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Axioms for topological quantum field theories(*)

VLADIMIR G. TURAEV(1)

Annales de la Faculte des Sciences de Toulouse Vol. III, n° 1, 1994

RESUME. - Nous donnons une definition axiomatique des theories

topologiques quantiques des champs.

ABSTRACT. - We give an axiomatic definition of topological quantum
field theories.

Introduction

The objective of this paper is to give an axiomatic definition of mod-
ular functors and topological quantum field theories (TQFT’s). Modular
functors emerged recently in the context of 2-dimensional conformal field
theories (see G. Segal [Se], G. Moore and N. Seiberg [MS1], [MS2], and ref-
erences therein). The notion of TQFT was introduced by E. Witten ~WiJ
who interpreted the Jones polynomial of knots in terms of a 3-dimensional
TQFT closely related to the 2-dimensional modular functor.

It was emphasized by M. Atiyah that the notions of modular functor and
TQFT have a more general range of applications and may be formalized
in the framework of an axiomatic approach. Axioms for modular functors
were first given (in the setting of 2-dimensional conformal field theory) by
G. Segal [Se] and G. Moore and N. Seiberg [MS1]. Axioms for topological
quantum field theories were put forward by M. Atiyah [At] (see also
K. Walker [Wa]). A systematic study of axiomatic foundations of TQFT’s
was carried out by F. Quinn [Qui], [Qu2]. The major difference between
the axiomatic system of Quinn and the one given in this paper is that as
the basic notion of the theory we use space-structures rather than domain
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categories as in [Qu1], [Qu2]. This allows us to make the exposition short
and straightforward.

The problem with any axiomatic definition is that it should be sufficiently
general but not too abstract. It is especially hard to find the balance in
axiomatic systems for TQFT’s because our stock of non-trivial examples is
very limited. There is no doubt that further experiments with axioms for
TQFT’s will follow.

The reader will notice that our definitions and results have a definite

flavour of abstract nonsense. However, they form a natural background for
more concrete 3-dimensional theories.

Fix up to the end of the paper a commutative ring with unit K which
will play the role of the ground ring.

1. Space-structures and modular functors

1.1. Structures on topological spaces

We introduce a general notion of additional structure on topological
spaces. For such additional structures we will use the term space-structures.

A space-structure is a covariant functor from the category of topological
spaces and their homeomorphisms into the category of sets with involutions
and their equivariant bijections such that the value of this functor on the
empty space is a one-element set. Such a functor 9t assigns to every topo-
logical space X a set with involution and to every homeomorphism
f : X --~ Y an equivariant bijection -~ such that the set

2l(0) has one element, = id2(X) for any topological space X, and
~L(,f f’) _ for any composable homeomorphisms f, f ~. Elements
of the set are called -structures in X . Any pair (X, a E 
is said to be an -space. By an -homeomorphism of an -space (X, a)
onto an -space (X’, a’) we mean a homeomorphism f : X ~ X such that

= 03B1’. It is clear that the composition of -homeomorphisms is an
-homeomorphism and that the identity self-homeomorphisms of -spaces
are -homeomorphisms. By abuse of notation we will often denote -spaces
by the same symbols as their underlying topological spaces.

The -structure in X which is the image of a E under the given
involution in is said to be opposite to a. For any 2l-space X we denote
by -X the same space with the opposite -structure. Clearly -(-X ) = X .



A space-structure 2l is said to be connected if for any disjoint topological
spaces X and Y there is an equivariant identification

2t(X II Y) = x 2l(Y)

so that the following conditions hold true.

2014 The diagram

is commutative (here Perm is the flip x x y H y x x}.

(1.1b). 2014 For arbitrary -homeomorphisms f X - X’ and g Y ~ yl
the diagram

is commutative.

(1.1c). - For any three topological spaces X , Y, Z the diagram of
identifications

is commutative.

- If X = (~ then the identification II Y) = x is

induced by the identity id : ~(V) -~ 2t(Y).

These axioms may be briefly reformulated by saying that the disjoint
union of a finite family of -spaces acquires the structure of an -space in
a natural way so that varying the -structures on these spaces we get every
~-structure on the disjoint union exactly once.



We may also consider more general space-structures which are defined as
above with the only difference that the values of 2l on topological spaces are
not sets but rather classes. The concept of class is in fact more convenient
in this abstract setting. For example, vector bundles on a given topological
space form a class and not a set (unless the space is empty). Another

simple example of a space-structure involving classes is the structure of a
topological space with a distinguished point endowed with an object of a
certain category.

Replacing everywhere the word "space" by the word "pair", or "triple",
or "tuple" etc., we get the notions of (connected) space-structures on

topological pairs, triples, tuples, etc.

A prototypical example of a space-structure is the orientation of n-

dimensional topological manifolds (with a fixed n ) . The corresponding
functor ~t is defined as follows. If a topological space X is homeomor-
phic to an orientable n-dimensional topological manifold then is the

set of orientations in X with the involution induced by inversing of orien-
tation. For other non-empty X we have 2l(X) = 0. (The empty set should
be treated as an orientable n-dimensional manifold with exactly one orien-

tation.) It is clear that orientation is a connected space-structure. Another
useful example of space-structures is provided by the cell structure (also
called the CW-structure). It assigns to every topological space X the set
of equivalence classes of homeomorphisms of X onto cell spaces, two such
homeomorphisms 91 : : X --~ Ci, , g2 : X --; C2 being equivalent if 

is a cell homeomorphism. These sets of equivalence classes are endowed
with identity involutions. The action of homeomorphisms on these sets is
induced by composition in the obvious way. One may similarly formal-
ize the structures of smooth manifold, piecewise-linear manifold, and other
standard structures.

1.2. Modular functors

A modular functor assigns modules to topological spaces with a certain
space-structure and isomorphisms to the structure preserving homeomor-
phisms of these spaces. Here are the details. Assume that we have a con-
nected space-structure ~t. A modular functor T based on 2l assigns to every
-space X a projective K-module T(X) and to every -homeomorphism
f : X ~ Y a K-isomorphism f# : T (X ) - T (Y ) satisfying the following
axioms (1.2a)-(1.2c). (By projective K-module we mean a projective K-



module of finite type, i. e. a direct summand of the free module .Kn with

finite n. )

(1.2a). 2014 For any 21-space X we have = For any -

homeomorphisms f : X - Y, g : Y - Z we have (gf)# = .

(l.,~b~. For each pair of disjoint 21-spaces X, Y there is a fixed

identification isomorphism --~ T ~X ) ~ T (Y ) These identifications
are natural, commutative, and associative.

Naturality in this axiom means that ~, f II g) # = g# for any homeo-

morphisms of 21-spaces f, g. Commutativity means that the diagram

is commutative. Here Perm is the flip a? 0 y ~ y ~ z. Associativity means
that for any ~-spaces X, Y, Z the composition of identifications

is the standard isomorphism identifying (a? @ y) @ z with x @ (y ~ z).

(1.2c). - T (0) = K and for any -space Y the identification

is induced by the identification T(0) = K.

The simplest example of a modular functor is the "trivial" modular

functor which assigns K to all topological spaces and idK to all homeo-
morphisms. (The underlying space-structure assigns a one-point set to all
topological spaces.) For further examples of modular functors see Section 3.

It is clear that every modular functor T assigns to the disjoint union
of a finite family of -spaces {Xj}j the tensor product of the modules

. There is one subtle point here. Namely, if the family .

is not ordered then the tensor product in question is the non-ordered



tensor product. Recall briefly its definition. Consider all possible total
orders in the given (finite) family of modules, form the corresponding
tensor products over K and identify them via the canonical isomorphisms
induced by permutations of the factors. This results in a module canonically
isomorphic to any of these ordered tensor products but itself independent
of the choice of ordering. For instance, for any two K-modules G, H
their non-ordered tensor products is the K-module F consisting of all pairs
( f E E such that f’ = Perm(/). The formulas ( f f’) , f
and ( f f’) H f’ define isomorphisms F --~ G ~ Hand F --~ H c~ G. For
any g E G, h E H the pair (g ~ h, h ~ g) is an element of F. The fact that
under any modular functor the disjoint union corresponds to non-ordered
tensor product of modules follows from the axiom (1.2b). As is customary
in algebra, we denote both the ordered and non-ordered tensor products by
the same symbol 0.

1.3. Self-dual modular functors

We say that a modular functor T is self-dual if it satisfies the following
condition.

(1.3a). - For any -space X there is a non-degenerate bilinear pairing

The system of pairings x is natural with respect to -homeomor-

phisms, multiplicative with respect to disjoint union, and symmetric in the
sense that d- x = dx o for any ~.-space X. .

Here non-degeneracy of a bilinear pairing of K-modules d : P ®K Q --~ K
means that the adjoint homomorphisms Q -~ P* = HomK (P, K) and
P --> Q* = HomK(Q,K) are isomorphisms.

For instance the trivial modular functor defined in Section 1.2 is self-dual.

Recall that for projective K-modules (of finite type) there is a notion of
dimension generalizing the usual dimension of free modules. Namely, for a
projective K-module P we set Dim(P) = tr(p) where p is the projection of
a free K-module of finite type onto its direct summand isomorphic to P. It
is well known (and easy to show) that this dimension is correctly defined
and satisfies the usual properties of dimension:



It is clear that for any self-dual modular functor T and any 2l-space X we
have

2. Cobordisms and topological quantum field theories

2.1. . Cobordisms of -spaces

The notion of cobordism for -spaces is motivated by the needs of

topological quantum field theories. In the realm of manifolds such a theory
associates modules to closed manifolds and homomorphisms to cobordisms.
Similar ideas may be applied to arbitary topological spaces whenever there
is a suitable notion of cobordism. We describe here a general set up for
cobordism theories which will serve as a ground for topological field theories.

Let 2l and 23 be connected space-structures. Assume that any 23-

structure on a topological space M gives rise in a certain canonical way to
a subspace of M equipped with an -structure. We will call this subspace
with this -structure the boundary of the 23-space M and denote it by
8M. Thus, 8M is an -space. Warning: in general both the underlying
topological space of 8M and the 2l-structure in this space may depend on
the choice of the 23-structure in M. We assume that the boundary is natural
with respect to 23-homeomorphisms, i. e. that any 23-homeomorphism
Mi ~ M2 restricts to an -homeomorphism 8 ( Ml ) ~ ~(M2). We also

assume that the passage to the boundary commutes with disjoint union
and negation of 23-spaces, i. e. . that

We say that the space-structures (!8, ~C) form a cobordism theory if the
following four axioms hold true.

(2.1a). - The B-spaces are subject to gluing as follows. Let M be a B-
space and let aM be a disjoint union of -spaces Xl, X2, Y such that Xl
is -homeomorphic to -X2. . Let M’ be the topological space obtained from
M by gluing X 1 to X2 along an -homeomorphism f : X 1 ~ -X 2 . Then
the -structure in M gives rise in a certain canonical way to a B-structure
in M’ such that aM’ = Y.



We say that the 03-space M’ is obtained from M by gluing X 1 to X 2
along f.

(2.1b). 2014 The gluings of B-spaces are natural with respect to B-

homeomorphisms and commute with disjoint union and negation. The glu-
ings corresponding to disjoint 2l-subspaces of the boundary commute.

(2.1c). 2014 Each -structure a in a topological space X gives rise in a
certain canonical way to a .%-structure a x ~ 0 , 1 ~ in X x ~ 0 , 1 ~ such that

The homeomorphism (x, t) H (z , 1 - t ~ : X x ~ 0 , 1 ~ -~ X x ~ 0 , 1 ~ inverts
this structure. The correspondence a --~ a x [0, 1] is natural with respect
to homeomorphisms and commutes with disjoint union and with negation.

Thus for any -space X we may form the cylinder X x [ 0, 1 ] over X
which is a B-space with the boundary (-X) x 0 II X x 1.

(,~.1 d~. Let X , X’ be two copies of the same ~-space. Gluing the
B-spaces X  [0,1], X’  [0,1] along the identity

we get a Q3-space homeomorphic to the same cylinder X x [0,1] ] via a
Q3-homeomorphism identical on the bases.

- ~3 is the structure of oriented n + 1-dimensional smooth

manifolds with boundary, 21 is the structure of oriented n-dimensional

smooth manifolds, and 8 is the usual boundary. This pair of space-
structures forms a cobordism theory in the obvious way.

Assume that the space-structures ~~3, ~L) form a cobordism theory. By a
we mean an arbitrary triple (M, X, Y) where M is a B-

space, X and Y are -spaces, and 8M = (-X ) II Y. The -spaces X and
Y are called the (bottom and top) bases of this cobordism and denoted by

and 8+M respectively. We say that M is a cobordism between X and
Y . For instance, for any 21-space X the cylinder 
with the B-structure in X x [ 0 , 1 ] induced by the -structure in X is a
cobordism between two copies of X. This cobordism will be simply denoted
by X x [0, 1].

It is clear that we may form disjoint unions of cobordisms. We may
also glue cobordisms Mi, , M2 along any -homeomorphism a+ {.Ml ) -
_8_ (M2).



2.2. Definition of TQFT’s

Let 23 and 2l be connected space-structures forming a cobordism theory.
A topological quantum field theory (briefly, TQFT) based on 

consists of a modular functor T on -spaces and a map T assigning to
every (M, X Y ) a K-homomorphism

which satisfy the following axioms (2.2a)-(2.2d).

(2.2a) Naturality. - If M1 and M2 are (B, )-cobordisms and f : M1 ~
M2 is a ae-homeomorphism preserving the bases then

(,~. Zb~ Multiplicativity. - If a cobordism M is the disjoint union of
cobordisms Ml M2 then under the identifications (1.2b) we have

(2.2c) Functoriality. - If a (B,)-cobordism M is obtained from the
disjoint union of two (B,)-cobordisms Ml and M2 by gluing along an
-homeomorphism f : ~+(M1) ~ ~_(M2) then for some invertible k E K

Here the factor k may depend on the choice of Ml and M2.

~,~.2d~ Normalization. - For any ~.-space X we have

We say that the TQFT (T, r) is anomaly-free if the factor k in (2.2c)
may be always taken to be 1.

Each B-space M gives rise to a cobordism (M, 0, 8M). The correspond-
ing K-homomorphism --> T(8M) is completely determined by its
value on the unity 1 E K = T ( ~ ) . This value is denoted by T( M ) . It
follows from the axioms that r(M) E T (aM) is natural with respect to
%-homeomorphisms and multiplicative with respect to disjoint union. In



the case aM == 0 we have r(M) E = K so that r(M) is a numerical
B-homeomorphism invariant of .M. .

It is straightforward to define homomorphisms and isomorphisms of
TQFT’s. Namely, let ri) and (T2, r2) be two TQFT’s based on the same
pair (B,). A homomorphism (Tl, r1) ~ (T2, r2) assigns to every -space
X a K-homomorphism T1 (X ) --~ T2 (X ) which commutes with the action of
homeomorphisms, with the identification isomorphisms for disjoint unions,
and with the operators corresponding to cobordisms. A homomorphism
g : (Tl , rl ) - (T2 , r1 ) is said to be an isomorphism if for any ~.-space X the
homomorphism ~(X) : : Tl (X ) ---~ TZ(X ) is an isomorphism.

Note two natural operations on TQFT’s, the negation and the tensor
product. For any TQFT(T, r) we define the opposite TQFT(-T, -r) by
the formulas -T (X ) = T (-X ) for any -space X and -r(M) = r(-M)
for any M, the action of homeomorphisms and the
identification isomorphisms for disjoint unions being determined in the

obvious way by the corresponding data for (T, r). For any TQFT’s (Tl, rl)
and (72, r2) based on the same pair (~, ~t.) we define their tensor product
by the formulas

As above the action of homeomorphisms and the identification isomorphisms
for disjoint unions are determined by the corresponding data for (Tl, Ti ),
~T2 ~ ’r2 ~ .

3. Properties and examples

3.1. Fundamental properties of TQFT’s

Fix connected space-structures forming a cobordism theory and
a TQFT (T, T) based on ~~, ~t). We formulate here three fundamental

properties of ~T, T~. The first of these properties apply to an arbitrary
TQFT whereas the second and third ones hold only for anomaly-free
TQFT’s.

THEOREM 3.1.1.2014 The modular functor T is self-dual.



In the proof of Theorem 3.1.1 given in Section 4 we will explicitly
construct for any 2t-space X a non-degenerate bilinear

satisfying ( 1.3a) .
Theorem 3.1.1 shows that any modular functor which may be extended

to a TQFT is self-dual.

The next theorem shows that when a ~-space splits into two pieces Ml
and M2 with Ml n M2 = 8(Ml) = 8(M2) then for any anomaly free
TQFT (T, T) we may compute T(M) from T(Ml ) and T(M2 ). Here we
need the pairing d provided by the previous theorem.

THEOREM 3.1.2. - Let M be a ~-space with void boundary obtained by
gluing two ~-spaces M1 and M2 along an 21-homeomorphism g : 8(Ml ) -~
- 8(M2 ) . Let g = -g be the same mapping g considered as an -

homeomorphism -a(M1) ~ a(M2). . If (T, T) is anomaly-free then

Finally, for any ~-space X we compute the dimension Dim ~T (X ~~ of
T (X ) in terms of T. With this view consider the cylinder X x ~ 0 , 1 ~ with
its B-structure and glue its bases along the homeomorphism

This yields a B-structure in X x . The resulting B-space is also denoted
by X x S1. It follows from the axiom (2.1a) that 8(X x = 0.

THEOREM 3.1.3.2014 If (?’~, T~ is anomaly-free then for any ~-space X we
have

The latter two theorems do not extend directly to TQFT’s with anoma-
lies, as is clear from the examples given in Section 1.1.2.

Note that Theorems 3.1.2 and 3.1.3 are well known in physical literature
(Theorem 3.1.1 is also known though the self-duality of the modular functor
is often confused with its unitarity properties which we do not discuss in this



paper). Our ability to state and to prove these theorems in a quite abstract
set up confirms that our mathematics adequately formalizes physical ideas.

Theorems 3.1.1-3.1.3 are proven in Section 4.

3.2. Examples of TQFT’s

We consider here a few elementary examples of TQFT’s (for more
elaborate examples see [At], [Wa], [Tu3]).

Let Ql be the structure of finite cell space and let Q3 be the structure

of finite cell space with a fixed cell subspace (which plays the role of the
boundary). . Thus, (~, Ql)-cobordisms are just finite cell triples (M, X, Y)
with X n Y = 0. The gluing of cell spaces and the cell structures in

cylinders are defined in the standard way. The examples of TQFT’s to
follow are based on (~, 

Example 1. . - Let T be the trivial modular functor restricted to finite
cell spaces. Fix an invertible element q E K. For any finite cell triple
(M, , X Y) define the operator r(M, X Y) : K -~ K to be the multiplication
by where x is the Euler characteristic. It is obvious that the pair
(T r) is an anomaly-free TQFT. This example is borrowed from .

Example ~ . Fix an integer i > 0 and a finite abelian group G

whose order is invertivle in K. For any finite cell space X set T (X ) =
. Thus, T(X) is the module of formal linear combinations

of the elements of H2 (X ; G) with coefficients in K. The action of cell

homeomorphisms is induced by their action in . Additivity of homologies
with respect to disjoint union yields the identifications satisfying the axioms
(1.2b), (1.2c). The operator invariant r = r(M, X, Y) of a finite cell triple
(M, X Y) transforms any g E Hi(X; G) into the formal sum of those
h E Hi (Y; G) which are homological to g in M (if there is no such h

then r(g) = 0). The axioms of topological field theory are straightforward.
(In the axiom (2.2c) k-1 is the order of the group ,f*(Fl) n F2 where Fl
and F2 are the kernels of the inclusion homomorphisms Hi (~+(M1); G) ~
Hi ( lVl1; G) and Hi ~a_ ( M2 ) ; G) -~ HZ ( M2 ; G) respectively.) The resulting .

TQFT is easily seen to be non-anomaly-free.

Instead of homologies with coefficients in G we may use any homology
theory, provided some finiteness assumptions are imposed to assure that
the modules ~T (X ) ~ are finitely generated. As an exercise the reader may
construct similar TQFT’s using cohomology groups or homotopy groups.



3.3. Remarks

Remark 1. - The axioms of TQFT’s given above are subject to further
generalizations. First of all the axioms may be extended to cover the

case of -spaces with boundary, which should be preserved under the
Such an extension could be useful though it makes

the exposition more heavy. In dimension 3 such an extension may be

avoided because we may always eliminate the boundary of surfaces and
3-cobordisms by gluing in 2-disks and solid tubes respectively. Another

possible generalization ofTQFT’s abandons the condition that the operator
invariant T is defined for all A guiding example in
this direction could be the "Reidemeister TQFT" defined only for acyclic
cobordisms. This "TQFT" involves the trivial modular functor and assigns
to every finite cell triple (M, X, Y) equipped with a flat K-linear bundle
~ with H* (M, X ; ~) = 0 the multiplication by the Reidemeister torsion
r(M, X ~) E K. To eliminate the indeterminacy in the definition of torsion
the pair (W, X ) should be endowed with homological orientation and Euler
structure as defined in [Tu1] and [Tu2]. Another interesting idea would be
to replace in the definition of TQFT’s the projective modules by locally
trivial vector bundles over certain topological spaces. We will not pursue
these ideas here.

Remark 2. - As an exercise the reader may prove the following two
assertions. Let (T, r) be an anomaly-free TQFT based on a cobordism
theory (~, ~t.~. .

2022 Let X be an 21-space and g be an -homeomorphism X ~ X. . Gluing
the top base of the cylinder X x [ 0, 1 ] to its bottom base along g we
get a B-structure (with void boundary) in the mapping torus Mg of g.
Then T(M9) = (this generalizes Theorem 3.1.3).

~ Let (M, X, Y) be a Under the identification

induced by dx, dy we have



4. Proof of theorems

4.1. Lemma

LEMMA . Let P and Q be modules over a commutative ring with
unit K. . Let

be K-linear homomorphisms satisfying the identities

where k and 1~~ are invertible elements of I~ . Then k = k’ and both band d
are non-degenerate.

Proof. - Denote the homomorphisms Q - P*, P -~ Q* adjoint to
d and the homomorphisms P* --~ Q, Q* -~ P adjoint to b by f1, f 2,
f3, f 4 respectively. We will show that these four homomorphisms are
isomorphisms. The first identity between b and d implies that f3f1 = k ido .
Indeed, if b(l) = 03A3i qi ~ pi with q2 E Q, p2 E P then this identity indicates
that for any q G Q

The homomorphism fl transforms q into the linear functional p H d(p, q)
and the homomorphism f3 transforms this functional into

A similar argument deduces from the same identity that f2 f4 = k .

The second identity between b and d similarly implies that fi f3 = 
and f 4, f 2 = k’ id p. . Therefore the homomorphisms , f l, f2, ,f3, ,f4 are

isomorphisms. The equalities

imply that k = k’.



4.2. . Proof of Theorem 3.1.1

Let (T, T) be a TQFT. Let X be an Ql-space. Set P = T (X ) and
Q = T (-X ). Denote by J the cylinder X x ~ 0 , 1 J with the 23-structure
given by the axiom (2.1c) so that 8J = (-X ) II X . This 23-space gives rise
to two cobordisms: (J, ~, aJ) and (J, -aJ, 0). Denote the corresponding
operators K - ?’(aJ) = Q P and P Q = T(-8J) - K by b = bx
and d = dx respectively. We will prove that the operators ~ dx ~ X satisfy
the self-duality axiom (1.3a).

It follows from the definition of dx and the axioms that this pairing
is natural with respect to Ql-homeomorphisms and multiplicative with
respect to disjoint union. Let us verify that d_x = dx Permo,p where
PermQ ~ p is the flip Q ® P 2014~ P 0 Q. Consider the homeomorphism
g : X x [0, 1] -~ X x [0, 1] defined by the formula x 1) = z x (1 - t)
where x E X, t E ~ 0 , 1 ~. The axiom (2.1c) implies that g inverts the
23-structure in the cylinder J = X x [ 0, 1 ] so that g may be regarded as
a B-homeomorphism X x [0, 1] ] ~ ( -X ) x [0, 1]. Therefore g yields a
homeomorphism of cobordisms

The homomorphism

induced by g is just the flip Permp,Q. . Therefore the naturality of T
with respect to -homeomotphisms of cobordisms implies that dx =
d_ X PermP,Q . A similar argument shows that b_X = PermQ,PbX.

It remains to prove non-degeneracy of dx . With this view we prove that
d x and bx satisfy conditions of Lemma 4.1. Let us take four disjoint copies
Jl , J2 , J3, J4 of the cylinder J = X x ~ 0 , 1 ~ . . Clearly,

where X2 xt are copies of X with i = 1, 2, 3, 4. Consider the cobordisms
(J1 II J2 , -8J1 LI X2 , X2 ) and (J3 LI J4 , Xi ’ X+3 II aJ4). . The operators
T corresponding to these two cobordisms may be identified with d ® id p and
idp ~b respectively. Gluing these two cobordisms along the identification



we get a cobordisms, say, M between X3 and Applying the axiom
(2.2c) we conclude that

for certain invertible k E K. It follows from the axiom (2.1d) that M is
%-homeomorphic to the cylinder J via a homeomorphism extending the
identifications of their bases X 3 = X, X+2 = X .

Naturality of T with respect to %-homeomorphisms and axiom (2.2d)
imply that r(M) = T(,T ). Therefore = 

Replacing in this formula X with -X and P with Q, and using the
expressions for d_x, b_X established above we get an equality equivalent to
the formula (idQ = k’idQ with invertible k’ E K. Now, Lemma
4.1 implies that the pairing d x : T (X ) ~ T (-X ) - K is non-degenerate.
This completes the proof of Theorem 3.1.1.

4.3. Lemma

LEMMA . If (T, T) is anomaly-free then for any ~-space M we have

Proof. - Set X = 8M. Let X-i , X2 be copies of X and JZ be the
cylinder Xi x [0, 1] with i = 1, 2. Consider the cobordisms

The operators T corresponding to these two cobordisms may be identified
with T(M) ~ and dx respectively. Gluing these two cobordisms

along X II = X 2 II -X 2 we get a cobordism, say, M’ between -X 1
and 0. It follows from the axiom (2.2c) (with k = 1) that

Consider the cobordism -X , 0~ obtained by gluing the cylinder
(-X) x ~ 0 , 1 ~ to (M, -X , ~) along (-X ) x 1 = -X . It is easy to deduce

from the axiom (2.1d) that the cobordisms -X, ~~ and (M~ , -X1 , ~~
are Q3-homeomorphic via a homeomorphism extending the identity =

- X. Therefore



Here the first equality follows from the axioms (2.2c), (2.2d) and the second
equality follows from the naturality of r.

4.4. Proof of Theorem 3.1.2

We have

Here the first equality follows from the axiom (2.2c) (with k = 1), the
second equality follows from Lemma 4.3, the third equality follows from the
naturality of dx and the last equality follows from the symmetry of dx. .

4.5. Lemma

LEMMA . If under the conditions of Lemma 1~.1 the modules P, Q are
projective then Dim(P) = Dim(Q) = ~-1(d o Permp,Q o b)(1) E K. .

Proof. - If we identify P with Q* via the isomorphism P --> Q* induced
by d then d is identified with the evaluation pairing dQ : Q* ® Q -~ K
whereas b is identified with a homomorphism K --~ which satisfies the
identities (idQ ®d) (b ® idQ ) = k idQ and (d ® idQ * ®b) = k idQ*. . Such
a homomorphism K -~ Q @ Q* is uniquely determined by the evaluation
pairing d and equals k bQ where bQ = dQ : K --~ Q ® ~ * . It follows directly
from the definition of Dim(Q) that

The equality Dim(P) = Dim(Q) follows from the duality of these two
modules.

4.6. . Proof of Theorem 3.1.3

Let dx and bx be the linear operators defined in Section 4.2. The

proof of Theorem 3.1.1 shows that these operators satisfy the equalities
of Lemma 4.1. Since (T, r) is anomaly-free we may assume that k = k’ = 1.
The previous lemma shows that
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It follows from the definition of dx, bx and the axiom (2.2c) that d-xbx =
r(Z) where Z is the B-space obtained by gluing X x [ 0 , 1 ] to (-X) x [0, 1 J
along the identity homeomorphism of the boundaries. Gluing first along
X x 0 = (-X ) x 0 we get a ~-space which %-homeomorphic to X x ~ 0 , 1 ~ ]
because of (2.1c) and (2.1d). Therefore Z is %-homeomorphic to X x .

This implies Theorem 3.1.3.
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