemma 5.1 implies that ~{si ~s2 ~ is Fredholm since (5.2) is equivalent
to

THEOREM 5.3. - Suppose that the angles at the ends of F are different
from ~, if sl > s2 + 1, ; then is not a Fredholm operator.

Proo, f - We introduce the operator

Setting

we remark that

This implies that K is a compact operator because Hsl +1~2 (I‘~ (resp.
H$1+1~2(I‘)) is compactly imbedded into Hs2+3~2(I‘~ (resp. Hs2+3~2(I‘)).

Let us suppose that L~s1 °$2 is Fredholm. Then



is also Fredholm. This leads to a contradiction since the kernel of -~-
K is not finite-dimensional (indeed U1 does not satisfy any condition on the
interface). 0

Remark 5.4. - The amplitude 2 in the condition sl E ~ s2 - 1, s2 + 1 ~ ]
is exactly the difference between the order of the biharmonic operator and
the Laplace operator. This means that if we consider elliptic operators of
respective order 2m1 and 2m2, then the amplitude would be 2m1 - 2m2 I.

6. Logarithmico-polynomial resolution

Theorem 1.3 of [6] gives the existence of a solution to the boundary value
problems (4.12) and (4.13). Here, following [11], we give another proof of
this result, based on the use the Jordan chains. Indeed, it was shown in

[11] how to reduce each of these boundary value problems into an abstract
differential equation in a Hilbert space using the change of variable r = e~ t
and reducing the order. With the particular right-hand side of (4.12) or
(4.13), the equivalent differential equation we get is

where A is a closed operator defined in an appropriate Hilbert space X, for
some A E ~, Q E IN U ~0~ and fq E X, for all q E ~0, ... 

In order to solve (4.12) or (4.13), it is therefore equivalent to solve their
corresponding problems (6.1). The case Q = 0 was solved in paragraph 4 of
[11] in an abstract setting (it was called the polynomial resolution because
for A E IN, it corresponds to the resolution of problems (4.12) or (4.13) with
polynomial data). We shall extend this technique to the general case Q ~ 0.

Let us recall the abstract setting of [11] : X is a Hilbert space, A a closed
operator from X into X such that its domain D(A) is also a Hilbert space
with its own topology. We assume that there exists a closed subspace Z of
X such that D(A) is dense in Z and is compactly imbedded into Z. Finally,
the resolvent set of A is assumed to be nonempty.

The first idea to solve (6.1) is to look for a solution u in the same form
than the right-hand side, i.e.



where pq E D(A) are the new unknowns. In that case, problem (6.1) is

equivalent to

If A is not an eigenvalue of A, then for arbitrary f q E X (6.3) has unique
solutions given by

If A is an eigenvalue of A, the previous technique fails in general. As

in (11], we shall use the associated Jordan basis {{03C603BB, ,k} 03BA(03BB, )-1K=0 }M(03BB) =1
and the dual Jordan basis ( {03C803BB, ,k }03BA(03BB, )-1 =0}M(03BB) =1 . Let us recall that they

>= ,=i
fulfil (see lemma 2.3 of [11] ):

for every k = 0, ... , J~C~a, ~c~ - 1, , k’ = 0, ... , J~C~a, ~’~ - 1, , =

1, ..., M(À) and the conventions ~p~‘~~‘~-1 = 0 and ~~.~‘~~~~~~‘~ = 0.
For all q E IN U ~0~, let us denote

Using (6.5), we check that

Now, we look for a solution u of (6.1) in the form



where pq E D(A) and c;~q are unknown. In view of (6.9), problem (6.1) is
thus equivalent to

with the convention ~p~+1 = 0. Since the range of A - A is the orthogonal
of ker ((A - A)*) = Sp ~~~~~‘~~~~‘~~‘~-1 ~Mt~~ , , this problem (6.11) has
solutions q = 0, ..., Q iff

Using the orthogonal conditions (6.7), (6.12) is equivalent to

This means that we solve problem (6.11) by recurrence starting with the
value q = Q. Indeed, for each q, assuming that ~ ~ exists, then taking 
given by (6.13), we deduce the existence of at least one solution ~pq of (6.11).
Since ~p~ exists (recall that ~0~+1 = 0), we have proven the theorem 6.1.

THEOREM 6.1. - For all .1 E C, Q E IN U ~0~, pq E X q E {0,..., Q},
there exists a solution u(t) of problem (6.1 ) in the form

where the sum over ~u disappears if ~l is not an eigenvalue of A; otherwise,
the are given by ~6.13~ and are solutions of ~6.11~.
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