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H~-extensibility and
finite proper holomorphic surjections(*)

TRAN NGOC GIAO(1)

Annales de la Faculte des Sciences de Toulouse Vol. III, nO 2, 1994

R.ESUME. - Soit 0 : X ~ Y une application bornée, propre, holomor-
phe, et surjective entre deux espaces de Banach analytiques. Si Y possede
la propriete de prolongement pour les fonctions Hoo, on montre que X la
possede egalement. Reciproquement, si X possede cette propriété et X
ne contient pas un ensemble analytique compact de dimension positive,
alors toute application holomorphe d’un domaine de Riemann D etale sur
un Banach avec image dans Y peut etre prolongee comme une application
Gateaux-holomorphe sur chaque prolongement Hoo de D ; de surcroît, Ie
prolongement est holomorphe dans le complementaire d’une hypersurface. .

ABSTRACT. - Let 03B8 : X ~ Y be a finite proper holomorphic surjection,
where X and Y are Banach analytic spaces. It is shown that if Y has

the holomorphic H°°-extension property, so has X . Conversely if X has
the holomorphic H°°-extension property, where X does not contain a
compact analytic set of positive dimension, then every holomorphic map
from a Riemann domain D over a Banach space into Y can be extended

Gateaux-holomorphically on every H~-extension of D. Moreover the

extension is holomorphic outside a hypersurface. .

The extension of holomorphic maps from a Riemann domain D over a
Stein manifold to its envelope of holomorphy Doo for the Banach algebra
of bounded holomorphic functions H°° (D) has been investigated by some
authors.

For holomorphic maps with values in finite dimensional complete C-

spaces, the problem was considered by Sibony [6], Hirschowitz [3], and
recently by Nguyen van Khue and Bui Dac Tac [4]. The aim of the present
paper is to consider the problem in the infinite dimensional case.

~ * ~ Recu le 21 novembre 1993
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Let X be a Banach analytic space in the sense of Douady [1]. As in the
finite dimensional case, we define the Carathéodory pseudodistance Cx on
X by the formula

We say that X is a C-space if Cx is a distance defining the topology of X .

Let ( D, p, B ) and ( D’, q, B ) be Riemann domains over a Banach space B .
D’ is called a H°°-extension of D if there is a holomorphic map e : D -~ D’
such that p = q . e and for every bounded holomorphic function f on D,
there exists a bounded holomorphic function f’ on D’ such that f = f’ . e.

A Banach analytic space X is said to be a space having the holomor-
phic H~-extension property (for short, the HEH~-property) if for every
holomorphic map g from a Riemann domain D over a Banach space into
X there exists a holomorpnic map g’ from D’ into X such that g = g’ e,
where D’ is a H°°-extension of D and D’ is a (7-space. In this case we say
also that g can be extented to a holomorphic map g’ on D’.

The main result of this note is the following.

THEOREM 1. - Let 03B8 be a finite proper holomorphic map from a Banach
analytic space X onto a Banach analytic space Y. Then:

(i) if Y has the HEH~-property and H~(X) separates the points of the
fibers of8, then X has the HEH~-property;

if X has the HEH~-property and X does not contain a compact
analytic set of positive dimension, then every holomorphic map from
D into Y can be eztended Gateauz holomorphically on D’, where D
is a Riemann domain over a Banach space, D’ is a H~-extension

of D and D’ is a C-space.

Moreover, the eztension is holomorphic outside a hypersurface.

Let X be a Banach analytic space. We say that an upper semi-continuous
function p : X --> [-00, oo) is plurisubharmonic if for every holomorphic
map 03C3 : 0394 ~ X the function is subharmonic, where A is the unit disc.

Let Z be a Banach analytic space. By Fc(Z) we denote the hyperspace
of non-empty compact subsets of Z. An upper semi-continuous multivalued
function K : X --~ Fc(Z), where X is a Banach analytic space, is called

analytic in the sense of Slodkowski ~7~ if for every plurisubharmonic function



03A8 on a neighbourhood of where G is an open set in X and 0393KG
denote the graph of K on G, the function

is plurisubharmonic on G.

LEMMA 1 ( ~5~ ) . Let K : Y -~ Fc(X) be an anal ytic multivalued

function such that card K(y)  oo for all y E Y, where Y is a connected
Banach analytic space. Assume that U and V are disjoint open subsets of
X such that K(y) C U U V for all y E Y . . Then either K(y) n U = ~ for all
yEY forallyEY. .

Proof. - Define ’.(1 on Y x ( U U V ~ by

Then 03A8 is plurisubharmonic on a neighbourhood of the graph of K, so

p is plurisubharmonic on Y, where

By the plurisubharmonicity of ~p and the connectedness of Y, it implies that
either K(y) n U = 0 for all y E Y or K(y) n U ~ ~ for all y E Y: ~ The lemma
is proved. ~~

LEMMA 2. - Let K : Y - be an analytic multivalued function
such that card K(y)  oo for all y E Y . Then

is closed in Y for every m > 1. . 
’

Proof.- Given a sequence in Vm, yn -~ y* , choose disjoint
neighbourhoods Ui of xi, i = 1, ... , l, where {x1, ... = K(y*). Take

a neighbourhood D of y* such that



Then by lemma 1, K~y~ n U ~ 0 for all i = 1, ... , .~ and for all y E D. Hence

m > card > 1 for sufficiently large n. This implies that y* E ~rn .
The lemma is proved. 0

LEMMA 3. - Let 8 : X -~ Y be a finite proper holomorphic surjection,
where X and Y are Banach analytic spaces. Then the multivalued function

given by

is analytic.

Proof

(i) Consider first the case where Y = A, the unit disc in C.

Since 8 is proper, K is upper semi-continuous. Let 03A8 be a plurisubhar-
monic function on a neighbourhood of where G is an open subset of
A. Since 8 is a branch covering map [2], there exists a discrete sequence A
in A such that

is an unbranched covering map of order m  oo. Let yo e d B A and

Take a neighbourhood W of yo such that

where !7y are disjoint, x~ E ~7j and 0 = 1, ..., m. Then the
function

is subharmonic on W n G. Since p is locally bounded on G, it follows that
p is subharmonic on G.



(ii) Consider now the general case where Y is a Banach analytic space.

Let 03C6 be as in (i) . . Obviously 03C6 is upper semi-continuous because of
the upper semi-continuity of K and It remains to check that ~p o h is

subharmonic on A for every holomorphic map h : : A --~ X. Consider the

commutative diagram - T

where A = A x y X. . By (i) and by the relation

it follows that ~p o h is subharmonic on a. The lemma is proved. 0

Let X and D be Banach analytic spaces. A finite proper holomorphic
surjection : X -> D is called a branch covering map if it satisfies the

following:

(i) there is a closed subset A of D which is a removable for bounded

holomorphic germs on D B A;

(ii) X B ~ D B A is a local biholomorphism and 
is constant on every connected component of ~D B A.

LEMMA 4. - Let 9 be a finite proper holomorphic map from a Banach

analytic space X onto an open set D in a Banach space B . Then 8 is a

branch covering map.

Proof. - Without loss of generality we may assume that D is convex.
For each n ~ 1 put

By lemma 2 and lemma 3, Fn is closed in D. Applying the Baire theorem
to D = Uf Fn, we can find no such that Int 0. Put



n D) --~ E n D is a branch covering map for every finite
dimensional subspace E of B [2], by the connectedness of D n E for all
subspace E of B, dim E  oo, we have

Put

Then Z is closed in D, and from the finiteness and properness of (J it follows
that

is an unbranched covering map. It remains to show that Z is removable for
bounded holomorphic germs. Let h be a bounded holomorphic function on
U B Z, where U is an open subset of D. Then for every finite dimensional
space E of B such that

h can be extended holomorphically on U. From the relation

it follows that h can be extended to a bounded Gateaux-holomorphic
function h on U. By the boundedness of h, we deduce that h is holomorphic
on U. The lemma is proved. 0

LEMMA 5. - Let 8 : X -~ D, where D is a C-manifold, be a branch

covering map. Denote by and the spectra of Banach
algebras H°° (X ) and respectively. Let 8 SH°° (D) be
the map induced by 8. Then

is also a branch covering map.



Proof. - Obviously 8 : 8-1 (D) -~ D is finite, proper and surjective,
since H°° (X ) is an integral extension of finite degree of H°° (D). By
lemma 4, it sufnces to prove that 9-1 (D) is a Banach analytic space. Let
B(o, r) (resp. B* (o, r)) denote the open ball in H°° (X ) (resp. (H°° (X )) * )
centred at 0 with radius r > 0. Consider the holomorphic map

given by

where z is the branch locus of 8, m the order of 8 and ..., are

elementary symmetric polynomials in m variables and

Since ..., are bounded holomorphic functions on D B Z, it

follows t hat F is holomorphic on D x B * ( o, 2 ) . We have

Hence 8 : 9 1 (D~ --~ D is a branch covering map. The lemma is proved. 0

LEMMA 6.2014 Every Banach space has the HEH~-property.

Proof . Let D be a Riemann domain over a Banach space Band D’ a
H~-extension of D. Let f : D ~ E be a holomorphic map, where E is a
Banach space.

For each x * E J5’*, by x * , f we denote the holomorphic extension of 
on D’. Since D’ is a H~-extension of D, from the open mapping theorem,
it follows that

On the other hand, by the uniqueness, is a continuous linear function

on E* for every z E D1. Thus we can define a bounded map f : D’ --~ E**
by



which is separately holomorphic in variables z E D’ and x* E E*. From
the boundedness of f (D’~ we deduce that iis holomorphic and f ~D’) C E.
Obviously iis a holomorphic extension of f on D’. The lemma is proved. D

Proof of theorem 1

(i) Let first Y have the H EH ~-property. Let f : D ---~ X be a holomorphic
map, where D is a Riemann domain over a Banach space B. By hypothesis,
there is a holomorphic map g : D’ -~ Y which is a holomorphic extension
of 9 f on D’, where D’ is a H~-extension of D. Consider the commutative
diagram

where G = D’ x y X , 8 and 9 are the canonical projections, a and e are the
canonical maps. By lemma 4, 8 is a branch covering map. Let H denote
the branch locus of 8. Consider the commutative diagram

where

is induced by ~: G B 8 1 ~H~ --~ D’ ~ H. From lemma 5, it follows that

is a branch covering map. By lemma 6, H°° ~G ~ 8-1 ~H)) has the
HEH°°-property.



Since D’ B H is also a H"-extension of D B there exists

which is a holomorphic extension of

From the relation ~ = ~, where $ : D~B~ -~ is the canonical

map, we have h(D~B~) G J’~(D~BB’). Since F~(X) separates the points
of the fibers of 03B8, there exists a holomorphic mapping  : -1(D’ B H) ~ X
such that 0~=~?. Put

Assume now z E H. Take two neighbourhoods U and V of z and g(z),
respectively, such that g(U) C V and 8-1(~) is an analytic set in a finite
union W of balls in a Banach space. Then f 1 : U ~ H --~ W can be extended
holomorphically on U. This implies that fl and hence f can be extended
holomorphically on D’.

(ii) Let X be a space having the HEH~-property and let g : D ~ Y be
a holomorphic map, where D is a Riemann domain over a Banach space
B. Let D’ be a H°°-extension of D which is a C-space. Consider the

commutative diagram

where G = D Xy X, 03B8 and  are the canonical projections.

Obviously ~ : : -~ is nnite, proper and surjective,
since is an integral extension of finite degree of H~(D) and
every bounded holomorphic function on D can be extended to a bounded
holomorphic function on D’. By lemmas 4 and 5, 03B8 and 03B8 : -1(D’) ~ D’
are branch covering maps. Let H denote the branch locus of 03B8 : -1(D’) ~
D’. Consider the commutative diagram



where 6 is the canonical map. Since every bounded holomorphic function
on G B ~~(e~(.H~)) can be extended to a bounded holomorphic function
on SH~ (GB-1(e-1(H))) and the topology of B R) is denned

by bounded holomorphic functions, it follows that B iT) is a H~-
extension of G B -1 (e-1(H)) and it is a (7-space. By hypothesis,  can be
extended to a holomorphic map

It is easy to see that e~~(a?) = J~(~(~)) for every z ~ D B This

yields 
.-

Since 9 : J~(D~ B H) -~ D’ B H is a branch covering map, it follows that
the exists a holomorphic map 90 : : D~ B H --~ Y such that 8 go = g 8.
X does not contain a compact set of positive dimension. By the Hironaka

singular resolution theorem, for every finite dimensional subspace E of B
such that q-1 (E) ~ e(H),

can be extended to a holomorphic map E : -1 (q-1(E)) ~ X This yields
that go can be extended to a holomorphic map gE : q-1 (E) -~ Y.
Thus go and hence g can be extended to a Gateaux holomorphic map
g : D’ --~ Y which is holomorphic on D’ ~ H. The theorem is proved. 0
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