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Global stability of saddle-node bifurcation
of a periodic orbit for vector fields

SERGIO PLAZA S.(1)

Annales de la Faculte des Sciences de Toulouse Vol. III, nO 3, 1994

R,ESUME. - On étudie la stabilite d’une famille générique de champs de
vecteurs ayant une orbite périodique de type col-n0153ud.

ABSTRACT. - In a bifurcation value, the global stability of families of
vector fields which have a generically unfolding saddle-node periodic orbit
is studied.

Introduction

In this paper we study the global stability of families of vector fields which
have a saddle-node periodic orbit which unfolds generically. We recall that a
generic characterization of stable families for the stability of one-parameter
families of gradient vector fields was obtained by J. Palis and F. Takens
[9]. We also recall that for one-parameter families of vector fields with

simple recurrences and no-cycles, the global stability for those which have
bifurcations due to quasi-transversal orbits was studied by R. Labarca [4]
for the cases in which the bifurcation is due to a saddle-node (or Hopf)
singularity or a flip periodic orbit, under generic conditions, the global
stability follows from results of S. Newhouse, J. Palis and F. Takens [8].
When the bifurcation is due to a saddle-node periodic orbit, the global
stability has only been studied in the case of two-dimensional manifolds by
I. Malta and J. Palis [6]. . Before stating our results, we recall some concepts
and results on one-parameter families of vector fields.
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Let M be a C°° boundaryless compact manifold. We let denote
the space of C°° vector fields on M and denote the space of C°°

arcs, ~ : 1 = [-1, 1] ~ ~ both endowed with the C°° Whitney
topology. We use the notation 03BE = {X }, where for each  E I, 03BE( ) = X J.t.
Now, let E and , iS E I; we say that at  is

equivalent to at ju if there are homeomorphisms p : (I, ~c) )-~ (I, ~u),
increasing, and M )2014~ M, which depends continuously on such that,
for each  near , H  is a topological equivalence between X J.t and 

sends orbits of X  into orbits preserving the sense of the
trajectories. We say that is stable at p if there exists a neighborhood
Ll C of such that, for each there exists  E I
near  such that at  is equivalent to at ju.

Let r C be characterized by :
2022 for each  E I, the non-wandering set of is constituted by a finite
number of critical elements (i.e. singularities and periodic obtits) of

~ there are no cycles among the critical elements of XJ.t, ( i. e. there is

no sequence a1, ..., , a~, 1~ > 1, of critical elements of X J.t such that
a~ = al and fl YV~ (ai+1 ) ~ ~, i = 1, ... , k - 1).

Let E rand ~u E _ E I is not stable} such that
J~~ has a saddle-node periodic orbit 8. Let Eg C M be a transversal section
for X~ at q E 8, and _ 0). . There exists an interval 7i C I,
~c E 7i, such that E = Eg x 7i is a transversal section to X at (q, ~c).
We let : denote the Poincare map of X in the non-hyperbolic
periodic orbit (9, ~u), and = x ~~c~ denote the Poincare map of
XJ.t. Then 7~ _ an arc of saddle-node diffeomorphisms (see [8]).
From the theory of invariant manifolds (see [3]) we have that there exists

1  r  oo, P-invariant manifolds and Set

analogously for and Let



be the stable and unstable manifolds for q, respectively. We have that

are cr, r > 1, injectively immersed manifolds of M with boundary

are called strong stable and strong unstable manifolds, respectively. In

addition, in there exists a (unique) P-invariant C1 codimension one
foliation with space of leaves ; analogously, there exists a
foliation in YV u (q) . Let a be a hyperbolic critical element of X ~ such
that YVu (a) intersects we say that a is s-critical, or that YV u (a) has
s-criticalities if n ~q x ~~u~ has a non-transversal intersection with
some leaf of (q) ; analogously, we define u-criticalities. We say that the
s-criticality between YV u (a ) and is generic if there exists a unique
tangency orbit between YV u(a) and along which they have a quasi-
transversal contact.

Excepting certain additional conditions which will be specified later,
our results on the stability of families (X,) E F which have saddle-node
periodic orbits are the following.

PROPOSITION 1

(a~ If there exists a hyperbolic critical element a of such that YVu(a)
has non-generic s-criticalities with then is non-stable

f~t ~.L . 
’ 

’

(b) If there exists two hyperbolic critical elements al, a2 of such that

vVu («1 ) and YV u (a2 ) have generic s-criticalities with then

~X~~ is non-stable at ~c.

THEOREM 1

(a) If a is a hyperbolic periodic orbit of such that there exists the

weakest contraction in a and has a generic s-criticality,
then is non-stable at ~u. . Moreover, in this case the weakest

contraction in a is a modulus of stability for .

(b) If a is a hyperbolic singularity with complex weakest contraction of

X  such that YVu(a) has a generic s-criticality, then is non-

stable at ~. . Moreover, if a ~ ib, a  0, b y~ 0, denotes the weakest
contraction in a, then p = a/b is modulus of stability for .



THEOREM 2

(a) If the hyperbolic critical elements of X~ have no criticalities, then
{X~~ is stable at ~c.

(b) If there exists a unique hyperbolic singularity a which has real weakest
contraction and has a generic s-criticality, and the remaining
hyperbolic critical elements of X~ have no criticalities, then ~X~~ is
stable at ~u.

(c) If there exist hyperbolic singularities a, ,Q (a ~ 03B2) of X  such
that the weakest contraction in a and the weakes ezpansion in ,C3
are real, and respectively has a generic s-criticality
with respectively has a generic u-criticality with and
the remaining hyperbolic critical elements of X  have no criticalities,
then ~ X~ ~ is stable at ~u.

From the methods developed in the proof of Theorem 2 (Section 3) and
in ~6~, the following result follows.

THEOREM 3. - If there exist hyperbolic singularities

such that the weakest contractions in the 03B1i’s and the weakest ezpansions
in the are real, and Wu (as ) for some 1  s  k (resp. for
some 1  r  .~~ has a generic s-criticality , , respectively has a generic
u-criticality, and the remaining hyperbolic critical elements of have no

criticalities, then has finite modulus of stability.

1. Basic concepts

In this section we will recall some basic concepts and state the above
results in greater detail. Let M be a boundaryless compact manifold.
We will denote by (M) the space of vector fields on M endowed with
the Whitney topology. Let x E M be a singularity of X E (M), i.e.
X (x) = 0, we say x is hyperbolic if DX (x) has no eigenvalues with null real
part. Let a~ be a periodic orbit of X and ~q be a transversal section to X
at q and P : (~q, q) ~ (~q, q) be the Poincaré map for X at ~, we say
~ is hyperbolic if DP(q) has no eigenvalues with norm equaling one. The
singularities and periodic orbits of X will be called critical elements of X .



Let 03B8 be a hyperbolic critical element of X, then

(Xt denotes the flow of X ~ are submanifolds injectively immersed in
M called stable and unstable manifolds of 8, respectively.

Let a? E M, we say x is a non-wandering point of X if, for each

neighborhood U of X and each to > 0, there exists tl > to such that

We let denote the set of non-wandering points of X. If SZ (X ) is

constituted by a finite number of critical elements of X, , we say X has
simple recurrences. The interior of the set of the vector fields with simple
recurrences will be denoted by (M).

Let cx, /3 be critical elements of X, , we say YVu (a) and YV$ (~Q) are

transversal if

for each x E . A cycle for X is a sequence ai, ..., ak,
h > 1, ak = al, of critical elements of X such that 0,
i = 1, ..., J~ - 1. We let denote the set of vector fields which do

not have cycles among their critical elements.

Let u E M be a hyperbolic singularity (resp. periodic orbit) of

X E we say the weakest contraction at 03C3 is defined if among
the contractive eigenvalues of (resp. DP(q), q E ~, ?~ the Poincaré
map) the one with biggest real part (resp. norm) is simple.
We let ~~1 (M) denote the space of arcs,

endowed with the C°° Whitney topology, we use the notation ~ _ 
~(l~~ --- 

We say 71 E I is a bifurcation value for if is non-stable. We set

B t ~ X ~ ~ ~ _ ~ ~.c E I ~ ~.c is a bifurcation value for .



DEFINITION 1.1. Let E and ~c E such that

X  has a non-hyperbolic periodic orbit 8, we say 9 is a saddle-node periodic
orbit which unfolds generically at =  if there exists a C’’ (1 ~ r  
-depending center manifold through q E 6 (dim = 2) such

that the Poincaré map _ associated to the vector field
X (x, _ ~X~ (x ) 0) in (8, ~~ restricted to has the form

DEFINITION 1.2. - Let E and ~c E such that

X~ has a non-transversal intersection orbit, y C rl a,

Q hyperbolic critical elements of We say y is a quasi-transversal
intersection orbit which unfolds generically at ~c = ~c for if for each
x E 03B3 there exist -depending coordinates, 03C8  : (V,x) H V a

neighborhood of x (n = dim M~ such that:

where u = dim s = dim and for each ~c near ~u, cx~
and ,Q~ denote the hyperbolic critical elements of near a and ,Q,
respectivel y, Q is a Morse function and ~ is a function such that



Now let rsn = rsn(M) C be the set of arcs E x1 °(M)
such that:

. B C ] - 1, 1 ~ is at most countable;

. for each p E B (~X~~), X~ has a unique orbit 8~ along which it is

non-stable in one of the following senses:

(a) if 8~ is a non-hyperbolic periodic orbit of X~, then 9~ is a saddle-
node periodic orbit unfolding generically = p,

(b) if 8~ is a non-transversal intersection orbit of an unstable and
a stable manifolds of hyperbolic critical elements of X~-, then 8~ is a
quasi-transversal intersection orbit unfolding generically at  = ;

. for each  e I, X  E n 

Let ~X~~ E and p E such that X~ has a saddle-node
periodic orbit 6~, we have the following theorem.

THEOREM (I. Malta, J. Palis [6]). - Assume dim M = 2. Let E

rsn and ~c E as above. Then:

(a) if there exists more than one saddle separatrix (stable or unstable
manifold of a saddle) accumulating on the same side of 9~, then

non-stable at ~c; moreover, under generic conditions, X~
has finite stability modulus;

(b) if there exists at most one saddle separatrix accumulating at 03B8 , then

~X~~ is stable at p;

(c) if there exists at most one unstable saddle separatrix and one stable
saddle separatriz of accumulating at 8~ then is stable at ~c.

In this work we generalize the above theorem for dim M > 2.

Let ~X~~ E and p E B(~X~~) such that X Ii has saddle-node
periodic orbit 8. Let Eq C M be a transversal section to X~ at q E 8
and 7i C I be a neighborhood of p. We let P : : Eq x 7i ~ Eq x 7i be
the Poincaré map of the vector field X (x, _ 0) at (8, Set

= x ~~u~; then P = is an arc of saddle-node diffeomorphisms
(see [8]).

In what follows, we will assume that for   p there exist two hyperbolic
periodic orbits, 03B81, , 03B82, , of which collapse at  = p originating the
saddle-node periodic orbit 8 = 81,, = 82,ïi of X~, and disappearing for
 > . Thus P = {Pu} has, for   /I, two hyperbolic fixed points

which collapse at ~u = ~.c originating the saddle-node fixed point
q = q1,  == of P  and disappearing for  > .



From [8] it follows that for P = we have, in ~q x I1, there are C’’
(1 ~ r  oo) P-invariant submanifolds WC(q), and 

called center, center-stable and center-unstable manifolds respectively. In

addition, in there exists a C’’ ( 1  r  ~) P-invariant, strong
stable foliation Analogously in there exists a strong unsta-
ble foliation Furthermore at  =  Fss(q)/Ws(q) is unique and
should be preserved by conjugations of arcs of saddle-node diffeomorphisms;
similarly for This is a necessary condition (rigidity) for the
construction of conjugations of arcs of saddle-node diffeomorphisms and,
therefore, a necessary condition (rigidity) for the construction of equiva-
lences for arcs in 0393sn for the parameter values in which there are saddle-node
periodic orbits.

We next consider the arc of diffeomorphisms Pc = {Pc } where

Thus pc = {P~ ~ is an arc of saddle-node diffeomorphisms in IR. Therefore,
from [12], there exists a unique C°° vector field Z defined in a neighborhood
of (q, in such that

And, in addition, if E 0393sn and E .I have the same characteristics

as ~ X~ ~ and ~u. Respectively, we denote by p~ = ~7~~ ~ the corresponding
arc of saddle-node diffeomorphisms in IR, and by Z the unique C°° vector
field defined in a neighborhood of (, ) in If h : H 

is a conjugation between and Pc = {c }, h = 
p : (I, ~c) H (I, ju~ reparametrization, conjugation between 7~~ and ~p{~~, ,
then

is a conjugation between the flows Zt and Zt ; this is another rigidity con-
dition for the construction of equivalences for arcs in 0393sn in the parameter
values in which there are saddle-node periodic orbits.



DEFINITION 1.3. Let E Tsn and ~c E such that X~
has saddle-node periodic orbit 8. We say 9 is s-critical if there ezists a

hyperbolic critical element a of X~ such that YVu (a) has a non-transversal
intersection with some leaf of (q~, , and we say this s-criticality is generic
if there exists a unique tangency orbit between and along
which the y have a quasi-transversal contact.

PROPOSITION 1. Let E 0393sn and  E such that X
has saddle-node periodic orbit 8. Then:

(a) if a is a hyperbolic critical element of X  such that has non-

generic s-criticalities, then is non-stable at p;

(b) if al, a2 (a1 ; a2~ are hyperbolic critical elements of such that

and have generic s-criticalities, then is non-

stable at ~c.

THEOREM 1. Let E- rsn and ~c E be as in Proposi-
tion 1.

(a) If a is a hyperbolic periodic orbit of such that there exists the

weakest contraction in a and has a generic s-criticality,
then is non-stable at p. Moreover, if A denotes the weakest
contraction of X~ in a, then A is stability modulus for X~.

(b) If a is a hyperbolic singularity with complez weakest contraction of
X~ such that has a generic s-criticalitYJ then is non-

stable at . Moreover, if a ± ib, a  0, b ~ 0, denotes the weakest
contraction in a, then p = a/b is modulus of stability for Xli. .

We next impose some conditions on the families E 0393sn we are

considering:

SN1 If a is a saddle-type hyperbolic critical element of X~ (a ~ 8)
and n ~ ~ then is transversal to and

YVu(a) n Yllu(q) _ ~; analogously for .

SN2 Let a be a hyperbolic critical element of X~ such that YVu(cx). has
a generic s-criticality with ~ss (q); then:

. is transversal to in ~q moreover, there exists

Cr-linearisations (r > 2) coordinates in a neighborhood of a;
. the weakest contraction is defined in cx which is real;



. there exists a C’’ (r > 1 ) center-unstable manifold 
which is transversal to (q) in a neighborhood of the s-criticality;
analogously for and 

SN3 Let a be a hyperbolic critical element of X Ii such that has
an s-criticality, and D~ (q) be a fundamental domain for 
Then the s-criticality between and is generic and the
tangency is a unique point.

We let C r sn denote the set characterized by ~X~ ~ E if and

only if, for each ~c E B (~X~~), X~ has a unique saddle-node periodic orbit,
and the conditions SN1, SN2 and SN3 are satisfied.

THEOREM 2. Le~ ~X~ ~ E and ~u E B (~X~,~) such that X~ has a
saddle-node periodic orbit 8, we have:

(a) if 8 is not s-critical nor u-critical, then {X } is stable at  (in this
case ~c is isolated~;

(b) if there exists a unique hyperbolic singularity 03C3 of such that
is s-critical, and ~he remaining hyperbolic critical elements

of X  do not have criticalities, then {X } is stable at  (in this case
~c is isolated~;

(c) if there exist hyperbolic singularities 0’2 ~ 03C32) of X  such that
YVu (~1 ) is s-critical and YV s (a~2 ) is u-critical, and if the remaining
hyperbolic critical elements of X~ do not have criticalities, then

~X~~ is stable at p; in this case there exists a strictly monotone
sequence of parameter values which converges .to ~u such that,
for each n E IN, the vector field has a unique orbit of quasi-
transversal intersection between YVs and Ws (03C32, n) which

unfolds generically at ~cc = ~c.

Now let ~X~ } E rsn and ~c E B (~X~~) such that X~ has a saddle-
node periodic orbit 9. Suppose that there exist hyperbolic critical elements
03B11, ..., a?.,z and ,Ql, ... of X  such that, for each i = 1, ... , m (resp.
j = 1, ... , h ), , (resp. Ws(03B2j)) has a generic s-criticality (resp.
u-criticality). We let 03C0ss (resp. denote the projection on 
via leaves of (resp. and x1, ... , xm (resp. y1, ... 
denote the points of s-criticality (resp. u-criticality) between and

(resp. and i = 1 , ... , m (resp. j = 1, ... , ~ ), in
a fundamental domain for (resp. Let _ ~Z
(resp. = y3 ) i = 1 , ... , m (resp. j = 1 , ... k ) . We impose the
following conditions.



2a.~=1,...,m,~~s=1,..., k,i~.~,~~s.
. , yj belong to the interior of D~ (q~, respectively, i -

1, ... , m, j = 1, , ... , ~. .

We now define the numbers ti, s~ (i = 1, ... , m, j = 1, ... , k) by the

equations

We furthermore suppose that the ramaining hyperbolic critical elements of
do not have criticalities.

THEOREM 3. Let E and  E be as above. Suppose
that

for each i, .~ = 1, ... , m, i ~ .~ and each j, r = 1, ... , h, j ~ r ; then 
has finite stability modulus.

Remark.- In the two-dimensional case Theorem 3 was proved by
I. Malta and J. Palis [6]. For dim M > 3, the proof of Theorem 3 follows
from the proof of Theorem 2 and the two-dimensional case.

2. Proof of Proposition 1 and Theorem 1

Proof of Proposition 1

Let E C M be a cross section to X ~ at q E 8. We let YV~~ (q) H

WC(q) denote the projection through leaves of 

Case (a~ Let x a point of non-generic s-criticality. We now make a small

perturbation in a small neighborhood of a? in W8(q) in such a way
as to produce generic s-criticalities among YV u (a) and two or more leaves
of ~’ss (q).
Case (b) Let x1, x2 be the points of generic s-criticalities of YV u (al ) and

YVu («2 ) with ~’$~ (q), respectively. Again, we make a small perturbation
of in a small neighborhood of x 2 in such that the new s-

criticality x 2 is in leaf ~s s ( x 2 ), with

(we note that we may suppose ~s$(xl) ~ 



In cases (a ) and (b ) these perturbations may be obtained as perturbations
of ~ X ~ } . Therefore, we obtain a family ~ X~ ~ E Fsn near ~ X~ ~; it is clear
that they are not equivalent by the rigidity condition on 

Proof of Theorem 1

In part (a ) as well as in part (b ) of the theorem, the unstability of ~ X~ ~
at  follows from the existence of modulus of stability for X  (which we will
prove). . In what follows we will write Y for X~.
Part (a~ Let Y be a vector field near Y with the same characteristics of Y.
We let A denote the weakest contraction of the hyperbolic periodic orbit a
of Y. Each time we make a construction for Y, we will suppose it made
for Y.

Let Eql be a cross section for Y at q1 E a and ql ) H (Eql , ql )
be the Poincaré map of Y at a. Similarly, let Eq be a cross section of Y
at q ~ 03B8 and Pq : (Eq, q) H q) be the Poincaré map of Y at 8. We let

denote a fundamental domain for Pq in Let x be the point
of generic s-criticality between and in . Suppose

If H is a topological equivalence between Y and Y in a neighborhood
V of the closure of in M, then without loss of generality, we may
suppose that E- and that H(Eq) = E-. Then

P1 ° and = P ° .

We will write hl = H/Eql and h = H/Eq. Now, since H preserves ~’s~ and
= we have that H(x) = x (see ~1~). As a first case we

suppose A is real and positive; similarly for A. Let cp = (yl, ... , y~_1 ) be
C2 linearizing coordinates in a neighborhood U of ql in 03A3q1 such that y1-axis
is the eigenspace corresponding to the weakest contraction. Let 

be a C1 center-unstable manifold of qi; it induces a C1 center-unstable
manifold of a. Since is a codimension one submanifold of

there exists a distance d in Eq and two real numbers, c > 0 (large
enough) and r > 1 (close to 1) such that

where V is a neighborhood of x in E- and is the cone



We now reparametrize the flows Yt and Yt in a such a way that

We now consider a sequence

_ ~y E ~q I n ~q~  C n ,

zn ~ z, such that the sequence y~ = satisfies H s,

s E ~ql ~; in fact, s E YVs (q1 ~ ~ Note that kn H oo as
n ~ oo and that

where 03C01 (s) is the first coordinate of sand 03C3q1 > 0 is a constant (transition
constant) which does not depend on a? nor d.

Notation. - Let (ai) and be real number sequences. Then ai "-_~ bi
means 

’

Since the contact between n ~q and F8s (x ) is Morse type, in a
neighborhood of x in we may write as the graph of
a Morse function Q with respect to the leaf of ~’~s(q) which contains
a?. Under the above conditions we have that there are distances d, d, in Eg
and Eq respectively, such that: .. 

,

(1) if, at x, Q has at x a saddle type critical point, then for each small
6 > 0 there exists a point xs E n such that

and that

(2) if, at x, Q has at x, a maximal (minimal) type critical point, then for
each small 6 > 0, there are points ~~. e n i = 1, 2,
such that



and that

Notation. - Let and be real number sequences. Then ai c bi
means 

, ,

Under the conditions (1), setting 6 = E IN large enough, we obtain
a sequence x~ E YVcu (a) n such that

and that

Since h is C1 and preserves ~’ss, we have

Now, by taking the sequences yn = y~ = , we have
that 

,

and that

Combining (A*), (A**) and (Al) we obtain

Therefore, for n E IN large enough, we have

Under the conditions (2), we analogously obtain asymptotic inequalities
from which A = A.

In the case A is negative or complex, the result is obtained in a similar
way ~1~ .



Let F be a vector field near Y with the same characteristics of Y.

We let (5  0, 6 ~ 0) denote the weakest contraction of the hyperbolic
singularity  of Y. Again, each time we make a construction for Y, we will

suppose it made for Y.

We first suppose dimM = 3.

Fig. 1

Let H be an equivalence between Y and Y in a neighborhood U of the
closure of Dy (x) in M. We let P : ~q -> ~q and P : ~q ---~ ~q denote the
Poincare maps of the periodic orbits 8 and 8 in the transversal sections

~q (q E 8), ~q (q E 8), respectively. We may suppose H(Eq) = Eq;
thus (H/Eq) o P = P o Moreover, since sends leaves of

into leaves of and

we have that H is completely determined in a part of Y1J~(q). .

_ Let V be a neighborhood of a and V = H(V) and let f : Y -~ IR,
f : V -~ IR be C°° Lyapunov functions for Y and Y respectively. Given

E > 0 small, let Ce C f -1 (-E) and C~ C f 1 (-~) be transversal cylinders
to and respectively. Since H is a equivalence between Y/V
and Y/Y, we have that is a cylinder topologically transversal to

We may suppose H(Ce) C C~.



Now in Ce, we take a C1 one-dimensional foliation ~’~ with leaves
transversal to The foliation ~’~ induces a C1 center-unstable
foliation as follows

If z E we have that C C~ is a curve topologically
transversal to Y1l $~a~ n C~. A curve of the form is denoted by

and we define

Under the above conditions (see [13]), there exist ð = > 0 and

a cone C C~ with a vertex in H(z) such that if C~ C C~ denotes a
6-size cylinder, then:

approach each other when we come near n f-1~E). In this case we
say they are asymptotically undistinguishable. Furthermore, the curves

z E rl C~ and z E n C~, are spirals which we may suppose
linear with contraction coefficients p = a/b and p = a/b respectively, in
linearization neighborhoods of a and a respectively.

Now, we have that the intersections

are spirals (see [7] or [11]). We let y denote the C1 curve given by the
tangencies between the leaves of n Eq and the leaves of ~’s$ ~q) in a
neighborhood of the s-criticality x in We define y analogously.
Note that H(y) does not necessarily coincide with y. But since

are C1 diffeomorphisms, we may suppose H(,) = y.



Let h = H/y 7 )-~ y, h is C1 and compatible with I~c = .

Using the spirals n Eg, n E- and n Eq, we define the maps
i, 03B3, hcu ,cu, hcu :  ~  as follows: given y E y, hcu ( y) is the

first point where n ~q intersects the component of y ) which

contains y. We define hcu and analogously. We have that

and that, in a neighborhood of a;, respectively of 5,

where p = a/b, p = a/b (fig. 2). .
We now fix zl, z2 E near z2. Let ui = H(zl ), u2 = H(z2). .

Associated to each ui (i = 1, 2), we have a cone Kui C C~ with vertex uz,
and a cylinder C6; (6i = b(ui)). Let 0  b  min{03B41, 03B42}, C03B4 denotes
the corresponding cylinder. Let W be a neighborhood of u1 and u2 in

YV u (a ) n C~, in W we take the points vi, v2 as in figure 2. From this

construction, we have that the spirals n Eq and n 03A3 are
contained in a spiral neighborhood limited by the spirals n Eq and

as in figure 3. We take a neighborhood of x (resp. x ) in (q)
(resp. small enough such that ~o = h(xo) and yo = h(yo) are near
x. We now define the following sequences and intervals in y (resp. y):

For each n E IN, we have that

(where is the length of the interval J). Therefore yn) = 1(In).
On the other hand, we have:



where 0   thus 0  I~  n E IN large
enough.

Through an analogous argument for H-1, we have 0  K  
n E IN large enough.

Therefore, if n E IN is large enough, we have 0  C   C  o0

from which p = p.

Fig. 2 Fig. 3

The n-dimensional case is reduced to the 3-dimensional case.

3. Proof of Theorem 2

This section is devoted to the proof of Theorem 2. We only prove part
(c~ since the methods used can easily be adapted to parts (a~ and (b~. We
first recall some definitions of invariant foliation associated to vector fields.

Let E and let ~c E I.

DEFINITION 3.1. - Let p E M be a hyperbolic singularity of X~ a (local)
unstable foliation for (or for the vector field _ ~X~(x~ , 0~ ~
at Fup is a continuous foliation of Up x I1, , where Up C M, I1 C I,
are neighborhoods of p and ~.c respectively, such that:

(a) the leaves are C’’ discs, r > 1, varying continuously in the C’’
topology with distinguished leaf



~b~ each leaf is contained in Up x 

~c~ is invariant, i. e.,

A global unstable foliation ~ is just the positive saturation by the flow
of the local unstable foliation. Similarly we define a stable

foliation ~’~ . .

Now, let 03C3 be a hyperbolic periodic orbit of X , and let

(Vq is a neighborhood of q in be the Poincaré map.

DEFINITION 3.2. - A (local) unstable foliation for (or for X (x, ~~~
at (q, is a continuous foliation of Vq x I1 such that:

(a) the leaves of .~‘ are discs, r > 1, varying continuously in the C’’

topology with distinguished leaf

(b~ each leaf is contained in Vq x ~~u~;

(c) is invariant, i. e.,

A global unstable foliation ~’~ is just the positive saturation by the flow
I1 ) of the local unstable foliation. Similarly we define a stable

foliation ~’~ .

If JLt E such that X~ has a saddle-node periodic orbit 8,
P = {P } (the Poincaré map associated to the vector field X in the non-
hyperbolic periodic orbit (03B8, )) is an arc of saddle-node difFeomorphisms.
Thus we have that, in (resp. there is a strong stable (resp.
strong unstable) C~ foliation, r > 1, (resp. ~’q ~‘(q)).



DEFINITION 3.3.- A strong unstable foliation for P = at the

saddle-node (q, ~c~~, is a continuous foliation of ~q x I1 such that:

(a) the leaves of are C’’ discs, r > 1, varying continuously in the
C’’ topology with distinguished leaf

(b) each leaf is contained in ~q x ~~c~;

~c~ is invariant, i. e.,

Similarly we define a strong stable foliation, 

Let E and  E such that X  has a saddle-node
periodic orbit 8. Since for each ~c E I, we have that

is the union of a finite number of critical elements of XJ.L. For

~c  ~c, let .... 81,~, 82,~, ~1,~, ~ ~ ~ , be the critical elements

(hyperbolic) of where 81,~ and 82,~ are the periodic orbits which

originate the saddle-node periodic orbit

On the other hand, for each  E I, X  E then yve may define a

partial order  among the critical elements of Xp,

This partial order is extended to a total order and we assume it is the

following

Clearly, this order holds for  =  and even for  >  near Therefore,
for each  E I, we order the critical elements of X J.L as follows



DEFINITION 3.4. - Let E 03931sn and  ~ B ({X }) be as above. We

say the system of unstable and strong unstable foliations

is compatible:

(a~ if a leaf F of intersects a leaf E of (a~  ai  a~~
then F ~ E and the restriction of the foliation to each leaf
of is a C2 foliation;

~b~ if a leaf F ai  a~, , intersects a leaf then

F ~ and the restriction of the foliation to each leaf of
is a C1 foliation.

Similarly, we define a compatible system of stable and strong stable
foliations ~’~s(q), ~’s(,(31), ..., ~’a(,Q,~). .

LEMMA 1. (J. Palis and F. Takens [9]) Let E and  E

B ({X }) such that X  has a saddle-node periodic orbit 8. Then for 
there ezist compatible systems of foliations :

(a) ~’u(al), ..., ~’u(a~),

(b) ~’s (,C~1 ) , ... , ~’s (,Ci,~ ) .

N ow let , E be close families, and let ~, ji E I their
first bifurcation values, close to We have that X  and X have close
saddle-node periodic orbits 8 and 8, respectively. If p : -~ (I, ji)
is a reparametrization then from the existence of compatible systems of
foliations

for and of the respective one for ~X~}, we may suppose constructed
the homeomorphisms:

such that, for each i ( 1  i  k ~, the restrictions



are conjugacies between the flows

such that, for the restrictions

are conjugacies between the flows

Remark. - To construct a global equivalence between and 

as above, we first extend the definition of ~~ to and that of ~f~

to in a such way as to conjugate with and

with and afterwards extend the definitions given in
and to a neighborhood in Eq x 7i in order to obtain

a homeomorphism Hq Eg x Ii 2014~ E2014 x 7~ such that:
e it conjugates the Poincaré maps P and ;
e it is compatible with the constructions done above;
e it is possible to extend the definition of jH~ (or ~~) to

DEFINITION 3.5. Let E rsn and ~c E such that X~
has a saddle-node periodic orbit 8. Let a~ be a hyperbolic critical element
of such that has a generic s-criticality with . We

say the s-criticality between and ~’s~(q~~YV~~q~ is of codimension
p, 0  p  dim YV~$(q~, if x n is a codimension p

submanifold of . If p = dim we say the s-criticality is of
zero dimension.

An analogous definition is given for u-criticalities.



Remark 1. - If the s-criticality is of zero dimension, without loss of

generality, we may suppose that a~ = in the order given above.

Remark 2. - If the s-criticality of codimension p > 1, since we are

assuming a unique criticality in a fundamental domain for ~/YV~s (q), we
have that (q) is non-compact. Thus, there exists a hyperbolic
critical element p ( p 7~ ay) such that YV u (p) n has no criticalities

and n W $ ( p) is non-empty. Without loss of generality, we suppose
p = and a~ = in the order given above.

We will make a construction which is easily adapted to the general case.

Let E ~~1 (M) and a be a hyperbolic singularity with real weakest
contraction of X~. Let 11 and U be neighborhoods of p in I and of a in
M, respectively. Then there exists a C~ (r > 1) center-unstable manifold

(not unique) for X (x, ~c) = 0) at ~) such that for
each ~c E h ,

is a C~ center-manifold for XJ.L at A C~ center-manifold for X at (a, Ji)
(resp. for X  at is given by

Throughout, we will use C’’ (r > 1 ) center-unstable foliation and

as constructed in ~5~ ... , ,

LEMMA 2. Under the above conditions, for E we have:

(a) if has a zero dimensional s-criticality, then there exists a

compatible system of foliations

~b~ has a codimension p > 1 s-criticality, then there ezists
a compatible system of foliations



Remark. - (Important) Due to a result of F. Takens ~10~, we have that
if we construct a conjugacy Hq Eg x Ii - Eq x h between ~ _ and

P = as above so that:

~ the homeomorphism Hq sends the intersections of the foliations 
.~’~s (,Q) and ~’i s (,C3) with Eq x I1 for into the correspond-

ing intersections of the foliations and 

with Eq x 7i for continuously on the parameter;
~ Hq is compatible with the homeomorphisms HS, Hu, and h~ : -

which will be constructed shortly;
~ Hq is C1-close to the inclusion map.

Therefore, using Lyapunov functions, we extend the homeomorphism Hq
to a neighborhood of a or /3, depending on the case, in such a way that,
using the methods developed in [9] or [4]. We construct a global equivalence
H : M x 7i --~ M x 7i between at ~c and at ~u.

Construction of equivalences in WC for arcs in rsn

Let E and ~u E such that X~ has a saddle-node
periodic orbit B. We let P = denote the Poincaré map associated to

X( x, ~t~ = , 0) at (q, Let E be near with first

bifurcation value  near , and such that X - has a saddle-node periodic
orbit 8 near B. We let  = { } denote the Poincaré map associated to

X (x, ~t) = , 4~ at (q, ji) . Then P and P are close diffeomorphism
arcs.

Let a~ and be critical elements (hyperbolic) of such that 

is s-critical and is u-critical. Let and

be the projections via leaves of and ~’ss (q~, respectively, and let

be the projections via leaves of and respec-

tively. We have



We let denote the point of s-criticality between and ~’~$ (q)
in a fundamental domain D~ (q) of . Similarly, is the point of

u-criticality between and in a fundamental domain 

of . Set

We have the following lemma.

LEMMA 3. - Under the above conditions, there are e > 0 and a strictly
monotone sequence ~~cn) of parameter values such that:

~a~ ~  ~n C ~ ~ ~ 

~b~ for each E E , ~.c + ~ ~ , we have
e if ~u ~ ~c~ for all n E IN, then has no quasi-transversal
intersection orbits,
~ for each n E IN, ~c~ E and has a unique quasi-
transversal intersection orbit between and .

Proof . We use the equation 03C0ss o o = pc  o o 03C0ss1 and
Lemma 1 of [6, p. 21] to obtain the result.

In what follows, we choose h = e , ~c + e [ as a neighborhood of ~u in
I, e as in the lemma.

LEMMA 4. (I. Malta and J. Palis ~6~ ) Given E and ~u E

as above. Let x1, y1 E Wc (q) be near q such that

Let Z be a C5 saddle-node vector field adapted to defined in a

neighborhood of in WC (q). Then there exists a local conjugacy,
H = (h, between and such that:

~a~ = = 

(b) = if and only = where

= 03C0ss (x( )), 
= and (resp. is the

point of s-criticality (resp. u-criticality ) between and ~’$s(q)
(resp. and in a fundamental domain (resp.

for (resp. for for ~,c near ~,c.

For the definition of a saddle-node vector field adapted to saddle-node

diffeomorphism arcs (see ~8~).



Let ~ X u ~ E be close families, and ~c, ju E I be their first

bifurcation values. If we let ,~, F denote the C5 saddle-node vector

fields adapted to the saddle-node diffeomorphism arcs ~P~~ and {~}
respectively, then:

(a) there exists a conjugacy h2 : -~ between .~ and .~;
this conjugacy induces a conjugacy between and which
we will denote by h2 = where &#x26; : : ~ (h , ~c~ is
a reparametrization and : YV~ (q) -> a conjugacy
between and (see [8]);

(b) there are conjugacies:
~ h1 -~ between ~?~~~ and 

reparametrization;
. h3 --> between and 

reparametrization.

Thus hC -~ given by

is a conjugacy between and such that the reparametrization
p = ~-1 o k o r~ sends the parameter values for which there exists a

quasi-transversal intersection orbit between and into
the corresponding parameter values for which there exists a quasi-
transversal intersection orbit between WU (â- ) and W8 ~,a~m n ~ ’~ 

Construction of equivalences in 

Let a = a~ be a singularity (hyperbolic) of X~ such that has
a generic s-criticality with in a fundamental domain 
for 

"



LEMMA 5. - Under the above conditions, there exists a C’’ (1  r  oo~
vector field Y defined in a neighborhood x in 

which satisfies :

(a) the only singularities of Y are the tangency points between YIJu(a)
and ~$$ (q) in 

(b) if the s-criticality between YVu(a) and ~’$s(q) is of codimension p
(p > 1~, then Y is of the saddle-node type, where a center-manifold
is the C1 curve given by the tangencies among the leaves of 
and ~’$s (q);

(c) Y is transversal to the leaves of ~s~ (q) ezcept at the singularity;

(d) Y is tangent at the leaves of and in a neighborhood
of the s-criticality.

Proof. - We let p denote the codimension of the s- criticality.

Case 1. p=1

Let ( yl , . . . , ys , x) be a coordinate in where ( y1, ... , ys ) are
the coordinates in YV~~(q), and x is the coordinate in In these

coordinates, is given by a C’’ (r > 2) projection : --~

where l~ only has terms of degree ~ 2. In D~ (q), n D~ (q) is given
by

where F is a Morse function with a unique critical point xa which corre-

sponds to the tangency between n and Let

y be a C1 curve given by the tangencies among the leaves of and the

ones of Fss(q)/Wcs (q). Restricting 03C0ss to rl Dcs (q), the tangency
condition between P(a) and is given by the differential
equation



Therefore, in a neighborhood n in we consider

the vector field Y:

The singularities of Y are given by y = ~ y 1, ... , y s ~ and F(y) - x = 0:
that is the tangency point x0. On the other hand, has

the form

Thus, Y is tangent to n and xo is a hyperbolic singularity
of n D~ (q)~ . In addition

thus xo is a saddle-node singularity for Y/y.

Then Y is transversal to the leaves of 

Case 2. 1  p  dim 

Let be a C’’ (r > 2) center-unstable manifold of a. Since

is a codimension 1 submanifold of by Case 1, there exists
a C1 vector field Yi defined in a neighborhood of r1 in

r1 Now as in ~11~, we extend Yl to a neighborhood of
in 1N~$ (q). The only condition we require for this extension



is that the extended vector field be tangent to the leaves of and

As above: let E let ~,c E and let ~ _ . Let

vary continuously with  E I1 such that the continuous curve  -

is transversal to Let As  C Fss(xc( )) be a continuous

family of closed discs centered at We now let C C ~N~~(q) be a
transversal cylinder to such that

and, for each ~ C [7I-~~[,Cx is transversal to and to

and = 0 for each critical element a of X  such that
= 0. Now we define a fundamental domain D~ for (~~)

in M~(q) as: the external boundary of is C U ~4- and the internal
boundary is U ~). .
A fundamental domain for is defined as: the external boundary

is ~ U C x 7i and the internal boundary is U C x 7i)~ = ~~*
If ~ is close to {X~}, we assume the same hypotheses and

constructions for as have been made for .

Construction of ~ 

The construction of the homeomorphism /~ is carried out in several

steps which depend on the s(u)-criticality.

Step 1. Codimension one critical

We assume has a codimension one s-criticality. Let 
be the point of s-criticality. Since is generic, r~

D~(g) may be expressed as the graph of Morse function



Case 1. has a minimum (or maximum) critical point at 
be family of C1 vector fields defined in a neighborhood of

as in Lemma 5. We may assume the continuous curve  ~ (x0( ), ) is
transversal to (q). Since Wu(03B1i, ) x is transversal to Fss(q)/Wcs (q),
i ~ ~ -1, we may construct a family of C~ vector such that re-
stricted to leaves of i ~ k -1, it is also C1, has no singularities
in its trajectories are transversal to the leaves of 
and the cylinder C x is Y1, -invariant. We use the families 
and ~ Y2 ~~ }, and construct a family of C1 vector fields such that, in
a neighborhood of x it coincides with

~ Y2 ~~ ~ , and on the outside it does so 
Now let lte : -~ be a conjugacy between and { P~ ~, 

,

and let be the reparametrization determined by h~, and

be the conjugacy constructed as before. We now consider a family {D1, }
of s-dimensional discs (resp. C j4~) which

varies continuously with the parameter as in figure 3.1. For each z E 
we have that the ~-limit of z is Since and are close, for
each  near , there exists a C1 diffeomorphism

C1-close to the inclusion map which varies continuously with and such

that = and that = where _

rl (resp. r~ = YV~ n D1 ~P(~) ) 
Let = and let D2 = ~ ~I1 D2,  x { }; similar

definitions for D2~~ and D2. Thus, for each z E ~ there exists
a unique t (z)  0 such that (z) E Since we know



we define

This defines a homeomorphism hl : D2 --~ D2 compatible with h~ and the

reparametrization p. Now, let ~ T~ ~ be a continuous family of s-dimensional
open discs centered at rJ.L such that TJ.L D and that T  B D1,  is an

open annulus. On we raise a radial one-dimensional foliation S~
whose leaves are contained in The construction is performed
continuously with ~ and in a compatible way with the leaves of 
i ~ k - 1. Given x E let

Clearly is a two-dimensional surface. Let I~ be the one-dimensional

foliation induced by Fc in a neighborhood of i  = n P(As );
we extend Ie to a singular foliation by including the point Using .H~,
we extend hi to a homeomorphism

such that, for each p E = H1/T  x 

is a diffeomorphism C1-close to the inclusion map; this H1 induces a

homeomorphism H1 : P (T ~ Dl ) -~ P(T ~ where



such that, for each ~ E Ii, ,

To extend H 1 to a homeomorphism

we use the homeomorphisms hC and Hl, the foliations .~’s$ ~q) and 
and the trajectories of Y  and (fig. 3.2). This defines a homeomorphism
Hi : V --> ~, where V (resp. V) is a neighborhood of

(resp. I 1 ~~) x in (resp. which

satisfies:

~ it is compatible with H8 and p,

~ it conjugates P and P.

To obtain a homeomorphism : --~ we extend the

definition of H1 to C x 7i U As using the leaves of and of as

well as the trajectories of Y and of Y, the definition of H~ and the Isotopy
Extension Theorem as is done in [2]. . Using H1 we define a homeomorphism

Finally, we extend these homeomorphisms to D~s using the trajectories of
YJ.L and the leaves of and of and the homeomorphisms
h~ and the one defined in (C x 7i UA8) U P (C x 7i . We denote by
hC8 : ~ the resulting homeomorphism. By construction it
is clear that h~s verifies



~ it is compablible with h~, HC and p,

~ it sends leaves of ~’$~ (q) into leaves of ~~~ (q~,

Fig. 3.1 Fig. 3.2

Case 2. has a saddle type singularity at 

In this case the famil~ ~ Y2 ~~ ~ of C1 vector fields given by Lemma 5 has
a center-unstable and a center-stable manifolds ; ; we construct homeomor-

phisms on these manifolds as in Case 1. The extension of these homeomor-

phisms to : -~ is also done as in Case 1.

Step 2. Codimension p > 1 criticality

In this case, we take a center-unstable manifold and, in

we construct a homeomorphism as in Step 1, the extension to a homeomor-

phism : - is done as above.



Global stability of families in r;n
Let E r~n such that, in its first bifurcation value ~c E I has

a saddle-node periodic orbit B. In what follows we will suppose the critical
elements of ordered as follows:

where for p  ~c, and are the periodic orbits of which produce
the saddle-node periodic orbit B.

Let E be close to which has its first bifurcation value ~c
near  at which X has a saddle-node periodic orbit B near B. We let 

81 ~~, 8, i = 1, ... , k, j = 1, ... , .~, denote the critical elements
of  near the respective critical elements of As before, each time we
make an assumption for we will suppose it done for ~ X~ ~ .

The proof of the global stability of families in r~~ will be done in several
steps according to the types of s-criticalities. We will prove the stability
in the codimension one s-criticality, u-criticality case; the remaining cases
may be proved with similar arguments.

In what follows we will assume that as a codimension one s-

criticality and that Ws(03B22, ) has a codimension one u-criticality. Let 
(resp. be the point of s-criticality (resp. u-criticality) in 
(resp. D~ ~q) ~, where (resp. is constructed in such a way
that

is in the interior of r1 D~ (q) (resp. r1 D~ (q) }. In addition

we suppose the continuous curves  --; and  ~ (y0( ), ) are

transversal to respectively. Recall that we already have
the homeomorphisms



Now, by the transversality of

in Eq x I, we may construct C1, P-invariant foliations and

compatible with the systems of foliations ..., 

..., ~’s (,~3,~~. Moreover, we may construct a codimension two C1,
P-invariant foliation in ~q x h which is compatible with the above
foliations. We let ~Y~ s ~ and ~Y~~‘ ~ denote the families of C1 vector fields
constructed in and as in Lemme 5, respectively. Using

{Y~ $ ~ and ~ Y~ ~ , we construct the singular foliations and 

in Eq x 7i as follows:

Each leaf F~s of is a union of leaves of where the union is

taken over a trajectory of Note that each leaf of ~’~s (q) intersects
transversally along a trajectory of ~Y~ s ~, and that has

distinguished leaves: 
.

~ one of them is F~s which is raised over ;

~ the others are those raised over the trajectories of

Analogously we construct Without loss of generality, we will

suppose that, for each p > ~.c,

contains the tangencies between the leaves of and ~~ (,Q2 ). We
set L = (dim L = 2).

In ~ ~I1 (Fcs(x0( )) x { }) (resp. ~ ~I1 (Fcu(y0( )) x we

consider the induced foliations:

. JF~ = (resp. = whose

space of leaves is L;



and the homeomorphism hi : L -~ L induced by hC : - via

leaves of ~s~‘ ~q~ . Note that, for each ~.c E h ,

We now use the homeomorphisms hL : L -~ L, : - and

: ~ to construct homeomorphisms

such that:

~ ~l and ~2 are compatible with ~;
~ for each ~ G 7i,

~ Hl (resp. H2) sends leaves of ~’t‘u and ~’1 (resp. ~’~s and ~’2 ~ into
the respective ones of and ~’1 (resp. ~s~ and ~’2 ); learly, this
construction is compatible with the ones above.

To construct the homeomorphism Hq : Eq x I1 -~ E- x 7i which

conjugates the Poincare maps P and P, we use the homeomorphisms
Hl, H2, h, hL, Hs, .Hu and the foliations 

for and the respective ones for . The

construction is carried out preserving the later foliations (see [8]). Finally,



we extend the homeomorphism H8 to neighborhoods of the critical elements

,Q2_, ... , ,Ci,~ thus obtaining a global equivalence H = ~H~, p~ : M x Ii --~

M x 7i between and .

Remark 1. - Since Y1~ s ~,Q2 ~~ ~ is u-critical of codimension one, we have
that 1; therefore, to extend the definition of the homeomor-
phism H8 to a neighborhood of 03B22 via Lyapunov functions, the preservation
of ~’$ (,Q2 ) is not required.

Remark 2. - The construction in

is essential to guarantee that, for each ~un E I1 given by Lemma 3, we are
sending the orbits of quasi-transversal intersection between

for X n into the respective orbits of quasi-transversal intersection between

for .

Remark 3. - Only on the surface L, the foliations (q) and are

not transverse, that is L contains the tangency points (quasi-transversal)
between

at the parameter values ~c = ~cn.
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