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Interpolation on plane sets in C2(*)

D. E. PAPUSH(1) and A. M. RUSSAKOVSKII(2)

Annales de la Faculté des Sciences de Toulouse Vol. I, n° 3, 1992

RÉSUMÉ. 2014 On donne les conditions analytiques et géométriques pour
le prolongement analytique de fonctions par ensembles plates avec

l’estimation de l’indicatrice radiale.

ABSTRACT. - Analytic and geometric conditions are given, for holo-
morphic extension of functions from plane sets with estimates of radial
indicator.

Introduction

We consider the problem of extension of a function holomorphic on
an analytic variety in CZ to an entire function with estimates of growth.
The varieties we deal with are unions of countable families of hyper-
planes. We are interested mainly in the question of existence of an ex-
tension in the class ~ p , h~z~ ~ of functions whose radial indicator L 

lim supt~~ t-03C1log|f(tz) I with respect to order p does not exceed a given
function h(z), although the general character of estimates in our theorem 4
allows to consider the problem also in other classes.

Interpolation problems in classes of functions defined by growth restric-
tions are traditional, and we have no possibility to give a complete historical
overview of the question. Therefore we would like to mention here just some
of the papers, to which, as it seems to us, the present one is close in setting
of the problems and character of the estimates. One must begin here with
L. Hormander’s theorem on extension from a subspace in N. Horman-
der’s method, based on the solution of ~-problem with bounds, was used
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afterwards for solving interpolation problems in many papers (including the
present one). C. A. Berenstein and B. A. Taylor [BT2] obtained a
number of results on extension with bounds from analytic varieties of rather
general form. Their results, however, do not apply to the class [p, h(z) ] ,
because one needs more precise estimates here. Interpolation problems in
this class were treated in the papers of L. I. Ronkin [Rol], [Ro2] and of
L. I. Ronkin and one of the authors [RoRu] . The analytic varieties consid-
ered there were either algebraic or pseudoalgebraic. A solution of extension
problem in the class [p, h(z) ] from smooth varieties of codimension 1 in

~N was constructed in [Ru]. The problem of extension in the mentioned
class from a discrete set in ~~ was solved in [Pal]. In the same paper for
the first time in questions of interpolation were used entire functions, whose
zero set was a union of hyperplanes (the so-called functions with " plane "
zeros). Our paper deals exactly with sets of this type; the difficulties that
arise here are due to the fact that such a set is not smooth (with the ex-
ception of the trivial case, when all the planes in the family are parallel).
We note here, that all the results we know, where singularities are allowed,
apply to either algebraic or pseudoalgebraic varieties.

Plane analytic sets possess a number of properties, which simplify the
construction of the extension. The main of them are the continuity of the
radial indicator of an entire function with plane zeros, proved by L. Gruman

[Gru], and also the simple geometric structure, investigation of which allows
to find practically checkable sufficient conditions of the existence of the

extension in our class. We also note, that we use as a tool theory of functions
of regular growth with plane zeros, developed in [Pa2] .

In general, for entire functions of several variables, there exist two

different definitions of completely regular growth (see [LGru], [Ro4]) which
are nonequivalent. However, for functions with plane zeros, it was shown in

[Pa3], that both definitions coincide. We remind the one that we actually
use (see, e.g. [Az], [Ro4]).
An entire function f (z) with radial indicator L(z) is called the function

of completely regular growth if the functions ut (z ) = ~-p ~ log I f (tz ) I tend
to L(z) in the sense of distributions in IR2N when t -~ oo. By a theorem of
Azarin, this implies, in particular, that



for some Cg-set E. Here Cg means Co for each E > 0, and Co is a set in
IR2N, which may be covered by balls of radii r~ centered at z~ so
that

The structure of a Cg-set is not well investigated. However, our lemma 5
below gives some information about it. Namely, it is proved that, given a
point z and a Cg-set E, one can always find a circumference centered at z
of radius not greater than b ~ z ~ lying outside E.

Consider a set of hyperplanes A in C~. Each hyperplane H is uniquely
defined by its perpendicular vector. Denote by n A (K) the number of all
perpendicular vectors of A contained in a set K. Put Kt = {z : (zit) E K}.
One says that the family of hyperplanes A is regularly distributed, if there
exists a density

for almost all compacts K in ~~. If the order p is an integer one has
to add one more condition implying some symmetry in the distribution of
hyperplanes.

There is a relation between the density d and the indicator of the
canonical product associated to the hyperplane set A, see [Pa2]. We will
write A E Reg[p, h( z)] ~ if A is regularly distributed and the corresponding
indicator is h(z) .

It was shown in [Pa2], that if an entire function has plane zeros which
are regularly distributed, then it has completely regular growth.

In what follows h(z) will be a continuous positively p-homogeneous
plurisubharmonic function.

Remind that the radial indicator (with respect to order p) of a
function holomorphic on an analytic variety A C C~ is defined (see
~Rol~ ) as follows:

A divisor A is called interpolatory for the class [ p, , h(z~ ], if the problem
of free interpolation on A (i.e. of extending a function 03C6 analytic on A with



h(z) to an entire function + with h(z)) is solvable in
this class.

To give an idea of our aims, we recall some one-dimensional results on
interpolation in the class [p, h(z) ~ . We use some notions from [Gr] and
[GrRu].

Let A be a set of points (divisor) in ~. Denote by nA(K) the number of
points in A n K. For a compact set K put again Kt = {z: (zit) E K~ and
K03C3 = {z: : dist(z, K)  r}. For a point z ~  we write nz(t) for nA(Bt(z)),
nz(t) for [nz(t) - l]+ and for 

Define the (upper) density dA(K) by the formula

and the " concentration "

THEOREM ([Gr], see also [GrRu]).- The following statements are

equivalent:

i~ A is an interpolatory divisor for the class ~ p , h(z~ ] ; ;
ii) there exists an entire function f(z), of completely regular growth with

indicator h(z~, , with divisor containing A and with the property

iii~ the following two conditions hold:

where is the Riesz measure associated to the subharmonic function

We will call (a) a condition of " analytic type " and (gl)-(g2) conditions
of " geometric type ". Below we obtain only sufficient conditions of

interpolation, but of both analytic and geometric type.



Our main results are stated for However, many of the assertions
hold also for ~N with N > 2 (some of them are formulated and proved
in the general case). We believe, that the extension of all the theorems
to the general case meets the difficulties of purely technical (but not of
conceptional) character.

Results

It will be convenient to call a function g(z) negligible if

Consider a hyperplane divisor A in ~2. Let

and let Skj = Hk D Hj .
Denote by tkj the maximal radius of a polydisk not intersected

by hyperplanes different from Hk and Hj:

We make an important assumption:

Put Tkj = Ukj - U~~ = U = U k=1 
We fix a continuous positively p-homogeneous plurisubharmonic function

h(z) and state our analytic conditions of interpolation.

THEOREM 1. - Let f(z) be an entire function in C2 with radial indicator
L f(z) = h(z), with zero set of the form ~1~ satisfying (2), and such that

Then A is an interpolatory divisor for ~ p , h(z) ] . .



This result can be somewhat generalized by letting f(z) have indicator
" smaller " than h(z~.

THEOREM 2. 2014 Let f(z) be the same as in theorem ~ with the only
difference that h(z) - Lf(z) is a plurisubharmonic function in ~2. . Suppose
that (A ) holds.

Then A is interpolatory for ~ p , h(z) ] . .

Remark. - It is clear that the conditions (2) and (A) are not indepen-
dent. As we will see later, (A) will imply some estimates of g(z). We also
note that the estimate from above in (A) always holds in our case, and the
nontrivial part of (A) consists in the estimate from below of 

Theorems 1-2 give some analytic sufficient conditions for interpolation.
If we assume that our divisor A is regularly distributed, it is possible to give
geometric sufficient conditions.

We denote by nz(t) the number of hyperplanes from A intersecting the
ball Bt(z); put = [nz(t) - 1]+ and = |z|03C1 nz As in

one-dimensional case we define a kind of " concentration ":

THEOREM 3. - Let A be a set of hyperplanes in ~2 satisfying (2). Let,
further,

Then A is interpolatory for ~ p , h(z) ] . .

Examples of sets satisfying (G1)-(G2) may be given by either considering
a finite collection of parallel families of hyperplanes, each of them being
regularly distributed and interpolatory when restricted to the corresponding
perpendicular complex line, or by small perturbations of a parallel family
satisfying the same requirements, if we need to obtain infinite set of

directions.

Our theorems on interpolation in ~ p, h(z) ~ are derived from a rather

general result, which we present below.



We denote by PSH(n) the set of functions plurisubharmonic on a set
n C CN, and by the set of analytic functions in o. For a function

g(z) we use the denotions = g() and Mg(r) = 

Let functions u, vj ( j = 1, 2, 3), v (z) = vil~ (z ) ~- v21~ (z), z E ~2, be such
that

Let now f (z) be an entire function in ~2 with plane zeroes, and let
A = ~ at~~ } ~ 1 be the sequence of feet of perpendiculars dropped from the
origin onto zero hyperplanes Hk of the function ,f (z). We assume (without
losing generality) that a(k)1 ~ 0, V k = 1, 2, ... We use the same notations
as above. Let, as before, skj = Hk n Hj and let rkj = ,

We assume further that the polydisk U~~ = contains no points
of the set A B (Hk UHj), i.e.

We denote also by U~~ the polydisk and the union of all U~~
by ~7. .

Now we are able to state our theorem on extension with a majorant of
general type.

THEOREM 4.2014 Let

Then for each 03C6 E satisfying

there exists such + e A(2) that
I) +(z) = yo(z), V z e A,

it) + 16 + 3 log(1 + |z|2) + C, z E 2.



The paper is organized as follows. First we prove our theorem 4 on

extension with estimates of general type. From this theorem we deduce

the sufficient analytic conditions for interpolation in the class [p, , h(z) ~
(theorem 2). Theorem 1 is just a particular case of theorem 2. Finally, we
prove that our geometric conditions (theorem 3) imply that the condition
(A) of theorem 1 holds.

Proof of theorem 4

We prove some preliminary statements first.

Introduce the following denotions:

where K is a set in C2 and dist is the euclidean metric.

LEMMA 1. - Let an entire function f(z) vanish on hyperplanes Hl =
~a = ~~.v~ and H2 = ~~1 = -~z.u~ and have no other zeros in the polydisk

R  1. Let, further, f satisfy (5) and

The lemma actually states that if on two zero hyperplanes we have an
estimate for V f (z) from below outside a neighborhood of their intersection,
then, first, the neighborhood is not too small, second, the angle between
these hyperplanes is not too small, and third, outside some ~-neighborhood
of these hyperplanes the function f (z) can be estimated from below.



Proof. - It is enough to suppose that ~~~  1, and estimate ~~~ from
below.

Denote r = R/ 8. Fix w, = r and consider the function 

w). In the disk ~.~ ~  r the function has zeros at points ~~w
and has no other zeros in ~~~  R. Since Vf(z) at z E Hj is perpendicular
to Hj, we get from (8):

According to lemma 3 of [BT1], it is possible then to estimate the distance
between the zeros from below:

and the first two statements are proved.
To prove the third statement we consider for fixed w, r  R, the

function

We have = 1, M,~w (1)  4 e2u~~2"~w~, ~ 0 for  1.

Applying to the function ~~, the Caratheodori inequality, we get

Taking A = -(1/2) ’ in t he last inequality and using the
previous estimates, by the definition of we obtain



Consider now the function

We have = 1, Mgw (R)  32 . (1/3) e5v[R](0) since

With the help of the Carathedori inequality we get

Hence (we use the estimate of I and the fact that 1)

when ~ ~ ~ E [r, R/ 2 ~ , ~ ~ ~  R/ 2. If, additionally, (A, w) E U H2 )
then

Note that (1/4)e-v~~~ {~~, we have e  ~ and so the set

B = ~(~1, zv) : e r , R/2 ~ , ~w~ = r} is contained in U H2).
Hence (12) holds for (A, w ) E B . Since the function h.x(w) = f ( a, w) for

fixed A E [?*, R/2 ~ has no zeros  r}, the estimate (12) holds also
inside this disk. Thus, for (A, w) E U H2) n we obtain (11),
and the lemma is proved.

LEMMA 2. - Let HH = ~a = ~~tv~ and H2 = (h = -~w~ be fwo hyper-
planes with ( satisfying (10) and let Sp E A(H1 U H2) satisfy

Then there exists such a function P E A(~2) that P(z) = z E Hl U H2



Proof. - We may assume again that ~~ (  1.

Obviously, is an entire function with

We now define P ( z ~ by

It is evident, that P is entire, P(z) = for z E Hl U H2. The required
estimate (13) follows now from the estimate of 

The lemma is proved.

Proof of theorem l~

We use Hormander’s scheme. First a C°°-function h(z) solving the
interpolation problem and having appropriate estimates of a-derivatives is
constructed. The construction consists of two steps. First we define a
function g(z) outside some neighborhoods of the points skj and give some
estimates. Then we " paste " to g a function which solves the interpolation
problem in these neighborhoods and check the estimates of the obtained
function. The final step, as always, is based on solution of 8-problem with
bounds.

Let Ao E Then according t o (6) we have

Using the mentioned lemma from [BT1] we obtain



Set rao (w) = 

It is easy to see that ~z,~,(0~ = 1, ~.~,(~~ ~ 0 for  1 and Mw (1) 
. By the Caratheodori inequality for a ~  1/2 we have

Let now X(t) be a C°°-function on IR+, Ix(t) I  1, V t, = 1 for

t ~ 1/4, x(t) = 0 for t > 1/2 and C = 

Note that g E C°°(~2 ~ U) and that

In view of (6) and (14) the equation f(A, w) = 0 can be solved with
respect to A on the set ~~a -  1/2; Iw - Wo  ~~ for g small
enough. The corresponding function is holomorphic in the disk

~ ~w - wol  ~~ and so = 0 in this disk.

Besides that, since



(we have used here (6) and the fact that e~~’~
by (5)).

Let us estimate now for (A,~) We have

(the last inequality holds by (3) and (15)).
Note that for (~, w) E A the estimate (14~ implies

Since 8g = 0 outside A we come to

We pass to the second step of our construction. We would like to use
lemma 2 for the extension of ~p to the neighborhoods of Choose the
coordinates z2) in the neighborhood of s~~ (which will become the

origin for a while) so that the equations defining Hj and Hk have the form



{z’1 = and {z’1 = -03B6z’2}. Denote by U(03B1)kj the polydisk Urkj/03B1(skj) (in
old coordinates) and by the similar polydisk in new coordinates. We
obviously have then

Note that (6) implies the estimate

which holds for z’ E (Hk U Hj) B V82kj. Hence, in view of lemma 1,
v3 ~ v and also (10) takes place. Thus the conditions of lemma 2 hold.

According to this lemma, there exists an entire function Pkj (z ) which
extends ’P from Hj and Hk and satisfies (in view of (13) with R = 
the estimates

In order to " paste " the functions to the function we set

which shows that the function (1 - g(z) is correctly defined in ~2.
Set now 

We estimate |~h(z) . (f(z))-1|. For z ~ U(4)kj we have ~h = ~g, and
- (8)~h = 0 for z ~ .



Let z 6 U(4)kj B U(8)kj. Then

First estimate 

Put A~~ = A n (U~4} ~ U{g~~ and note that for z E Akj we have an estimate
of /(~ I from below, and so, using (16) and (18) we get

Since on the set

the function is holomorphic and on the boundary we
have (19)~ by the maximum principle, we get

It remains to estimate (Pkj - the set .

Note that on G~~ our function 9 == 0, so that we have to estimate .

We use lemma 1. Introduce the same coordinates as before, when we
constructed Pkj. It was already noted that Ukj D ; .

Set R = = (1/4) 



Now we find ourselves within the conditions of lemma 1, which implies
that on the set def B V(82)kj we have the estimate (11). Observe
that V’kj . ~ U(4} B U(8)kj. Hence for z E U(4)kj B U(8}, dist(z , H j U Hk) > ~, we
get from (11):

The estimate (20) in view of the maximum principle and (16) holds also
for those points of Gkj, the distance from which to Hj U Hk is less than ~.
Hence (21) holds as well. So for z E U(4)kj B U(8)kj (17) and (21) imply

We construct the function ~ in the form +(z) = h(z) -,C3(z) f ~z), where

Evidently, ~ E From (22) it follows that

By Homander’s theorem in this case the equation (23) has such a solution
{3 that

It is easy to show now that

which implies the desired estimate. Now, since h(z) = p(z) for z E A, we
have ~(z~ _ p(z) for z E A. This completes the proof.



Analytic conditions of interpolation

We prove theorem 2 now. Note that the conditions of theorem 1 contain
the estimate of the derivative in some certain direction. However, with the
help of the following lemma, for functions of finite order this condition may
be formulated invariantly, with (6) replaced by an estimate .

LEMMA 3. - Let ~a{~~ } 1° be a sequence of points in ~N, and ~~y~ ~ 1° be
a sequence of positive numbers,

Then there exists a vector r E N, || = 1, that

Proof. - Let S’1 be the unit sphere in ~N and a~ be the normalized
surface measure on 5’!. The following equality takes place for a summable
function p of one variable (see [Rud], p. 23):

Fix k E !N and consider a function



Thus 0" {( E Si (( , I   ( N - . Therefore

00

and there exists r E S 1 : T ~ U {( E 51 : ~ ~ I  y~ ~’
k=1

The lemma is proved.
We are able to prove our theorem on analytic conditions of interpolation

in the class ~ p , h ( z ) ~ .

Proof of theorem ,~

As it was mentioned already, we are going to use our theorem 4. First of
all we show that the estimate (A) holds with Vf(z) replaced by 
where T is some vector on To do this we note that due to the fact that

f (z) has order p, the series ~a{~~ ~ -~ converges for each A > p (see
[Pa3]). Choose the numbers 03B3k = where the constant C

is chosen so that ~~ 1 y~  ~-/(~V 2014 1). Such a choice is possible since for
C> 1

By lemma 3, there exists such a vector r E Si that

Hence for z E Hk we have

and therefore



In view of (A) there exists such negligible w(z), that

Putting w(z) = w(z) - clzI3p/4, we get

with W negligible.

By a well-known lemma due to A. Martineau (see [Ro3], p. 323) each
locally bounded negligible function has a nonnegative radial negligible
plurisubharmonic majorant. Since in what follows we are going to use
negligible functions only in estimates from above, we may assume that each
such function is plurisubharmonic.

In particular, the function = + ~-L f(z)~~1~ is also negligible
and by the remark above there exists such negligible plurisubharmonic
function t~i that 1 ( ;; ).

Now, in view of the conditions of our theorem, continuity of and
the well-known property of the radial indicator (see [Ro3], p. 287, d)) we
get

with some negligible plurisubharmonic w2 ~z ) > 0 and also

with some negligible plurisubharmonic zv3 ~z ) > 0.

By theorem 4 we can construct the required function with the
estimate

It is easy to see that two last terms are negligible. Hence the inequality
implies the desired estimate ~(~). .

The theorem is proved.



Geometrical conditions of interpolation

Now we establish sufficient conditions for interpolation of geometric type.
Introduce the following denotions. For a function ,f (z~ with zero set A of
the form (1) we set

It is easy to check (for example, with the help of Hadamard factorisation
representation for entire functions with plane zeros, [Pa3], theorem 2), that

Hence we will estimate |fk (z) instead of |~f(z)| . Remind that for a point
z E C we denote the number of Hk E A intersecting the ball Bt(z) by
nz(t), that nZ (t) = - 1~ + and, finally, ~Z (a~ = Let

6 E (0,1) be fixed. Consider the functions

Note that for m ~  b ~ z we have

We will need two auxilliary statements.

LEMMA 4. - The following equality is true:



Proof. - Note, that the value

is exactly the distance from z to Hk. Hence

Integrating the last expression by parts gives the required equality.
We remark that for 6 E (0,1) we have

and hence by (G2)

The next statement gives some information on the structure of the

exceptional set E of a function of completely regular growth. It might
be interesting apart from interpolation problems.

LEMMA 5. - Let E C ~N be a Co -set and let ~ > 0. Then there exists
a number Ro > 0 such that for each z0 E CN , BR0 (0) there exists a com-
plex line I through z0 and a circumference -y, centered at z0, having radius
less than ) and lying on I, such that -y n E = ~.

The proof of this lemma will be given later. Assuming that the assertion
of the lemma 5 holds, we show that conditions (G1)-(G2) imply (A) for the
canonical product f(z), associated with our set of hyperplanes A. As we
have mentioned already, ( G 1 ) implies that f is of completely regular growth
with continuous indicator h(z). Thus the following lemma will complete the
proof of theorem 3.

LEMMA 6. - Let f(z) be a function of completely regular growth with
hyperplane set of zeros A. Let this function satisfy (G2) with some set
U C C~, such that nZ (o) = 0 for z E U. . Then (A) holds.



Proof. - Fix ~ > 0. For z ~ Hk B U put g03B4z(w) = f(z + 03C9)/f03B4z(w). The
functions and differ in one term. Hence we have 

Observe that function qZ (w) does not vanish in Bslzl (o). Thus log qf (w) I
is pluriharmonic in w in Estimate 

Since f (z) has completely regular growth, by [Az], p. 165, outside a ball
B Rt (0) with R~ large enough and outside a Cg-set E~ it holds

Hence for such cv that z + w ~ EE and z + R~ , in view of (25) we
have

In view of continuity of on the unit sphere, one can take 61 small
enough, so that the following implication is true:

We apply our lemma 5 now with E = = z and 6 = 61.
It follows, that for |z| ( > Ro a circumference lying outside Ee exists in
each ball If Izl > max(2R~, Ro), |w|  then, in view of

pluriharmonicity of log I qz ( w ), I (for b  61) in ( ( o ) , by the minimum
principle for harmonic functions, (27) holds also for w = 0. Hence

Now, by lemma 4, we have



Since = + + log((1 + by (G2), (26),
(28) and (29) taking 6 small enough we obtain for z E Hk B U, Izl > 

Thus lemma 4 and theorem 3 are proved.

Some properties of Cg-sets in CN

We conclude the paper by proving lemma 5 on the structure of Cg-sets
in ~~.

Assume the converse, i.e. for each complex line I through zo, there
does not exist a circumference y lying outside E. We will show that this
contradicts E being a Co-set.

Let Ezo = E n and let B = b2, ...} be some covering of

Ezo by balls bj = We are going to estimate the value ~ rj 2N-3/2 .
For ( E C~, ~~) = 1, denote by L, the (2N - 1)-dimensional real hyper-

plane through with normal vector (. Thus a one-to-one correspondence
is established between the unit sphere Si in eN and the set of (2N - 1)-
dimensional hyperplanes through z0.

Let w ~ N. A circular projection of a point 2v E L03B6 is defined as the

points of intersection of the circumference E [0 , 2~ ) ~ with L,
(there are exactly two such points, unless w lies in the (N - 1)-dimensional
complex hyperplane M, C L, ; in the latter case we assume that the circular
projection of w is 
A circular projection of a set D C C~ onto L~, (D), is a union of
circular projections of all points in D.

Denote b ~ z~ ~ by R. It is no loss of generality to assume that the radii of
bj do not exceed R/4. Denote by B~o the set ~ Since, by
our assumption, each circumference of radius r E (R/2, R) contains at least
one point of it follows that

Let m2N-1 be the Lebesgue measure in !R~ ~. Consider the quantity



where 0" is the normalized surface measure on 5’i. Property (30) implies a
lower bound for J:

Now estimate J from above. In order to do this, we represent each

integral in the sum defining J in the form

We estimate each integral separately. First note, that the set H =

{~ + E [0, 2?r)} is a body of rotation in which is obtained

by rotating the center of &#x26;~ around ~ along the circumference of radius
~o~ ]  5~/4. Since (2~V 2014 l)-dimensional area of the section of this

body by L, does not exceed the (2~V 2014 l)-dimensional area of its surface,
we get: 

- - - - /.,

It is easy to see that the (T-measure of the set ~~ : dist(L~, z~~~~  does

not exceed Hence

The estimate of the second integral is more complicated. For simplicity
we assume that L, = (z e N : Im zN = 0) + z°. For z e bj estimate the
difference |arg zN - argz(j)N| . We have

It isn’t hard to see, that then

Hence in this case the intersection L, n Q is contained in the set

Q = {z0 + ei03B8bj, |03B8 - 03B80| ~ rj/03C1j} with 80 The (2N - 1)-
dimensional surface area of H does not exceed



Choosing p~ = Rr~ , we obtain the estimate

This implies

Comparing with (31) one gets

Hence, for arbitrary covering B of E n one has

This contradicts E being a Co ~2-set. The lemma is proved.
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