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Expansion growth of foliations(*)

SHINJI EGASHIRA(1)

Annales de la Faculte des Sciences de Toulouse Vol. II, n° 1, 1993

RESUME. - Nous definissons la croissance de 1’elargissement transverse
des feuilletages qui peuvent ctre consider~s comme une croissance du car-
dinal maximal des ensembles separes d’un pseudo-groupe d’holonomie.
Nous prouvons que la croissance de 1’elargissement transverse est un in-
variant topologique des feuilletages, et nous calculons la croissance de
1’elargissement transverse de quelques feuilletages typiques de co dimen-
sion 1. .

ABSTRACT. - We define the expansion growth of foliations which is,
roughly speaking, growth of the maximum cardinality of separating
sets with respect to a holonomy pseudogroup. We prove that the

expansion growth is topological invariant for foliations and we compute
the expansion growth of several typical foliations of codimension 1. .

0. Introduction

The entropy of foliations is defined by Ghys, Langevin and Walczak
Their definition was done by generalizing Bowen’s definition of the

entropy of dynamical systems [B]. Let F be a codimension q foliation of
class C~ on a compact manifold M. When we fix a finite foliation cover U
of ( M, ~’), we obtain the holonomy pseudogroup ?~ of local homeomorphisms
of Rq induced by 1.~. Then we can define an integer (n E > 0)
to be the maximum cardinality of (n, c)-separating sets with respect to the
holonomy pseudogroup ?~ . . sn ( ~ ) is monotone increasing on n and monotone
decreasing on e. The entropy of the foliation ~’ is defined by the

following formula:

~ * ~ Recu le 12 Novembre 1992
(1) ) Department of Mathematical Sciences, University of Tokyo, 7-3-1, Hongo,

Bunkyoku, Tokyo, 113 (Japan)



When we fix a sufficiently small positive real number we notice that the
monotone increasing map with respect to n represents the expansion
of the foliation. For example, if ~ is a Reeb component then the growth
of with respect to n is the linear growth. If ~’ is a linear foliation on

then the growth of is the constant growth.
In this paper, we consider the growth type of sn (E) defined in the growth

set which is an extension of the usual growth set ( cf. [HH2]) and we prove
that the growth of depends only on (M, ~’). Therefore it becomes

a topological invariant for foliations. Moreover we define an integer 
to be the minimum cardinality of (n, c)-spanning sets with respect to the
holonomy pseudogroup ~C and we show that the growth of is equal
to the growth of We call it the expansion growth of (M, ~’). The
expansion growth of foliations produces a number of numerical topological
invariants for foliations. We also show that many of them are non-trivial

invariants.

In section 1, we define the growth set which is an extansion of the usual

growth set. The expansion growth of foliations is defined as an element of
this growth set. In section 2, we define the expansion growth of a foliation
and we describe several important properties of the expansion growth. In

section 3, we compute the expansion growth of several typical codimension
1 foliations. We also construct foliations which have various expansion
growths.

1. Growth

In this section, we define the growth of an increasing sequence of incresing
functions.

Let Z be the set of nonnegative increasing functions on N :

Let ~’ be the set of increasing sequences of I.

We regard Z as a subset of Z by the map



We define the growth type of an element of l. We define a preorder «
in ’ as follows. For , (hk) k~IN G ’,

In the definition, we note that B F_ IN is independent of j E IN and A > 0
may depends on j E IN . The preorder -~ induces an equivalence relation ^_.
in I.

We define e to be the set of equivalence classes in I:

~ is the set of all growth types of increasing sequences of increasing functions
and has the partial order ~ induced by the preorder  . The equivalence
class of j~IN G T is written by j~IN ~  and is called the growth type
of The equivalence class of g ~ I ~  is simply written by [g]. Let
~* be the set of such growth types:

e is equal to the partial ordered set of all growths of monotone increasing
functions in the usual sense (cf. [HH2]) and £ can be considered as an
extension of it. .

For example, the following relation is easily seen

Here [0] (resp. [1]) is the growth of the constant function whose value
is 0 (resp. 1). [en] E ~ is said to have exactly exponential growth. For

k E IN U ~0~_, E ~ is said to have exactly polynomial growth of degree ~.
E ~ is said to be quasi-exponential if



Next we define the finite sum and the finite product of elements of ~. For
E ~~

For example, the following relations are easily seen.

2. Expansion growth of foliations

In this section, we define the expansion growth of a foliation on a compact
manifold and describe several properties of it. Let ~’ be a C~ codimension

q foliation on a compact (p + q)-dimensional manifold M. We assume

that aM = 0, however the same discussion is applicable in the case where
0 provided ~’ is tangent or transverse to aM.

A = U, is called a triple of foliation covers of (M, ~’~ if it satisfies
the following conditions.

(1) Ub, U and Us are open coverings of M.

(2) Ub = (Ub~ ~~’) A ~ u = and _ , ~pi )}A 1.
(3) 
(4) 03C6i = 03C6bi |Ui and cpZ - .

(5) ~~(Ub) = = and =

x Bq1(oi) where o = (o, ... , 0) E IRp, oi = (7i, ... , 7i) E IRq,
and J3~(~) = {.r e IRP; ~!  A;} G !R~.

(6) If ut 0, then there exists a local homeomorphism of

IRq such that ~b = o ~b on Ub where ~b = pr and

pr : IRP x IRq --~ IRq is the projection to the second factor.

We put Bi = C IRq. We call the set (~p,;~ 1 (B2 (o~ x ~z~~ (z E Bi~
a plaque of U (or a plaque of Let be the set of all plaques of Lt .



Fix a metric d on M. We define the diameter of U to be the maximum

of the diameters of Ui (i = 1, ..., , A~:

We define and width(U,Ub) as follows:

Here for K, K’ ç M,

Let Leb(U) denote the Lebesgue number of U.
Let x be a point of M and let n be a natural number. Let Pi ..., Pn be

plaques of U. (Pi, ..., , Pn ) is said to be an n-chain of Pu at x if x is a point
of Pi and Pl n Ø. Let Ui1, ... be foliation neighborhoods ofU.

, ... , is said to be an n-chain of U at x if there exists an n-chain

... of Pu at x (uniquely determined) such that is a plaque
of Uil. When an n-chain ... of U at x is given, the n-chain of

at x with respect to ... , is often written by ... 

For xl, ..., E M, Let be the set of all n-chains of U at xl and

put

For K C M, let C be the set of Pn such that there exists ~ E K
and an n-chain , ... , Pn ) of Pu at x.

For plaques P and P’ of Ui, put

Here Pb (resp. is the plaque of Ub containing P (resp. P’). For x,

y E M, we define



Here is the plaque of where ... , is an n-chain of ~u
at x uniquely determined by , ... E . If y) = ~, then

y~ = d(x, y). We remark that usually dn is not continuous. However,
we can easily show the following lemma.

LEMMA 2.1.2014 dn is lower semi-continuous.

Let n be a natural number and let e be a positive number. For x, y E M,
x and y are said to be (n, c, A)-separated if y~ > ~. Otherwise x and y
are said to be (n, c, A)-close. Let K be a subset of M. S ç M is said to be
an (n, e, .~4., K)-separating set if 5’ is a subset of K and for any x, y E S, x
and y are (n, c, A)-separated. R C M is said to be an (n, ~, r4., K)-spanning
set if for any x E K, there exists y E R such that x and yare (n, ~, A)-close.
Since M is compact, S is a finite set ( c f . lemma 2.14 and theorem 2.1 S ~ .
Put

PROPOSITION 2.2

rn (~, K) and K) are monotone increasing on n E IN and monotone
decreasing on E > 0. . If K C K’ then rn (e, K)  rn (e, K’) and K) 
sn (E, K~~.

Proof. - We only prove that 

Let S C K be an (n, ~, .~4., K)-separating set with the maximum cardinal-
ity. If there exists

then S U ~z~ is also an set, which contradicts the

assumptions. So

5’ is an (n, c, A, K)-spanning set. Hence



Let be a monotone decreasing sequence of positive num-

bers which converges to 0. By the above proposition, K)) 
, K~~ are elements of Z.

The following theorem is the main result of this paper.

THEOREM 2.3. - Let ~ be a codimension q foliation of classe C~ on a
compact (p -~ q)-dimensional manifold M and let K be a subset of M. Let
d be a metric on M, let A be a triple of foliation covers of (M, .~’~, and
let be a monotone decreasing sequence of positive numbers which

converges to 0. Then,

and this growth type is independent of tlte choice .A. and 

Before proving the above theorem, we prove two lemmas.

Let c be a positive number and let = be a triple of foliation
covers of (M, ~~. 6r is said to be small for if

Let B = be another triple of foliation covers of (M,F), where
V = plaque of V is indicated by a letter Q. j8 is said to

be a refinement of A if

LEMMA 2.4.2014 Suppose that diam(03BDb)  Leb(U) and

Then for all n E IN, ,

Hence if Zi is a refinement of A and ~ is small for ri, then the inequality
holds.

Proof . Fix c > 0 and n E IN . Let S C K be an (n, 2~,13, K)-separating
set with the maximum cardinality and let R C M be an (n, c, A, K)-
spanning set with the minimum cardinality. We can choose a map 03BA from S



to R such that d~(.c, ~(~))  c for any .c G 5’. We show that x is injective.
Suppose that there exists z such that z = = G R.

By d(a’,~) ~  c and ~(~,~/) ~  ~, we have 

2~. By ~(.r~) ~ 2~-, there exists an n-chain (~, ..., C C~(.c,~/)
such that 3~,t/) ~ 2~. (Here the n-chain ..., at .r

is determined by (V~, ..., C ~(x).) Moreover we may assume that
satisfies Qn,y) = Qn,~) ~ 2~ where is the

plaque of V~ containing 
Put zo = ~ ~ ~o = z and 2/0 = 2/- By  Leb(U), for

each m = 1, ..., n, there exists ~7~ ~ ~ containing Obviously,

(~, ..., C C~(a;,~/). . For each m = 1, ..., ~ - 1, take .c~ ~

By induction, we show that for &#x26; = 1, ..., n,

Suppose that for k = m - 1, the above statement is true. By

and E V~, ~ we have E ~_~,"~,, C . S o ( Ui 1, ..., , U2 ~. ) ~
C~(a:, z, y~. By z)  ~ and x?.,2 E C,?~~~ C we have

Since xm is a point of Vjm, there exists E n Vb C Pm z such that

zm) = d(zm Pbm,z)  ~. Therefore for k = m, thE above statement is

true. 

Finally we obtain

On the other hand, by  ~ and zn C Pn z we have 

 ~. By dtxn, zn)  ~, we have  2E. By Q~~ C ,

we deduce the contradiction 



LEMMA 2.5. - Suppose that diam(V)  and

Then for all n E IN, ,

Hence if B is a refinement of A and c is small for 8, then the inequality
holds.

Proof . Fix c > 0 and n E IN. Let S ç K be an (n, ~, A, K)-separating
set with the maximum cardinality and let R C M be a (Bn, (E/2), Zi, K)-
spanning set with the minimum cardinality. We can choose a map 03BA
from S to R such that  ~/2 for any We will
show that 03BA is injective. Suppose that there exists x such that

~ = ~(.B) = K(~/) ER.

By d( x, z)  z)  E/2 and d(z, y)  y)  ~/2, we have
d(x, y)  ~. By dn (x, y) > ~, there exists , ... , E C~ (x, y) such
that Pn,y) 2: e. Moreover we may assume that xBn e satisfies

= > ~.

Put zo = z C ~o = z and yo = ~- For each I = 1, ..., ~ - 1, take

xBl E and for each I = 1, ..., n, take a path yl from 
to contained in Pl,x. 

C )

Consider xo, zo, yo and 71 .

By induction, we show that for k = 1, ..., B, there exists

Suppose that for k == ~ - 1, the above statement is true. By

there exists ~ i E V$ containing . So E

y). Let xt be the maximal point of ~yl rl with respect to



the orientation By  we have d(xl,  ~/2 

width(03BDs, V). Since xl is a point of there exists zl E n Vjl C Ql,z
such that = d(xt,  ~/2. Moreover by dB (z,y)  E/2,
we have  ~/2. There exists yl E such that d(zl, yl) =

d(zt,  ~/2. So d(xl, yt)  £  V). Again since xl is a point
of we have yl E C . (If xl ~ xB, then we remark that xt is

a point of and the subset of yl from xl to x$ do not intersect with

.. , ~~~ .) Therefore for k = I, the above statement is true.
Since the number of foliation neighborhoods of V$ which intersects yl is

at most B, xB coincides with xB .
We obtain that

Moreover since ... intersect yI C U1, bY

we have ~-
We apply the same argument for x B, Z B, yB and 03B32 C U 2. . Moreover we

can continue for y3, ..., In. . 

Finally we obtain that

BY yBn E C and d(xBn, yBn)  ~, we deduce the contradiction

> ~. D



Proof of theorem ,~.3

First by the definition of the growth type and proposition 2.2, it is easy to
see that E ~ are independent of the choice
of °

Next we show that = and this growth is
indepenent of the choice of A. Let A’ be another triple of foliation covers
of (M, ~’). Then we can take a triple of foliation covers B such that ,~i is a
refinement of A and .,4~. So we may compare A with B.

Let c be small for B. By proposition 2.2, lemma 2.4 and lemma 2.5, we
have

Therefore

BY the above inequalities are equalities.
Finally we show that this growth is independent of the choice of d. Let

d’ be another metric on M. Then by the compactness of M, d and d’ are
uniformly equivalent. For any c > 0, there exists 5 > 0 such that for x,
y E M if d(x, y) then d’(x, y)  6: and if d’(x, y)  ~ then y)  E.

Let R be an ~)-spanning set with respect to d with the minimum
cardinality.

Here rf(5, K) with respect to d is written by K). For each z e K,
there exists y e R such that y)  5. Then by the definition of df, we
obtain y)  c. Hence R is an (n, c, A, K)-spanning set with respect
to d’

So we have

The converse inequality is similarly shown. 0



DEFINITION 2.6.2014 By theorem 2.3,

depends only on (M, ~~ and K C M and it is a topological invariant for
foliations on compact manifolds. This growth is written by

and we call it the ezpansion growth of (M, ~’) on K. For a leaf L, is

called the expansion growth of the leaf L. depends only on the inclusion

from L to M.

Remark 2.7

(1) r~( K ) _ [0] if and only if K = 0.

(2) If L is a compact leaf then = ~1~.

(3) If K ç K’, then r~(K)  r~(K’).
(4) r~(K, ~’) is determined by K and Here is the

0-saturation of K.

Now we obtain many numerical topological invariants for foliations on

compact manifolds. Corollary 2.8 is deduced from theorem 2.3.

COROLLARY 2.8. - For I E IN U ~0~ and m E IN, the following number
a numerical topological invariant for foliations on compact

manifolds:

where = log o ... o log(k) (l times). . Here if ~’) = ~0~ or (1~
then put ~~ = 0 .

We will see that ~) and r~l+1 (K, ~’~ (1 E lN) are non-trivial by
theorem 3.7.

Next we describe several properties of .~’).

PROPOSITION 2.9



We show the converse inequality Fix a metric d and a triple of foliation
covers A. For all ~ > 0, we can take a positive number 03B4 such that 0  ~.

Let R be an (n, ~, A, K)-spanning set with the minimum cardinality.

Since is a closed set by lemma 2.1, we have

So R is an (n, ~, A, K)-spanning set.

Therefore

PROPOSITION 2.10. - Let K, K’ be subsets of M. Then

Proof. - Let n be a natural number, let E be a positive real number,
and let A be a triple of foliation covers. By U K~~ > sn (~, K),

K’), we have



We show the converse inequality. Let S be an (n, ~, .~4., K U K’)-separating
set with the maximum cardinality.

Then S n K is an (n, c, A, K)-separating set and S n K’ is an (n, ~, A, K’)-
separating set. So

Hence

PROPOSITION 2.11. - Let = U, be a triple of foliation covers.
For K C M, we have

Proof. - BY K C we have

We show the converse inequality. Fix a metric d on M. Let S be an

set with the maximum cardinality.

Let W = {Wj~}C{~~ be a finite open cover of M such that diam(W)  ~
with the minimum cardinality. Fix Wk E W and Uio e Ll. We define ,S~ as

follows:



We can choose a map 03BA from S’ to K such that for z e S’, E PO,z n K.
We show that r~(S’~ is an (n + 1, e,A,K)-separating set. Let x and y
be two points of S’. By x, y e Wk, d(x, y~  ~. Since dn (x, y~ > c,
there exists n-chain (UZ1, ... , Uin ) E y~ such that Pn,y) > ~.
By x, y E Uio n Ui1, (Uio , Ui1 , ... Uin) E (03BA(x), 03BA(y)) . Hence

, ~(y)~ > ~ and r~ is injective.
Therefore x(S’) is an (n + 1, E, .,4., K)-separating set.

Summing over Wk E W and Uio e Lt, we have

Therefore

COROLLARY 2.12.- Let K C M. Put Ti = x Bi~ and

T = T2. . Then

Proof - Put

By K C P, have



By proposition 2.11, we have

To compute r~(K~, we have only to compute r~(K~~.

PROPOSITION 2.13. Let ~ (resp. :F’) be a foliation on a compact
manifold M (resp. M’). Let F F’ be the product foliation on the manifold
M x M’. Let K (resp. K~~ be a subset ofM (resp. M~~. Then

Proof. - Let d (resp. d’) be a metric on M (resp. M’). We define a
metric d" on M x M’ as follows. For (x, x’), (y, y’) E NI x M’,

Let n be a natural number and let E be a positive number. Let _

Lt, _ l.(’, be a triple of foliation covers of (M, ~)
(resp. (M’, ~’)). Then .,4. x .,4.’ _ (?,~~ x L~’$ , Ll x I,~’ , Llb x is a triple
foliation covers of ( M x M’ , ~’ x .~’ ) .

Let R (resp. R’) be an K)-spanning (resp. (n, ~, A’, K’)-
spanning) set with the minimum cardinality. We show that R x R’ is an

(n, ~, ,A x .,4.’ , K x K’)-spanning set. Let (x, ae’) be a point of K x K’.
Then there exists y E R (resp. y’ E R’) such that y)  ~ (resp.
d’n l (x’, y’)  ~). Hence we can deduce

So R x R’ is an (n, ~, A x ,~4.’ , K x K’)-spanning set.



Next we show the converse inequality. Let S (resp. S’) be an (n, ~, A, K)-
separating (resp. (n, E, A’, K’)-separating) set with the maximum cardinal-
ity. We show that S x S’ is an (n, ~, A x A’ , K x K’)-separating set. Let
(x, x’) and (y, y’) be two points of S x S’. We may assume x ~ y. Then by

y) > E, we can deduce that

So S x S’ is an (n, ~, A x K x KI)-separating set.

Next we give an easier definition of the expansion growth of foliations. In
this definition, we use a holonomy pseudogroup of local homeomorphisms
of local transverse sections of (M, ~’). Let A = be a triple of
foliation covers of (M, F). Put TZ = ({o} x BZ C M, T = UAi=1 Ti C M
and B = IRq . We remark that is a homeomorphism of

Tz to Bi where 03A6i = pr We define a map  of B to T such that

= {~i E TZ c T for ae E BZ C B. We note that c can be

extended to the continuous map of B to T. .

We can define a pseudo group of local homeomorphisms of B C !Rq

induced by a foliation cover U. . If Ui n then there exists a

homeomorphism of n Ui’) to n such that

Put H1 = {idB} U {03C6ii’}Ai,i’=1. Then we define (n E IN ) as follows:

Here the composition map /2 o f 1 is defined on

Put 7t = We call ?-~ a pseudogroup of local homeomorphisms of
B induced by a foliation cover U. . We note that idB is an element of ?C~
and that



Let x, y be points of B and let n be a natural number. We define

Dn 1 (x, y) as follows:

We remark that is not continuous but lower semi-continuous. Let

e be a positive number. x and y are said to be (n, ~,H1)-separated if

Dn 1 (x, y) > E. Otherwise x and y are said to be (n, ~, ?~1 )-close. Let K be
a subset of B C IRq. S ç B is said to be an (n, ~, ~C1, K)-separating set if
S is a subset of K and for any x, y E S, x and y are 
R C B is said to be an (n, ~, K)-spanning set if for any x E K, there
exists y E R such that x and y are (n, E, H1)-close. By the following lemma,
S is a finite set. Let W = ~ Wj~ }C~~~ be a finite open cover of B C IRg such
that diam(W)  ~ and W has the minimum cardinality.

LEMMA 2.14. - If S is an (n, ~, H1, K)-separating set, then

Proof. - For any f E we can choose a map  f of B to W such

that for x E B, if x E domain( f ) then f( x) E Wand otherwise

x E E W. Then for x, yES, there exists f E such that

x, y E doma,in(,f ) and ( f (x) - ,f (y) I > ~. Since diam(W)  E, yve have

~ E Y1~. Therefore we can define an injection map of S to
W x ~ ~ ~ x W (~?~Cn times). So

The following proposition is easily seen.

PROPOSITION 2.15

1 (E, K), (~, K) and C(~~#x’~ are monotone increasing on n E IN and
monotone decreasing on ~ > 0. If K C K’ then (~, K)  1 (~, K’) and
y K)  sn 1 (~~ K’) .



Let (~~ ~ ~ be a monotone decreasing sequence of positive num-

bers which converges to 0. By the above proposition, 1(~j, K))j~IN,
_ 

~E

K~~ ~E . ~N, (C’(~~)#x’~~ ~E . ~N are elements of Z and we have

Moreover it is easy to see that

The following theorem shows that (e~, and 

are equal to the expansion growth of the foliation 0. By this way, we can
compute the expansion growth of foliations more easily.

THEOREM 2.16. - Let K be a subset of M.

Put 03A6(K) = ~Ai=1 03A6i(K n Ui) C B. Then

Before proving the above theorem, we show two lemmas.

LEMMA 2.17.2014 For any c > 0, there exists b > 0 such that if x, y E Bi
y~  5 then

where is the plaque of UZ containing .

Proo f . The map

is uniformly continuous. So for any ~ > 0, there exists b > 0 such that
for any (x, y), (x~, y~~ E B2 x Bi if , (y -  b then

~r.v(PL(~~, - z.v(Pt(~~~, )  ~. Especially putting x~ = y’ = y,
if ~x - y~  b then P~(y~~  ~. D



LEMMA 2.18. - For any e > 0, there exists 03B4 > 0 such that if x, y E Bi
and

1/)  ~.

Proof . Fix a positive number e. The map

is continuous. Since domain(v) is compact, there exists (xo, yo) E Bi x Bz
which gives the minimum value of v. If v(xo, yo) = 0, then we obtain

~~(2/0)’ So This contradicts (zo - > E. Hence

there exists a positive number 5 such that > 0. Therefore

if y) > ~, then

Proof of theorem ~.16

By corollary 2.12, we may assume that K C T C M. We will show

that ~)  (e~ , . Fix a natural number n and a

positive number ~. Take a positive number b  1 which satisfies lemma

2.17 and that if y~)  b then , c(y~))  e. Let R C B be

an (n + 1, b, set with the minimum cardinality. We

give x E K C ~. Then there exists io E ~1, ..., A~ such that x E Tio.
Put x~ _ (x) E Bio. Since R is a spanning set, there exists y’ E R
such that Dn+1 (x~, y’)  ~. By ~x~ - y~ ~  1, we have y’ E Bio . Put

y = (y’) E Ti0 C Ui0. Then d(x, y)  ~. For any (Ui1, ... E Cn (x, y),
we have , ... , Uin ) E By D +1 (x~, y~)  b, we have

Here we remark that n Tin consists of only one point. So by lemma
2.17,  ~. Hence y)  ~. So is an (n, ~, A, K)-
spanning set. Therefore



Next we will show that r~(K, ~’) > . Fix a natural

number n and a positive number e. Take a positive number b which
satisfies lemma 2.18. Let S C B be an (n, E, set

with the maximum cardinality. Fix io E ~1, ..., A~. Take two points :!~,
y’ E S n Bio . . Put x = (x’) and y = (y’). Then by DH1n (x’, y’) > E, there
exists , ... E Cn ( x, y) such that

So by lemma 2.18, we have b. Hence $. So
n Bio ) is an (n, b, A, K)-separating set. Therefore

Ghys, Langevin and Walczak [GLW] defined the entropy of a
foliation .~" to be

The choice of the equivalence class of sequences of monotone increasing
functions in section 1 was chosen precisely so that the entropy of foliations
is well-defined up to multiplication of positive numbers on the equivalence
class. This gives the following corollary.

COROLLARY 2.19.2014 The entropy of a foliation ~’ on a compact manifold
M is not zero if and only if ~(M, F) E has quasi-exponential growth.

By the theorem 2.16, we had r~(M, .~’)  . But the expansion growth
of foliations of class C1 is dominated by the exactly exponential growth
[GLW].



PROPOSITION 2.20. If ~’ is a foliation of class C1, , then

Proof . Let be as in lemma 2.14. Since B C IRq is compact, there

exists a positive number a such that

On the other hand, since ~* is a foliation of class C1, there exists a
Lipschitz constant ,Ci > 1 such that for any ,f E and for any x,

y E domain( f), If(x) - f (y) I  ~3~x - yl. Therefore if 1 (x, y) > ~

then

3. Codimension 1 case

In this section, we restrict ourselves to a transversely oriented codi-
mension 1 foliation .F of class C~ on a compact manifold M. Take a

1-dimensional foliation ,~ transverse to .F. (By [HH2], it exists.) Let

A = be a triple of foliation covers of (M, ~’~. We may assume
that = , ~pb~ ~ A 1 is a bidistinguished foliation cover of (~’, J). We
use the notations which we defined in section 2. Put Ti = 03C6-1i ({0} x .

We note that U can be taken so that for i ~ i’, Ti n Ti’ = 0. Put

T = C M. We identify T C M with B C IR by the map c-1.
Fix a metric d on M. . We may assume that for each i the metric on Ti
induced by d coincides with the one induced from the Euclidean metric on
R. Let 1tn and H be as in section 2.



Now we define the growth of a leaf and the sum of growths of at most a
countable number of leaves. For a leaf L and y e L n T, put

For a set of at most a countable number of leaves and yj E 
put

We show that LjEIN gr(Lj) is independent of the choice of yj and if
set of at most a countable number of leaves such that

then

Let zk E Fk n T. For any j E IN, there exists k E IN and N E IN such that

Therefore

We can take a large positive real number C such that

The converse inequality is similarly shown. Of course, if =

{Fl, ..., then

Moreover it is easy to see that ~~ E~N is independent of the choice of
a foliation cover.



We also define the growth of an open connected ~-saturated set Y.

Here SY is the set of border leaves of Y and bY consists of finitely many
leaves ~D~~. 8

LEMMA 3.1. - Let K C M be an .~’-saturated Let be a set

of at most countable leaves which satisfies following two conditions.

~1~ L~ is dense in K.

(2) Every leaf which is a border leaf of M - K is contained in {Lj}j~IN.
Then

In particular,

We remark that in codimensions greater than 1, this lemma does not
hold.

Proof . Fix 0  ~  Let (U3EIN 
By (1), we can take an integer N satisfying the following (a) and (b).

(a) ~zl, ..., is a (~/3)-dense set in K n T.

(b) If a component of T - K has a length more than c/3, then its endpoints
(except endpoints of T) are contained in . . ., 

We will show that ... is an (n, ~, .~ ~1 T~-spanning set.
For any a? E K f1 T, let y be a point of ... , zN) which gives the
minimum value of d(x, y). We may assume that y. First we show

1 (x, y~  ~. Suppose the contrary. There exists f E such that

d (, f (x ) , f ( y)} > E. Since U is a distinguished foliation cover of (~, ~’), f is
defined on x , y ~ . . Put



If K n J ~ 0 then by (a) there exists zk E , ,f (y~~ f1 ..., 

If K n J = 0 then the length of the component of T - K containing J is
more than e/3. By (b) and f(y) E K we obtain zk E f(y)) ~

..., So E ..., This contradicts the

choice of y. So 1 (x, y)  ~. Hence we have

1 (~ K n T~  ... , zN)  N  + 1) .

Finally,

The above lemma is very useful. For example, it is easy to show that if

(M, ~) is a foliated 51-bundle over lf2 then ~’)  [n2].
Let L be a resilient leaf. A resilient leaf captures itself by a holonomy

contraction. It is easy to see that r~(L) > ( cf. [GLM]). By lemma 3.1,
we have r~(M)  [en]. So we have the following lemma.

LEMMA 3.2. - If L is a resilient leaf, then = [en]. . Especially ifY is
an open LMS (local minimal set, cf. with holonomy, then = [en].

Here Y is said to be without holonomy if each leaf contained in Y has
trivial germinal holonomy.

Moreover by lemma 3.1, we have the following theorem. By this theorem,
we can compute in case where Z is a semi-proper leaf or an ELMS

(exceptional local minimal set ( cf. [CC] ) ).

THEOREM 3.3. - Let Z be a ~-saturated set such that Int (Z) _ ~, then

Proof. Let be a set of all border leaves of M - Z. Since

satisfies the hyperthesis of lemma 3.1, we have the inequality



We show r~(Z) > Put = 

is written as a where the positive

(resp. negative) side of Lxl (resp. Lym,) is contained in M - Z. For any

positive integer N, we can find a positive number 6 which satisfies the

following conditions. For every Xl E ..., the 6-neighborhood of

~c~ is contained in some Ui and its positive side is contained in M - Z.

Moreover we may take 5  mini~i’ d(Ti, Ti’) and small for A.

We show that ... , is (An, b, .~4., Z)-separating set. For v,

w E ... we show w) > ~. Suppose that w~  b.

Here we remark that we are working with dn and not with Dn 1. By
d(v , w)  b, there exists TZ such that v, w E Ti. We may assume that v  w.
We can represent v = such that f E xn and xl e ..., By

 ~, we can apply the same discussion as that of lemma 2.5.
Hence we obtain ..., UiAn) E w~ along f -1 such that there
exists x E PAn,w such that d(xl, x~  b. This implies x E M - Z. This

contradicts the choice of ... , So (v, u~) > b and

Now for all N E IN, we take N1, N2 E IN such that

and take 5 > 0 which satisfies the above condition with respect to

{.Bi, , ..., and ..., ~/~}. Then,

Therefore

COROLLARY 3.4. Let L be a totally proper leaf (i.e. L consists of
proper leaves). Then



Proof. - By theorem 3.3,

It is easy to be seen that

We will show that

Fix z E L . Let (L - L) n T. Fix j E IN . ° Let F be a leaf

containing y~ . We may assume that L accumulates F from the negative
side. For each y E F n T, there exists n E IN and fy E Hn such that
y = By [D], there exists (w, ~ C T such
that ( w y~ ~ C domain(, f y ) for any y E F n T . Since L accumulates F from
the negative side, we can take z~ E (w, y;) n ?~C~~ (z) for a large number N~.
Then. 

Now for any j E IN, we can take a large number C such that

for any n E lN . Therefore,

Next we consider an open connected ~-saturated set Y. If Y is an open
LMS with holonomy, then by lemma 3.2, we have = ~e’~~. So we
consider the case where Y is without holonomy. If Y is trivial at infinity,
we can compute the expansion growth of (M, ~’) on Y.



THEOREM 3.5. - Let Y be an open connected ~’-saturated set without

holonomy trivial at infinity.

(2.2) If Y ~ M and has an EMS then = + ~n’’~ ~ gr(Y ) .

Here r is the rank of the image of the Novikov transformation of 03C01 (Y) in
Homeo+(R) (cf. 

For example, if (M, .~’) is a. bundle foliation over S1 or an irrational
foliation on T2 then 0) = [1] by (1.1) of the above theorem. If (T~ ~’)
is a Denjoy foliation then r~(lf 2, ~’) _ [n] by (1.2) of the above theorem. If
(M, ~) is a Reeb foliation then ~(lt~, ~) _ [n] by (2.1) of the above theorem
and proposition 2.9. We remark that if Y is not trivial at infinity in the

assumption of the above theorem then we see that is complicated ( cf.
the proof of theorem 3.7). .

Here an open connected ~’-saturated set is said to be trivial at infinity if
there exists a nuclear-arm decomposition ( cf. ~D~ ) such that .~ is a product
foliation in each arm. If Y = M then the condition where Y is trivial at

infinity is vacuous.

We remark that since $y satisfies the assumption of theorem 3.3, 
is represented by the sum of growths of border leaves of M -~ aY.

We only prove (2.1) and (2.2). The proof of (1.1), (2.0) and (1.2) are
similar and easier to those of (2.1) and (2.2) respectively. We remark that
(Y, .F y) in the case (2.0) is a product foliation of a border leaf and an open
interval.

Let Y be as in (2.1) or (2.2) of theorem. We fix a nuclear-arm

decomposition of Y (cf. . ~D~ ) :

where X is a nucleus and Km, (m = 1, ..., s) is an arm. We may assume
that J) is a product foliation. Since Y is trivial at infinity, we may



assume that is a product foliation. Moreover we may assume that

aT does not intersect any Km.

Let be the set of all components of Y n ?~’. Put Ii = (ai, bi~
(i E We may assume that there exists a map r~ of N such that

for any n E IN. . We can easily see that ~~(n)~ = Put

Since is without holonomy, acts freely on each leaf J .

So we obtain the subgroup Gj of Homeo+(J) induced by the action of
~rl (Y ) . Since Y is trivial at infinity, G J is finitely generated. Since G,~
is free, there exists a monotone increasing continuous map h f of J to IR
(resp. S‘1 ) such that the subgroup GIR (resp. GS1) of Homeo+(R) (resp.

induced by h J and G J is a subgroup of translations of IR

(resp. rotations of S1 ) of rank r (resp. r - 1). We remark that in the
case (2.1), hJ is a homeomorphism. We identify the group of translations
of R with R. We may assume that G~R is generated by positive numbers
al, .... 

By the above consideration, there exists a monotone increasing map hi
(i E IN ) of Ii into R satisfying the following condition. For any f E ~, there
exists a f E G~R such that



where = if x E Ii . Moreover since Y is trivial at infinity, we may
assume that a f = 0 for any f E ~1 except for finitely many elements. So
we can take a large real number a such that

Proof of ~,~.1~ of theorem 3.5
We are going to show that

Obsviously r~(Y) > Fix a leaf F ç 6Y. We show that r~(Y) >
[n] gr(F). We may assume that the negative side of F is contained in Y and
b1 E ali is a point of F. For each n E IN and for each b E ,

we fix fb E such that b = Since Y is trivial at infinity, there
exists c ~ I1 such that fb is defined on [c, b1] for any b E H(b1). By r > 1,
there exists a loop T based on b1 contained in F such that the holonomy
map f.y of ~1 induced by y is a contraction to b1. . Here we may assume that

f.y is defined on [c, b1]. Take a large natural number N such that f.y E .

Take a positive real number 5 satisfying the following conditions:

and 6 is small for A. For n E IN , put

Then we can deduce that Sn is an (A(N -~- l~n, b, A, Y~-separating set. We
remark that we are working not with DH1n 1 by with dAn ( cf. lemma 2.5 and
theorem 3.3). So

Therefore



Hence

Next we show that

Fix a positive real number ~. There exists a large integer no such that
|Ii|  ~ for any i > We take a positive real number 5 such that for

and for any x, y E IZ, if (x - y~ > ~ then - I > b.
We take points zi ..., E IR satisfying the following conditions:

Fix a positive integer n. Put

Let Rg be an (n, ~, H1, 03B4Y n T)-spanning set with the minimum cardinality.
We will show that Rn U Rn is an (n, 2c, Y n T)-spanning set. Take

any point x of Y n T. Let Ii be a component of Y n T containing x.
First we consider the case where i ~ 03BA(n + no). Let y E Rn be a point

which gives the minimum value yl. We remark that y is a point of
Ii. We may assume that x ~ y. We show that  E. Suppose

~. Then there exists f E gn such that f (y) > 6:. Let

fy be a component of Y n T containing f(x) and f (y). By

we Then



On the other hand, = + a f and = hi(y) -~- a~.
So ~i(y) I > fl. By ,f E gn, we have ~a f ~  na. So

Therefore there exists a point

So

This contradicts the choice Hence Dn  ~.

Next we consider the case where i > ~(n + no). Obviously, b2  ~.

By bi E ~Y n T, there exists y E Rn such that  ~. We show

that Dn 1 (x, y)  2~-. Given any f E ?-~n such that x, y E domain(/).

By f E and the choice of r~(n), f(x) is contained in the arm K,.n

containing x. So f is defined on , bi] and f(bi)) E 
So

By  ~, we have I  ~. Therefore  2E.

So Dn y~  2~.

By the above two results, Rn U .~~ is an (n, 2E, Y n T)-spanning set.
Hence



Then we can take a large positive real number C such that

for any n (E IN. So

Next we prove (2.2) of theorem 3.5. Before proving (2.2), we show the
following proposition.

PROPOSITION 3.6. - Le~ Y be as in ~,~.1~ or (2.2) of theorem 3.5. If L
is a leaf contained in Y, then

Proof. - We show that gr(L)  We remark that if 

hi (y) for x ~ y E Ii, then the leaf containing x and the leaf containing y
are distinct. Since {a f ; f E is a finite set, we can take a large natural
number N such that

Fix a point c ~ L ~ I1. Let n be a natural number. Take any point f(c) e
xnc> f e gn>. Then we have fc> e I and hfc» = hc> + ai.
By f e gn we have

This implies that



Next we show that gr(Y). Fix a leaf F contained in bY.

We have only to show that gr(L~ > gr(F). we may assume that the

negative side of F is contained in Y and b1 E ~I1 is a point of F. For

any n E iN and for any b E we fix f b E Hn such that
b = fb(bl). Since Y is trivial at infinity, there exists c ~ L n 7i such that

fb is defined on c , for any b E There exists a loop y based on

b1 contained in F such that the holonomy map f.y of 11 induced by y is a
contraction to bi . Here we may assume that f,y is defined on c , b1]. Put
a’ = h1 (f03B3(c)) - h1 (c). If necessary, by replacing y with y"’L, we can assume
that

We take a large positive integer N satisfying the following conditions.

and for any x E ~ c , f.y (c) ~ and for any k E ~1, ... , r~, there exists a
f E HN such that

Let a~t (I = 1, ..., rn) be a element of ~0, al, ..., We can take

tl E ~0, 1} satisfying the following condition.

for I = 1, ..., , rn, where Qo = 0. Then there exists ,f l, .. . E such

that

for any 1 E ~0, 1, ..., , rn~. Then

The cardinality of the set of elements of the form



by this construction is more than . So

Therefore the cardinality of the set of elements of the form

(b E is more than So

Therefore

Hence

Proof of ~2.~~ of theorem 3.5

Obviously, r~~~’~ > r~(~Y). Let Z be an EMS of By proposition 3.6,
a semi-proper exceptional leaf L contained in Z has growth So

by theorem 3.3,

Therefore

We show the converse inequality. Let be the set of all border
leaves of M - aY. By theorem 3.3, -

Let be a set of leaves contained in Y such that Lj is dense
in Y. By proposition 3.6, Moreover from the proof of
proposition 3.6, we can easily deduce that



U satisfies the assumption of lemma 3.1. So

Finally we will construct foliations which have various expansion growths.

THEOREM 3.7. - Let g be a map of IN U ~0~ to N such that g(0) = 1 and

Then there exists a foliated manifold (M, F) such that

Proof - Put I = ~ 0 , 1 ~ . Let f 1 be an orientation-preserving homeo-

morphism of I such that f 1 ( x ) > x for any x E ( 0,1 ) . Take a E ( o,1 ) and
put b = fl (a). . Let f3 be an orientation-preserving homeomorphism of [ a , b ~
such that f3(x) > x for any x E (a, b). We define the orientation-preserving
homeomorphism /2 of I as follows:

Let ~2 be a closed surface of genus 2. We can represent the fundamental

group of ~2 as follows:

We define a homomorphism 03A8 of 03C01(03A32) to such that

Then we obtain the suspension foliation of 03A8 on 03A32 x I.

We will show that



Fix a fiber I of E2 x I. Considering the proof of theorem 2.16, we have only
to work with the group of homeomorphisms of the fiber I. Put

Take a point c E (a, b). Put

Let n be a natural number. Put

Then we can easily show that Sn is a (4n, 03B4, H1, I)-separating set. So

We show the converse inequality. Let c be a positive number. Let

zl, .... ZN E I be an (~/2~-dense set of I. Put

Then we can easily show that Rn is an (n, ~, x1, I)-spanning set. So

We remark that the .~~-saturation of (a, b) is an open connected set
without holonomy but not trivial at infinity.

By this theorem, we see that F) and F) (l E IN) defined in
corollary 2.8 are non-trivial. For example, if we let g(n) be the integer part
of n a (cx > 0), then ~’) = 2 ~- a. If we let g(n) be the integer part
of (0  cx  1~, then ~’) = a. If we let g(n) be the integer part
of (a > 1~, then ~’~ = a. So we obtained many numerical
topological invariants for foliations.
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