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Some new existence results

for the

variable density Navier-Stokes equations(*)

ENRIQUE FERNÁNDEZ-CARA and FRANCISCO GUILLÉN(1)

Annales de la Faculte des Sciences de Toulouse Vol. II, n° 2, 1993

RESUME. - Dans cet article, on etablit de nouveaux resultats d’exis-
tence pour un système d’equations aux dérivées partielles qui décrit le

comportement d’un fluide visqueux, incompressible et non homogène.
D’abord, on considere le cas avec des conditions aux limites de type
Dirichlet non homogènes. Dans un deuxième resultat, on impose des
conditions aux limites s’annulant mais, en meme temps, on suppose que
la viscosite n’est pas constante. Plus précisément, on suppose qu’elle
est une fonction continue de la densité. Dans les demonstrations, les

arguments sont similaires mais, dans le deuxième cas, on a besoin d’une

analyse detaillee du comportement de la densité.

ABSTRACT. - In this paper, we prove new existence results for a

nonlinear partial differential system modelling the behavior of a viscous,
nonhomogeneous and incompressible flow. First, we consider the case of

general (nonzero) Dirichlet boundary conditions. In a second result, we
assume that the boundary data vanish but viscosity is nonconstant -

more precisely, a continuous function of the density. In the proofs, the

arguments are similar, although a more detailed analysis of the behavior
of the density is needed in the second case.
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Notation

uv is the tensor product of u and v ; uv is a N x N matrix whose (i, j )-th
component is uivj
Vu is the gradient of u; Vu is a N x N matrix whose (i, j )-th component
is .

V ’ u = 03A3 ~ui ~xi is the diver g ence of u

D x u = (~u3 ~x2 - ~u2 ~x3
, 

~u1 ~x3 
- 

~u3 ~x1
, 

~u2 ~x1 
- aul is the curl of u

(u . V)v is the vector whose i-th component is 03A3j uj(~vi/~xj )

V . (uv) = (V . u)v + (u ~ V)v

C(IR+) is the space of continuous real functions defined on IR+

C(o, T ; X ) is the Banach space of continuous functions f : ~ 0 , T ~ --~ X

(here X is a Banach space).

1. Introduction

Let n C IR3 be a bounded open set whose boundary aS~ E C2 and let T
be a positive real number. It is well known that the motion of a viscous,
nonhomogeneous and incompressible fluid in H during the time interval
~ 0 , T] is described by the solution of the variable density Navier-Stokes
equations:

It will be assumed that these are satisfied in the open set Q = 11 x (0, T).
We complete the problem by adding to (1.1)-(1.3) the nonhomogeneous
boundary condition



and the initial conditions

Here, the unknowns are p, u = ~ ul , u2 , u3 ) and p. They respectively give
the mass density, the velocity field and the pressure distribution of the fluid
as functions of position x and time t. The functions f, g, Po, uo and  are
the data of the problem is the dynamic viscosity of the fluid ; of course,

It is not difficult to rewrite the conservation laws of linear momentum

and mass, (1.1) and (1.2) respectively, in a "nonconservative form" :

Obviously, when p m Const., ( 1.1 )-( 1.6) reduces to the well known

incompressible Navier-Stokes problem.
When g = 0 and  is constant, several results have already been obtained

for (1.1)-(1.6). For a bounded H, the existence of a weak solution has been
established by S. A. Antonzev and A. V. Kazhikhov ( ~1~, [7]) and J.-L. Lions
[12], under the assumption

This has been generalized by J. Simon [17] to the more general case in which
one merely assumes po > 0. O. A. Ladyzhenskaya and V. A. Solonnikov

[10] and H. Okamoto [14] proved the existence and uniqueness in certain
"regular" spaces of a local solution, i. e. a solution in H x [0, T~) ) for
some T*  T. In [18], Simon found a global "nonsmooth" solution for which
the initial condition (1.6) is satisfied in a weak sense - he also proved
that, under some regularity for the data, this solution is more regular in
a short interval of time and, recently, it was shown in [3] that global
existence remains essentially true in an unbounded three-dimensional SZ (for
unbounded domains, M. Padula had previously obtained in [15]-[16] results
that are similar to those in [10]; see also [6]).



In this paper, our main aim is to prove the existence of a global solution
of (1.1)-(1.6) (as in [18] and [3]) first for nonvanishing g and then for
nonconstant ~c. Results of this kind have already been obtained:

. when the fluid is homogeneous, i. e. it is governed by the Navier-Stokes
equations (see e.g. o. A. Ladyzhenskaya [9] and J.-L. Lions [11]; see
also R. Temam [19]);

. also, when ,u is a constant and the fluid is compressible and satis-
fies some additional properties (for barotropic flows, see Fiszon and
Zajacszkowski [4] and Lukaszewicz [13]; for other flows, see Valli and
Zajacszkowski [20]).

This paper is organized as follows. In section 2, we first present an

argument by means of which it is possible to reduce (1.1)-(1.6) to an
equivalent similar problem for which boundary values are zero (here, for
simplicity, we assume that g does not depend on t). Then, we state our
first main result, theorem 1, which gives the existence of a global weak
solution for constant ~c. In section 3, we present the proof of theorem 1. It

relies on the definition of a family of approximations to ( 1.1 )- ( 1.6 ) that can
be obtained by solving certain "semi-discretized" problems (more precisely,
some nonlinear problems in which (1.1) but not (1.2) has been discretized).
The fact that g ~ 0 makes more difficult to obtain uniform a priori
estimates and to solve (1.2), (1.5) by the method of characteristics. In

section 4, we consider the case in which g depends on t. Finally in section 5,
we state and prove theorem 3, an existence result for (1.1)-(1.6) with g = 0
and nonconstant ~c. It will be seen that the proof is similar to the one in
section 3 but, now, some recent results on the transport problem satisfied
by p 2014 mainly due to R. Di Perna and P. L. Lions, see [2] - are needed.

2. The first main result (theorem 1)

As announced, we will first consider the case in which g # 0 but  is a

positive constant. Let us introduce our assumptions on S~:

S1 is a bounded open connected set, aS1 E C2;
either S1 is simply connected (and then r = or it is not

and, in this case, Fo U Fi U ~ ~ ~ U Pp. with Fo being the
"outer" boundary and r1, ..., Fp being the "inner"

boundaries.



In this section, we assume that g does not depend on t (a more general
situation will be considered in section 4). It will be imposed that

and, also, that the compatibility conditions

0393g . n da = 0 (if n is simply connected)

are satisfied. For a given g in these conditions, let us introduce the couple
(a, q), the unique solution to the Stokes problem

Due to (2.1)-(2.2) and the regularity of ao, we know that

for some constant C ( cf. [9, p. 78]). Also, from known results (for instance,
see Corollary 3.3, p. 47 in [5]), we have

Our aim is to solve the nonlinear system (1.1)-(1.6). Notice that, after
the introduction of the new variable u* = u - a (which in the sequel will
be denoted again by u), (1.1)-(1.6) also reads



where we have set F = f - (a V)a and mo = uo - a (recall that  is a
positive constant). As usual, let us set

and let H and V be the closures ofV in L 2 ( SZ ) 3 and Ho ( ~ ) 3 respectively.
It is well known that

On the other hand, recall that, when X is a Banach space, 0 ~ s  1
and 1 ~ q  +co, the Nikolskii space T X) is given as follows ~8~:

Here, rh f(t) = f(t + h) for t a.e. in [ 0 , T - h ] . This is a Banach space for
the norm ll ° ll NS,q(o,T ; Xl where

In particular, T ; X is a space of X-valued functions f = ~ 0 , T ~ ->
X which are bounded and Hölder-continuous. Our first main result is the

following theorem.

THEOREM 1. Assume uo E H, po E po > 0 a.e. and
f ~ L1 (0, T ; L2(03A9)3) . Then, problem (2.6)-(2.11) possesses at least one
weak solution. More precisely, there exist functions



such that

and satisfy

(2.6) as an equality in W-1~°° (0, T ; H-1(SZ~3~ t
~.~. ?’~ as an equality in L°° (0, T ; H-1 (~)~ and L2 (0, T ; W -1 ~s ~SZ)~ ,
(2.10) as an equality in I~-1 ~5~~ (for instance ) and

(2.11) in the following weak sense:

Moreover, ~03C11/2u~L2 E C([0 , T])) and ~03C11/2u0~L2.

Notice that uo E H if and only if V . uo = 0 in SZ and u . n = g . n on

In addition, if 03C10 ~ 03B1 > 0, it is not difficult to prove that

3. Proof of theorem 1

For the proof, we will introduce a semi-Galerkin approach, we will try
to find appropriate a priori estimates and, then, we will take limits on a

sequence. There are some differences with the standard argument which is
used in the case of homogeneous boundary conditions ([17], [3]):

a) to be able to handle adequate semi-Galerkin approximations, we have
to use basis functions of a particular kind; among other things, these
have to be smooth and compactly supported in H;



b) to be able to solve the transport equations satisfied by p, a has to
be regularized appropriately by introducing certain approximations
which vanish on ~03A9;

c) there are some new terms in the equations that have to be bounded
and for which convergence properties have to be derived.

3.1 Regularization of F

Since F = f-(a.V)a ; L2 (S~)3~ , we can introduce a regularizing
sequence ~F"~’~ for F, with

Obviously, it can be assumed that, for some function K E L1 (0, T), on has:

3.2 Regularization of a

Let us also introduce a sequence of regular and divergence-free
functions which vanish on aSZ and converge towards a. Such a sequence

exists ; indeed, it suffices to set

where ~~h ~ is a usual regularizing sequence and b is given by (2.5). Here,
f * g denotes the convolution of f and g and X~1 ~,m is the cut-off function
which is equal to 1 on

and vanishes elsewhere. Obviously,

Also, --~ a in More precisely, if n E IN is given and
large enough, from the continuity properties of the convolution product,
one deduces the following:



This gives:

In particular, we see that II (I H1 {~2 I ~~3 is bounded independently from m.

3.3 The choice of a special basis of V

Let us consider a sequence in V with the following properties:

Such a sequence can be obtained as follows. Since V is a separable Hilbert
~ space, there exists a dense set ~u"~’ 1 ~. For each m, one can find a

sequence {wmj}j in V such that

After a renumerotation of the set j, m > 1 ~, making use of the
usual orthonormalization technique with respect to the scalar product in
L2, one easily obtains a sequence satisfying (3.6a) and (3.6b).

Since each v"z is compactly supported in Q, there exists a sequence

{?7~(m)} in N, strictly increasing with respect to m and such that m’(m~ >
m and supp C ~2~m’(rn) ~ Hence, introducing the finite dimensional

spaces = 
..., v~ ~, it is clear that

For simplicity, in the sequel, when no confusion is possible, we use the

symbol m’ to denote m’(m).



3.4 The definition and existence of approximate solutions

For given m, it will be said that the couple is a m-th approxi-
mate solution if pm E C1 (~), u"z E C1 ([ 0 , T ~ ; ~’~’L~ and

Here, we assume that

From the definition of one sees that (3.10) is a transport equation
for p"z, where the velocity field, given by + vanishes on E.

Consequently, (3.10) can be solved by the method of characteristics. Also,
observe that in all terms in (3.9), we are in fact integrating in 
Finally, notice that an equivalent conservative form of (3.9)-(3.11) is given
by the system

together with (3.11).



Recall that, in the case of zero boundary conditions considered in [17],
the existence of a m-th approximate solution can be demonstrated arguing
as follows:

a) rewrite (3.9)-(3.11) as a fixed point equation and introduce the lin-
earized approximate solutions,

b) derive approximate estimates for these linearized solutions and

c) apply Schauder’s Theorem to deduce that (3.9)-(3.11) possesses at
least one solution.

Here, we can repeat this argument to prove that a solution exists. Only
the obtention of uniform estimates (the second step above) is different, due
to the new terms in (3.9)-(3.10). However, since this difficulty also arises
when one is trying to find a priori estimates for the m-th approximate
solutions, it will be postponed to the next paragraph.

3.5 "A priori" estimates for the approximate solutions

Let us first estimate Obviously, is a constant on each character-

istic line. Thus, we see from (3.12) and (3.14) that

therefore,
pm is uniformly bounded in (3.15)

On the other hand, from (3.13) and (3.14) one sees that, for t a.e. in [0 , T],

Observe that



Thus, one also has the following energy inequality:

with Ci only depending on  and g for i = 1, 2. From Gronwall’s Lemma
and the fact that the function is uniformly bounded in L1 (SZ), we
deduce that is uniformly bounded in L2(0)3). From
(3.6), we also derive that

um is uniformly bounded in L2 (o, T ; V ) . (3.17)

Hence, it is found that

and, from interpolation theory, we easily obtain:

is uniformly bounded in L~(0,T; ; L2 (SZ)9~ . (3.19)

Our goal is to take limits in the conservative form of the problem (3.9)-
(3.11). Consequently, we also need uniform bounds for 03C1m(um + am’) and
p’’’’t(u’~’z -f- a’’’’z )u"’z. Recall that

a’~’z~~’~’z~ is uniformly bounded in (3.20)

accordingly, it is not difficult to deduce that

+ am’)um is uniformly bounded in L3~4 (o, T; (3.22)

Of course, global estimates of the same kind hold true in each SZ2~~.



3.6 "A priori" estimates for the time derivatives

From (3.14) and (3.21), one has

Let us see that

where G E L1 (0, T ~ is a fixed function and is bounded in the space

L4~3 (o, T). Indeed, from (3.13), one finds:

whence we obtain (3.24) (it suffices to use (3.2), (3.17) and (3.22) to bound
the first term in the right and, on the other hand, to apply Holders

inequality and Sobolev’s embedding Theorem to estimate the second one).

It is now possible to obtain new estimates for which involve

Nikolskii spaces. The argument is similar to those in [17] and [3] and consists
of four steps.

First step. - Taking into account (3.24), we see as in [17] and [3] that a
constant C > 0 exists with the following property:

forallhwith0hT.



Second step. - There exists a new constant C > 0 such that

for all h in (0, T). Indeed, if w E Wo’3/2 (SZ) and C is

then clear that

Hence, using (3.21) and taking w = + h) - we easily
arrive at (3.26).

Third step. 2014 From the value of I1-I2, we deduce the existence of C > 0
such that

Fourth step. - As in ~3~, from (3.14) and the estimates (3.21), one has

Since E and this space is continuously embedded in Ho (~Z~?.,,z~ )3,
(3.17) and the fact that the mapping

is continuous yields:

This, together with (3.27) leads to the desired property:

is uniformly bounded in N1I4,2 (0, 1’ (3.28)

We can now continue exactly as in the proof of Theorem 1 in [3]. Since
the argument is rather standard, we omit the details (see also [6]).



4. The case in which the boundary data depend on t

In this section, we will generalize the previous result (theorem 1) to the
case in which g = g(x, t). We will consider again the formulation (2.6)-
(2.11), but now with different functions F and uo.

THEOREM 2. - Assume that SZ, pa, uo and f are as in theorem 1. Also,
assume there exist functions a and b such that

and set

Then, problem ~~. ~~-r~.11~ possesses at least one weak solution.

Sketch of the proof . It is very similar to the proof of theorem 1. The

unique differences are due to the fact that now a, b, am and b’~’~ depend on

t, which lead to some changes.

Notice that F E L1 (0, T ; L2(SZ)3) and a(0) makes sense in L2(S~)3. If

we extend b by zero outside Q and am is given by (3.3), we have

Furthermore, from (4.2) one sees that

Thus, with the same choice for the basis functions v"z and the integers
m~(m~, arguing as in section 3, one deduces the existence of a weak solution
to (2.6)-(2.11) (now, one has to replace in the definition of the m-th

approximate solution a by an adequate regular apprimation; see [6] for
more details). 0

To end this section, we present a construction of the functions a and b.



PROPOSITION . - Assume S~2 is as in theorem 1 and 2. Also, assume
that

and (2.2) holds for t a. e. in (0, T). . Then, there exist functions a and b
satisfying ~l~ .1~ and ~l~ .,~~.

Proof . Let us introduce the linear operator A : H1~2(aS~~3 -~ H1 (~~3,
given as follows:

Let us also introduce B : L2 (5~~3 - L2 (c~~)3, with

where (z, q) is the unique strong solution to the Stokes problem

From the existence and regularity results for this Stokes problem, it is

clear that

B coincides with the restriction to L2 (5~~3 of the adjoint operator A* and

Furthermore, from the definitions of A and B, one has

Let us set a(t) = Ag(t) for t a.e. in (0,T). Obviously,



moreover, it is not difficult to derive that

from (4.9). In other words, a satisfies (4.1). From (4.5), one also deduces
that, for t a.e. in (0,T)

(see e.g. [5, p. 47]). If each b(t) is found as in [5], then it is easy to check
that

and, consequently, b E L2 (0, T; H2(SZ~3}, i.e. b satisfied (4.2~. ~
Notice that, in fact, the first assumption in (4.5) can be weakened. It

suffices to impose

(see [6] for more details).

5. The second main result (theorem 3) and its proof

This section is devoted to establish a new existence result for (1.1)-(1.6).
Here, it will be assumed that S1 C IR3 is a general bounded open set with
aSZ E We also assume that g = 0 but  is not a constant but

continuous function of the density.

THEOREM 3. - Assume that po, ua and f are as in theorem 1. Also,
assume that S~ is bounded, g = 0 and

Then, problem ~1.1~-~1. 6~ possesses at least one weak solution (p, u, p~ . The

functions p, u and p satisfy the same properties as in theorem 1 (with
obvious changes).

Proof. - It is similar to the proof of theorem 1, even easier in some

aspects. There are only two serious differences (here, we conserve the
notation of section 3}. .



a ) The demonstration of the inequalities

which replace (3.16) in this case. Of course, is here and in the

sequel a m-th approximate solution to ( 1.1 ~- ( 1.6 ) .
b ) The proof that

in T) for every v E Vn.

The energy inequalities (5.2) can be derived as follows. First, it is clear
from the context that

We notice that, for some C,

In particular, this gives

But, since ~ ~ u - 0 and = 0, the last integral vanishes. From (5.4)
and (5.6), we obtain (5.2).

In order to prove (5.3), we begin by selecting a subsequence (again
indexed with m) which is weakly convergent in L2:

(this is possible, since + is uniformly bounded in this

space). Obviously, if

then (5.3) holds. Hence, it suffices to check that converges strongly
in L2 towards 



In principle, from (3.15) we can only assert weak convergence for 

On the other hand, we know that p is a weak solution of the transport
problem 

Thus, from the results in [2], we also deduce the following for every p  oo:

Consequently, taking into account the choice of p~ and the fact that

This, together with (5.8), yields strong convergence in LP; for p = 2, we
obtain:

Using (5.5), (5.10) and the fact that  is continuous, it is now immediate
that converges strongly towards 0

A natural generalization of both theorems 1 and 3 concerns (1.1)-(1.6)
with, at the same time, nonvanishing g and nonconstant In this case,

p. is the solution of a transport problem where the velocity field is not

zero on aQ. This leads to the fact that the identity (5.9) does not hold
necessarily. However, (5.9) was needed in the proof of theorem 3 to obtain
strong convergence for the sequence which, in turn, has been crucial
to establish the convergence of towards Hence, it is not a

priori clear whether similar arguments work in this case.
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