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Global stability of saddle-node bifurcation
of a periodic orbit for vector fields(*)

SERGIO Praza S.(1)

RESUME. — On étudie la stabilité d'une famille générique de champs de
vecteurs ayant une orbite périodique de type col-nceud.

ABSTRACT. — In a bifurcation value, the global stability of families of
vector fields which have a generically unfolding saddle-node periodic orbit
is studied.

Introduction

In this paper we study the global stability of families of vector fields which
have a saddle-node periodic orbit which unfolds generically. We recall that a
generic characterization of stable families for the stability of one-parameter
families of gradient vector fields was obtained by J. Palis and F. Takens
[9]. We also recall that for one-parameter families of vector fields with
simple recurrences and no-cycles, the global stability for those which have
bifurcations due to quasi-transversal orbits was studied by R. Labarca [4]
for the cases in which the bifurcation is due to a saddle-node (or Hopf)
singularity or a flip periodic orbit, under generic conditions, the global
stability follows from results of S. Newhouse, J. Palis and F. Takens [8].
When the bifurcation is due to a saddle-node periodic orbit, the global
stability has only been studied in the case of two-dimensional manifolds by
I. Malta and J. Palis [6]. Before stating our results, we recall some concepts
and results on one-parameter families of vector fields.

(*) Regu le 14 juin 1992
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Let M be a C* boundaryless compact manifold. We let X°°(M) denote
the space of C*™ vector fields on M and X°(M) denote the space of C®
arcs, § : I = [-1,1] — X*(M) both endowed with the C>® Whitney
topology. We use the notation £ = {X,,}, where for each 1 € I, §(1) = X,.
Now, let {Xu}v {)‘Z’y} € A®°(M) and i, i € I; we say that {XM} at 1z is
equivalent to {)? u} at fi if there are homeomorphisms p : (I,m) — (I, 1),
increasing, and H,, : M — M, which depends continuously on y, such~that,
for each p near I, H, is a topological equivalence between X, and X ()
t.e. H,, sends orbits of X, into orbits of X p(u) Preserving the sense of the
trajectories. We say that {X,} is stable at 7z if there exists a neighborhood
U C XP(M) of {X“} such that, for each {)‘Z’#} € U, there exists g € T
near @ such that {X“} at 7 is equivalent to {)-(:u} at p.

Let I' C A™°(M) be characterized by :

o for each pu € I, the non-wandering set of X, is constituted by a finite
number of critical elements (i.e. singularities and periodic obtits) of
Xyu;

o there are no cycles among the critical elements of X, (i.e. there is
no sequence aj, ..., ag, k > 1, of critical elements of X, such that
ap = oy and W“(ai) n W"(ai+1) # 0,i= 1, ..., k- 1).

Let {X,} €T and & € B({X,}) = {u € I| X, is not stable} such that
X4 has a saddle-node periodic orbit . Let £; C M be a transversal section
for X;at g€ 6, and X(z,p) = (X,‘(:c), 0). There exists an interval I; C I,
B € I, such that ¥ = ¥, x I; is a transversal section to X at (g, 7).
We let P : & +— X denote the Poincaré map of X in the non-hyperbolic
periodic orbit (6,%), and P, = P/, x {u} denote the Poincaré map of
X,. Then P = {P,} is an arc of saddle-node diffeomorphisms (see [8]).
From the theory of invariant manifolds (see [3]) we have that there exists
C",1 < 7 < oo, P-invariant manifolds W*(g), W(q) and W¢(q). Set

Wil (@) = W (g) N Eq x {n};
analogously for W<¥(q) and WE(g). Let
W?(q) = {(z, %) € Zq x {5} | P"™(2,B) — (¢, B), n+— +o0}
and
W¥(q) = {(=,F) € B¢ x {B} | P7"(2,B) — (¢, ), n — +o00}
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Global stability of saddle-node bifurcation of a periodic orbit for vector fields
be the stable and unstable manifolds for g, respectively. We have that
W(q) CWZ'(q) and W¥(g) C WEY(9)
are CT, r > 1, injectively immersed manifolds of M with boundary
OW?*(q) = W*(q), W™ (a) = W*(q),

are called strong stable and strong unstable manifolds, respectively. In
addition, in W?(q) there exists a (unique) P-invariant C! codimension one
foliation F**(q) with space of leaves W%(q); analogously, there exists a
foliation F“*(g) in W¥(q). Let a be a hyperbolic critical element of X;; such
that W¥(a) intersects W*(g), we say that a is s-critical, or that W*(a) has
s-criticalities if W¥(a) N £ x {#} has a non-transversal intersection with
some leaf of F**(q); analogously, we define u-criticalities. We say that the
s-criticality between W¥(a) and F*%(g) is generic if there exists a unique
tangency orbit between W¥(c) and F**(q) along which they have a quasi-
transversal contact.

Excepting certain additional conditions which will be specified later,

our results on the stability of families {X ”} € T which have saddle-node
periodic orbits are the following.

PRrROPOSITION 1

(a) If there ezists a hyperbolic critical element o of Xy such that W¥(a)
has non-generic s-criticalities with F°*(q), then {Xu} is non-stable
at [t.

(b) If there exists two hyperbolic critical elements ay, o of Xz such that
W¥(ay1) and W¥(az) have generic s-criticalities with F*°(q), then
{Xu} 15 non-stable at [t.

THEOREM 1

(a) If a is a hyperbolic periodic orbit of X such that there ezists the
weakest contraction in o and W¥(a) has a generic s-criticality,
then {Xﬂ} is non-stable at . Moreover, in this case the weakest
contraction in a is a modulus of stability for X5

(b) If a is a hyperbolic singularity with complez weakest contraction of
Xy such that W¥(a) has a generic s-criticality, then {Xu} is non-
stable at E. Moreover, if a £ ib, a < 0, b # 0, denotes the weakest
contraction in o, then p = a/b is modulus of stability for X;.
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THEOREM 2

(a) If the hyperbolic critical elements of Xz have no criticalities, then
{XM} 1s stable at 1.

b) If there exists a unique hyperbolic singularity a which has real weakest
P
contraction and W*(a) has a generic s-criticality, and the remaining
hyperbolic critical elements of X5 have no criticalities, then {X M} 18
stable at 1.

(c) If there exist hyperbolic singularities o, B (o # B) of X5 such
that the weakest contraction in a and the weakes expansion in B
are real, and W¥(a), respectively W*(8), has a generic s-criticality
with F*°(q), respectively has a generic u-criticality with F¥¥(q)) and
the remaining hyperbolic critical elements of Xi have no criticalities,
then {X,} is stable at .

From the methods developed in the proof of Theorem 2 (Section 3) and
in [6], the following result follows.

THEOREM 3.— If there exist hyperbolic singularities

al!""ak) ﬂl)“"ﬁl

such that the weakest contractions in the a;’s and the weakest expansions
in the B;’s are real, and W*(a,) for some 1 < s < k (resp. W*(B,) for
some 1 < r < £) has a generic s-criticality , respectively has a generic
u-criticality, and the remaining hyperbolic critical elements of Xy have no
criticalities, then {Xu} has finite modulus of stability.

1. Basic concepts

In this section we will recall some basic concepts and state the above
results in greater detail. Let M be a C* boundaryless compact manifold.
We will denote by &> (M) the space of C* vector fields on M endowed with
the C* Whitney topology. Let € M be a singularity of X € X (M), i.e.
X (x) = 0, we say « is hyperbolic if DX (z) has no eigenvalues with null real
part. Let o be a periodic orbit of X and ¥, be a transversal section to X
at ¢ € o and P : (2, q) — (Zg, ) be the Poincaré map for X at o, we say
o is hyperbolic if DP(q) has no eigenvalues with norm equaling one. The
singularities and periodic orbits of X will be called critical elements of X.
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Let 6 be a hyperbolic critical element of X, then
Wi (6) = {z € M| X¢(z) — 6, t— +oo}

and

WU@)={z € M| Xe(z) =6, t — —co}

(X¢ denotes the flow of X) are C* submanifolds injectively immersed in
M called stable and unstable manifolds of 8, respectively.

Let ¢ € M, we say z is a non-wandering point of X if, for each
neighborhood U of X and each g > 0, there exists 1 > g such that

th(U)r\U;é(B.

We let 2(X) denote the set of non-wandering points of X. If Q(X) is
constituted by a finite number of critical elements of X, we say X has
simple recurrences. The interior of the set of the vector fields with simple
recurrences will be denoted by WR™(M).

Let a, 8 be critical elements of X, we say W"(a) and W?*(B) are
transversal if

ToWY (a) + TW?(B) = T M,

for each z € W¥(a) N W*(B). A cycle for X is a sequence aj, ..., o,
k > 1, o) = a, of critical elements of X such that W¥(a;)N\W?(a;41) # 0,
i=1,...,k—1. Welet WC*(M) denote the set of vector fields which do
not have cycles among their critical elements.

Let ¢ € M be a hyperbolic singularity (resp. periodic orbit) of
X € X°°(M), we say the weakest contraction at o is defined if among
the contractive eigenvalues of DX (o) (resp. DP(q), ¢ € o, P the Poincaré
map) the one with biggest real part (resp. norm) is simple.

We let X7°(M) denote the space of C™ arcs,
E:1=[-1,1]—~ X*(M)

endowed with the C* Whitney topology, we use the notation £ = {X u}7
E(p) = X,
We say 7@ € I is a bifurcation value for {X #} if Xz is non-stable. We set

B ({X,}) = {B € I| B is a bifurcation value for {X,}} .
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DEFINITION 1.1.— Let {X,} € X®(M) and &t € B({X,}) such that
Xz has a non-hyperbolic periodic orbit 6, we say 6 is a saddle-node periodic
orbit which unfolds generically at p = T if there ezists a C* (1 < r < 00),
p-depending center manifold W¢(q) through q € 6 (dim W¢(q) = 2) such
that the Poincaré map P(z,p) = (Pu(z), ) associated to the vector field
X(z,p) = (Xu(z), 0) in (8,) restricted to W(q) has the form

Pu(z) = bk = B) + v1(p) + va(w)2” + O(2?),

a@=1, LB Lo b20, wweRr\ (o).

DEFINITION 1.2.— Let {X,} € X2(M) and & € B({X,}) such that
Xz has a non-transversal intersection orbit, v C W¥(a) N W*(B), «a,
B hyperbolic critical elements of X;;. We say v is a quasi-transversal
intersection orbit which unfolds generically at p = & for {XM} if for each
z € v there ezist C®, p-depending coordinates, ¥, : (V,z) — (R™,0), V a
neighborhood of  (n = dim M) such that:

(0) ($2).(X) = 5
) (b) ";b/.l.(Wu(a#) N V) = {yl S =Yy = 0};
(c)ifn—u=s,
YW Bu)NV)={m1 =e(B), Ys41 = = Yn_1 = 0};

fn—u<ls—1,

Yu(W(Bu)NV) =
= {yl = Q(y‘n—’(u ooy ys) + €(/J')’ Ys+1 =" = Yn-1 = 0}’
where uw = dimW¥(a), s = dim W*(B) and for each p near I, ay

and B, denote the hyperbolic critical elements of X, near a and S,
respectively, Q is a Morse function and € is a C™ function such that

e() =0 and %:) “:#760.
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Now let Tpp = Dan(M) C X°(M) be the set of ares {X,} € X°(M)
such that:

e B({X,}) C]—1, 1[is at most countable;

o for each 7 € B({X,}), Xz has a unique orbit 67 along which it is
non-stable in one of the following senses:
(a) if 65 is a non-hyperbolic periodic orbit of Xz, then 67 is a saddle-
node periodic orbit unfolding generically at u = F,
(b) if 67 is a non-transversal intersection orbit of an unstable and
a stable manifolds of hyperbolic critical elements of Xy, then 65 is a
quasi-transversal intersection orbit unfolding generically at p = f;

o for each p € I, X, € WR®(M)NWC*®(M).
Let {X,} € Tsn and & € B({X,}) such that Xz has a saddle-node
periodic orbit 6;;, we have the following theorem.

THEOREM (I. Malta, J. Palis [6]). — Assume dim M = 2. Let {x.} €
T'yn and & € B({X,}) as above. Then:

(a) if there ezists more than one saddle separatriz (stable or unstable
manifold of a saddle) accumulating on the same side of 6y, then
{X”} is non-stable at Ji; moreover, under generic conditions, Xg
has finite stability modulus;

(b) if there ezists at most one saddle separatriz accumulating at b5, then
{XM} 15 stable at ;

(c) if there exists at most one unstable saddle separatriz and one stable
saddle separatriz of Xi accumulating at 67 then {Xu} is stable at [1.

In this work we generalize the above theorem for dim M > 2.

Let {X,} € Tsn and B € B({X,}) such that X; has saddle-node
periodic orbit 8. Let &, C M be a transversal section to Xi; at g € 6
and I; C I be a neighborhood of . We let P : B x Iy — X4 x I be
the Poincaré map of the vector field X (z,p) = (Xu(x), 0) at (6,1). Set
P, = P/Bq x{u}; then P = {P,} is an arc of saddle-node diffeomorphisms
(see [8]).

In what follows, we will assume that for 4 < & there exist two hyperbolic
periodic orbits, 61 ,, 62, of X, which collapse at p = & originating the
saddle-node periodic orbit § = 6, ; = 6,5 of X3, and disappearing for
pu > p. Thus P = {’PM} has, for p < i, two hyperbolic fixed points
@1,u> 92,u, Which collapse at p = 7 originating the saddle-node fixed point
¢ = ¢15 = 92, of Py and disappearing for p > .

- 417 -



Sergio Plaza S.

From [8] it follows that for P = {P, } we have, in £, x I;, there are C”
(1 <7 < o0) P-invariant submanifolds W¢(q), W**(q) and W°(q),

We(g) CW*(q) " W™(q),

called center, center-stable and center-unstable manifolds respectively. In
addition, in W*(q), there exists a C" (1 < r < oo) P-invariant, strong
stable foliation F°*(g). Analogously in W°%(q), there exists a strong unsta-
ble foliation F“*(q). Furthermore at p = &, F**(q)/W?*(q) is unique and
should be preserved by conjugations of arcs of saddle-node diffeomorphisms;
similarly for 7%%(q)/W*"(q). This is a necessary condition (rigidity) for the
construction of conjugations of arcs of saddle-node diffeomorphisms and,
therefore, a necessary condition (rigidity) for the construction of equiva-
lences for ares in I'y, for the parameter values in which there are saddle-node
periodic orbits.

We next consider the arc of diffeomorphisms P¢ = {'Pﬁ} where
P =P/Wula) : Wila) » Wila) -

Thus P¢ = {'Pﬁ} is an arc of saddle-node diffeomorphisms in IR. Therefore,
from [12], there exists a unique C* vector field Z defined in a neighborhood
of (¢,7) in W-&(q) such that

’Pﬁ = Zt:l . (1)
And, in addition, if {X’ M} € I's, and & € I have the same characteristics
as {X,} and &i. Respectively, we denote by P°¢ = {ﬁﬁ} the corresponding
arc of saddle-node diffeomorphisms in IR, and by Z the unique C* vector
field defined in a neighborhood of (g, £) in Wﬁ(c}) If h : We(q) — W(q)

is a conjugation between P°¢ = {'PZ} and P¢ = {’5;“;}, h = (hyu,p),

p: (I,E) — (I, ) reparametrization, h, conjugation between P/, and P;(u)’
then

iz s W) — WE(@)

is a conjugation between the flows Z; and gt; this is another rigidity con-
dition for the construction of equivalences for arcs in Iy, in the parameter
values in which there are saddle-node periodic orbits.
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DEFINITION 1.3.— Let {X,} € Tsn and & € B({X,}) such that Xz
has saddle-node periodic orbit 8. We say 0 is s-critical if there exists a
hyperbolic critical element a of Xy such that W*(a) has a non-transversal
intersection with some leaf of F*°(q), and we say this s-criticality is generic
if there exists a unique tangency orbit between W'(a) and F**(q) along
which they have a quasi-transversal contact.

PRoPOSITION 1.— Let {X,} € T'sn and & € B({X,}) such that Xz
has saddle-node periodic orbit 6. Then:

(a) if a is a hyperbolic critical element of X;; such that W¥(a) has non-
generic s-criticalities, then {X,} is non-stable at [;

(b) if a1, s (a1 # ag) are hyperbolic critical elements of Xy such that
W4 (1) and W¥(az) have generic s-criticalities, then {X,} is non-
stable at [t.

THEOREM 1.— Let {Xﬂ} €Tlgp and & € B({XM}) be as in Proposi-
tion 1.

(a) If o is a hyperbolic periodic orbit of Xy such that there exists the
weakest contraction in a and WY(a) has a generic s-criticality,
then {Xﬂ} 18 non-stable at . Moreover, if A denotes the weakest
contraction of Xy in a, then A is stability modulus for X.

(b) If o is a hyperbolic singularity with complez weakest contraction of
Xy such that W(a) has a generic s-criticality, then {X,L} s non-
stable at 1. Moreover, if a £ ib, a < 0, b # 0, denotes the weakest
contraction in a, then p = a/b is modulus of stability for Xz.

We next impose some conditions on the families {X M} € Iy, we are
considering:

SN1If o is a saddle-type hyperbolic critical element of Xz (o # 0)
and W¥(a) N W?*(q) # 0 then W¥(«a) is transversal to W**(q) and
W (a) N WE(q) = 0; analogously for W?*(a).

SN2 Let a be a hyperbolic critical element of Xz such that W¥(a). has
a generic s-criticality with 7*%(q); then:

e W¥(a) is transversal to W*(g) in £4 x {ii}; moreover, there exists
C"-linearisations (r > 2) coordinates in a neighborhood of «;

o the weakest contraction is defined in « which is real;
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e there exists a C" (r > 1) center-unstable manifold W (a)
which is transversal to 7°°(q) in a neighborhood of the s-criticality;
analogously for W?(a), W (a) and F4“¥(q).

SN3 Let a be a hyperbolic critical element of X;; such that W*(a) has
an s-criticality, and D?(g) be a fundamental domain for P/ Wz (9).
Then the s-criticality between W*(a) and F*%(q) is generic and the
tangency is a unique point.

We let Tl, C T',, denote the set characterized by {X,,} € Il if and
only if, for each &z € B({X u})a X7z has a unique saddle-node periodic orbit,
and the conditions SN1, SN2 and SN3 are satisfied.

THEOREM 2.— Let {X,} € T}, and & € B({X,}) such that X has a
saddle-node periodic orbit 8, we have:

(a) if 6 is not s-critical nor u-critical, then {X,.} is stable at @ (in this
case [t is isolated);

(b) if there exists a unique hyperbolic singularity o of Xy such that
WH(o) is s-critical, and the remaining hyperbolic critical elements
of Xz do not have criticalities, then {XM} is stable at I (in this case
It is isolated);

(c) if there exist hyperbolic singularities oy, 0o (01 # 02) of X3 such that
WH(a1) is s-critical and W*(o3) is u-critical, and if the remaining
hyperbolic critical elements of Xz do not have criticalities, then
{X M} is stable at J&; in this case there exists a strictly monotone
sequence (En) of parameter values which converges to & such that,
for each n € IN, the vector field Xg, has a unique orbit of quasi-
transversal intersection between W*(o1,1,) and W*(o2,R,) which
unfolds generically at u = .

Now let {X,} € Tl, and & € B({X,}) such that Xy has a saddle-
node periodic orbit . Suppose that there exist hyperbolic critical elements
a1, ..., am and By, ..., By of Xz such that, for each i = 1,...,m (resp.
J = 1,...,k), W¥a;) (resp. W?*(B;)) has a generic s-criticality (resp.
u-criticality). We let x** (resp. =““) denote the projection on Wila)
via leaves of F*%(q) (resp. F““(q)) and 1, ..., Ty (resp. y1, ..., Yp)
denote the points of s-criticality (resp. wu-criticality) between W*(a;) and
F*%(q) (resp. W*(B3;) and F¥%(q)), i =1,...,m (resp. j =1,...,k), in
a fundamental domain for P/Wg’(q) (resp. P/W(a)). Let 7°°(z;) =
(resp. T%(y;) = yj) t=1,...,m (tesp. j =1,...,k). We impose the
following conditions.
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o xi £ x5 andy§¢y§ we=1,...,my7,8=1, ...,k i#4 JF#s.
e zf, y$ belong to the interior of DZ(q), D! (q) respectively, i =
1,....m,7=1,...,k.

We now define the numbers ¢;, s; (i = 1,...,m, j =1, ..., k) by the
equations
Zy,(z§) =« and Z,j(yf) = y§ .

We furthermore suppose that the ramaining hyperbolic critical elements of
Xz do not have criticalities.

THEOREM 3. — Let {X,} € Il, and @ € B({X,}) be as above. Suppose
that
[t; —ts| # |ss — sr| and that 1—|t; —t;| # |ss— 80|,

for each i,£=1,...,m,i# £ and each j,r=1,..., k, 3 #71; then {Xﬂ}
has finite stability modulus.

Remark.— In the two-dimensional case Theorem 3 was proved by
I. Malta and J. Palis [6]. For dim M > 3, the proof of Theorem 3 follows
from the proof of Theorem 2 and the two-dimensional case.

2. Proof of Proposition 1 and Theorem 1

Proof of Proposition 1

Let © C M be a cross section to Xy; at ¢ € 6. We let w3 W (g) —
W¢(q) denote the projection through leaves of 7°°(q).

Case (a) Let z a point of non-generic s-criticality. We now make a small
perturbation of W¥(a) in a small neighborhood of z in W?(g) in such a way
as to produce generic s-criticalities among W*(a) and two or more leaves

of F*%(q).

Case (b) Let 1, z3 be the points of generic s-criticalities of W¥%(a;) and
WH(ap) with F%(g), respectively. Again, we make a small perturbation
of W¥(az) in a small neighborhood of z; in W?(q) such that the new s-
criticality «/, is in leaf F*%(z5), with

F*(x5) # F**(22)

(we note that we may suppose 7°°(z1) # 7°*(z2)).
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In cases () and (b) these perturbations may be obtained as perturbations
of {X “}. Therefore, we obtain a family {X ,4} € I'sp, near {Xp}; it is clear
that they are not equivalent by the rigidity condition on W¢(q).

Proof of Theorem 1

In part (a) as well as in part () of the theorem, the unstability of {X u}
at 1 follows from the existence of modulus of stability for Xz (which we will
prove). In what follows we will write Y for X;.

Part (a) Let Y be a vector field near Y with the same characteristics of Y.
We let A denote the weakest contraction of the hyperbolic periodic orbit &
of Y. Each time we make a construction for Y, we will suppose it made
forY.

Let 3g, be a cross section for Y at ¢; € a and Py, : (Zq,,q1) — (Zq,,q1)
be the Poincaré map of Y at . Similarly, let £, be a cross section of ¥
at ¢ € 6 and P, : (X, q) — (Zg,9) be the Poincaré map of Y at §. We let
D**(q) denote a fundamental domain for P4 in W**(q). Let z be the point
of generic s-criticality between W*(a) and F**(q) in D*(q). Suppose

z¢ = 7**(z) € Int(D(q) N W*(q)) .

If H is a topological equivalence between ¥ and Y in a neighborhood
V of the closure of Oy () in M, then without loss of generality, we may
suppose that H(Zg, ) = 3, and that H(X,) = . Then

(H/Zq) 0Py = Pg o (H/Zq,) and (H/Zq) 0Pg = Pgo (H/2,) .
We will write h; = H/X,, and h = H/3,. Now, since H preserves F°* and
H(W¥(a)) = W¥*(&@), we have that H(z) = 7 (see [1]). As a first case we
suppose A is real and positive; similarly for A. Let ¢ = (¥15 +++s Yn—1) be
C? linearizing coordinates in a neighborhood U of g; in X4, such that y;-axis
is the eigenspace corresponding to the weakest contraction. Let W(q;)
be a C! center-unstable manifold of ¢1; it induces a C! center-unstable
manifold W(a) of a. Since W¥(a) is a codimension one submanifold of

We(a), there exists a distance d in ¥~ and two real numbers, ¢ > 0 (large
enough) and 7 > 1 (close to 1) such that

R(W™(a) NEg) NV C K(q),
where V is a neighborhood of 7 in T and K(q) is the cone

K@) = {ye%; |d(y, W@ ;) <e (A, w@n=y) '}
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We now reparametrize the flows Y; and l-;'t in a such a way that
YT(V)gU$ ?T(i;)gﬁvT<0

‘We now consider a sequence
zn € K(q1) = {y € Bq | d(y, W™ (a) N Zy) <c(d(y, W(a) N Ey))"},

&n — z, such that the sequence y, = Yr(z,) satisfies ‘Pq—lk"(yn) — 8,
s € W (q1) \ {@q1}; in fact, s € W*(q1) \ W**(q1). Note that k, — oo as
n — oo and that

d(en, WH(a)) = g, 4% |m(s)] (A%)

where 71(s) is the first coordinate of s and o4, > 0 is a constant (transition
constant) which does not depend on z nor d.

Notation.— Let (a;) and (b;) be real number sequences. Then a; = b;
means

Since the contact between W"(a) N X4 and F**(z) is Morse type, in a
neighborhood of z in W*(a)NXE, we may write W*(a)NX, as the graph of
a Morse function @ with respect to the leaf F**(z) of 7°*(q) which contains
z. Under the above conditions we have that there are distances d, J, in X4
and EZ respectively, such that:

!

(1) if, at =, Q has at x a saddle type critical point, then for each small
6 > 0 there exists a point 5 € W{a) N W°(q) such that

6 =d(zs, W¥(a) N ;) = d(zs, F**(z) N W™(a))
and that

d(h(zs), W(@) N ;) = d(h(zs), F**(3) N W™ (@)) ;

(2) if, at , Q has at z, a maximal (minimal) type critical point, then for
each small § > 0, there are points z; € W™ (a) N W*(q), ¢ = 1, 2,
such that

§ = d(zf, W(a) N Sg) = d(z}, F**(z) N\ W), i=1,2,
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and that

d(h(=}), W@ N 2;) < d(h(z}), F** (&) nW™(@)),
and that

d(h(23), WH(@) N ;) > d(h(z}), F**(3) nW(3)) .

Notation.— Let (a;) and (b;) be real number sequences. Then a; S b

0 < sup {&} <1.
ieN L b
Under the conditions (1), setting § = 1/n, n € IN large enough, we obtain

a sequence T, € W (a) N D(q) such that

% = d(zn, W*(a) N ) 2d(zn, F**(z) N1 W (a))

means

and that

d(h(zn), W*(@) N 2—q~) = d(h(z,), F*(Z)N W (a)) .
Since h is C! and preserves F**, we have

d(h(zn), F**(3) " W™(@)) = vd(zn, F**(z) N\WH(a)). (A1)

Now, by taking the sequences y, = Yr(zn), ¥n = ?T (h(wn)), we have
that .
Py (yn) = s, s€W(q1) \W"(a1)

P=bn(Gn) = ha(s),  ha(s) € W*(@) \ W*(&)

and”that
d(zn, W*(a) N 8q) = ag, A*» |71 (s)] (Ax)

d(h(zn), W*(@) N B;) = &5 A% |71 (ha(s))] - (Axx)

Combining (Ax), (A**) and (A1) we obtain
10q A% w1 (s)] = 57 A [71 (ha(s))] -
Therefore, for n € IN large enough, we have

kn ~
(%) = K, K non zero constant, thus 4 = 4.

Under the conditions (2), we analogously obtain asymptotic inequalities
from which 4 = A.

In the case A is negative or complex, the result is obtained in a similar
way [1].
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Part (b) Let Y be a vector field near Y with the same characteristics of Y.
We let a+14b (a <0, b+# 0) denote the weakest contraction of the hyperbolic
singularity a of Y. Agam, each time we make a construction for Y, we will
suppose it made for Y.

We first suppose dim M = 3.

‘W‘(Q)

A=a+ib,.a<0.b¢0
Fig. 1

Let H be an equivalence between Y and Yina ne1ghborhood U of the
closure of Oy (z) in M. We let P : £, — g and P: I — I denote the
Poincaré maps of the p~enod1c orbits @ and 6 in the transversal sections
e (g € 6), E'q~ (§ € 6), respectively. We may suppose H(Zq) = E-‘;;
thus (H/Zg) o P = P o (H/Sy). Moreover, since H/E, sends leaves of
F*2(q)/W*(q) into leaves of F**(q)/W?*(g) and

H(W¥(e) N W*(q)) = W¥(@) nW*(q),

we have that H is completely determined in a part of W%(q)

Let V be a neighborhood of a and V = H(V) andlet f:V — R,
f V — R be C*® Lyapunov functions for Y and ¥ respectively. Given
€ > 0 small, let C, C f~1(—¢) and Ce C f 1(—¢) be transversal cylinders
to W*(a) and W?*(Q) respectively. Since H is a equivalence between Y/V
and 17/ V, we have that H(C) is a cylinder topologically transversal to
W?(a). We may suppose H(C.) C Ce.
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Now in C., we take a C! one-dimensional foliation F¢ with leaves
transversal to W*(a) N C.. The foliation 7€ induces a C! center-unstable
foliation F°* as follows

Fz) = U Y (F¢(z)), zeW*(a)NC:.
telR
If z € W*(a) N Ce, we have that H(F°(z)) C C. is a curve topologically
transversal to W*(&) N C.. A curve of the form H (F¢(z)) is denoted by
Fe (H(2)) and we define

Fu(8(2) = |J ¥ (F(H(2))) -

telR

Under the above conditions (see [13]), there exist § = §(H(z)) > 0 and
a cone Kp,y C C. with a vertex in H(z) such that if C5; C C. denotes a
é-size cylinder, then:

o F(H(2)) C Kp(y),
) ]?CU(H(Z)) ﬂag - f(H(z)
Thus, B B _ _
FU(H() Nl e) and FU(H(2)) N fFH(e)

approach each other when we come near W¥(&) N f~1(¢). In this case we
say they are asymptotically undistinguishable. Furthermore, the curves

FU2)NfYe) and FE)Nfl(e),

z € W (a)NC, and Z € W*(a) N C., are spirals which we may suppose
linear with contraction coefficients p = a/b and p = @/b respectively, in
linearization neighborhoods of a and & respectively.

Now, we have that the intersections
FUNE,, FUn T- and Feun -

are spirals (see [7] or [11]). We let v denote the C! curve given by the
tangencies between the leaves of 7°“ N T, and the leaves of F**(q) in a
neighborhood of the s-criticality = in W*°®(q). We define 7 analogously.
Note that H(vy) does not necessarily coincide with v. But since

/vy —7*(y) and 7T°/7:77(7)
are C! diffeomorphisms, we may suppose H ) =7.
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Let h = H/y : 7 — %, h is C* and compatible with H® = H/W*(g).
Using the spirals F°* N g, F¥ N E-q~ and F“ N E;, we define the maps
he% : v > 4+, EC“, hev ¥ — 7 as follows: given y € v, h°%(y) is the
first point where F¥(y) N Bg intersects the component of v \ {z} which
contains y. We define h°* and h°* analogously. We have that

K@) =2, h™@E)=h"@) =7, h(h(y)) =h(h™()
and that, in a neighborhood of z, respectively of z,
hcu(y) - 621rpy’ ":cu(z) — 821;‘2,
where p = a/b, 5 = a/b (fig. 2).

We now fix 21, 22 € W?(a)NCe, 21 near z;. Let u; = H(z), u2 = H(z3).
Associated to each u; (i = 1, 2), we have a cone K,; C C. with vertex u;,
and a cylinder Cs; (6 = 6(u;)). Let 0 < § < min{é;, 62}, Cs denotes
the corresponding cylinder. Let W be a neighborhood of u; and u3 in

Wé(@) nCe, in W we take the points v1, vz as in figure 2. From this
construction, we have that the spirals .7-'°“(u1) N 2~ and fcu(uz) N E~ are

contained in a spiral neighborhood limited by the spua.ls F c“(vl) N 2~ and

F cu(vz)OE-— as in figure 3. We take a neighborhood of z (resp. Z) in W"" (9)
(resp. W"(&)) small enough such that Zo = h(zo) and Yo = h(yp) are near
z. We now define the following sequences and intervals in v (resp. ¥):

o 2, = (h¥)"(20), un = (A*)™(%0), To = [0, 0] In = [Yn, @n];
e up = (h¥)" (%), Tn = ()" (%0), Lo = V0, %o ], In = [Vn, Tn;
o 3 = (B*)"(20), B = ()" (@0)s To = [To, o), In = [Fn, Bn -
For each n € IN, we have that
I(I,) = e2"™U(L), I(I,) = ez’”";l(fo) and I,CI,
(where I(J) is the length of the interval J). Therefore d(Zn,9n) = I(In)-
On the other hand, we have:

d(Zn, Bn) = J((Ew )*(@o), (AY) "(ﬁo))
= J((hcu :l:o) (’;cu )
= 3 (n(()"(20) h((h°“)"(yo)))
= d(h(zn) , h(yn)
= cd(@n,yn) (since his C1)
= cl(Ip)
= ce?"™?(Iy),

- 427 -



Sergio Plaza S.

where 0 < ce?"™(I) < ez'”';l(fg); thus 0 < K < e2*(P=#) n c I large
enough.

Through an analogous argument for H ™!, we have 0 < K < ezn"’(”—’;),
n € IN large enough.

Therefore, if n € IN is large enough, we have 0 < C < e2nm(o=p) < C<oo
from which p = p.

FHn)NE,
e N m“
z 4 Iy \ : ’

N L T\ w

h ( j:u(uz) n Eq

f'é'(vl) ﬂ)_“.q .

L2 13

; @ i =
Miz“(u) = h(h“(y)) ¥

Fig. 2 Fig. 3 Fo(u) 055

f"(ux) N

The n-dimensional case is reduced to the 3-dimensional case.

3. Proof of Theorem 2

This section is devoted to the proof of Theorem 2. We only prove part
(c) since the methods used can easily be adapted to parts (a) and (b). We
first recall some definitions of invariant foliation associated to vector fields.

Let {X,} € X>(M), andlet z € I.
DEFINITION 3.1.— Let p € M be a hyperbolic singularity of Xz a (local)
unstable foliation for {X,} (or for the vector field X (z,p) = (Xu(z), 0))

at (p, ), Fp is a continuous foliation of U, x I, where Up C M, I, C I,
are netghborhoods of p and Tt respectively, such that:

(a) the leaves of F} are C” discs, v > 1, varying continuously in the C”
topology with distinguished leaf

Fpu,p) = (Wu(pﬂ) N Up) x {p};
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(b) each leaf F¥(z,p) is contained in Uy x {u};

(c) F* is invariant, i.e.,

FY(Xpug(z), ) C Xpt(F¥(z,p)), t>0.

A global unstable foliation F,' is just the positive saturation by the flow
X, (p € ) of the local unstable foliation. Similarly we define a stable
foliation 7.

Now, let o be a hyperbolic periodic orbit of X7, and let
Pu:VgxI =g x 1

(Vq is a neighborhood of ¢ in X;) be the Poincaré map.
DEFINITION 3.2. — A (local) unstable foliation for {X,} (or for X (z, u))
at (q,;1), F& is a continuous foliation of Vg x Iy such that:

(a) the leaves of 2 are C” discs, r > 1, varying continuously in the CT
topology with distinguished leaf

Fqup) = (W*(au) N Vg) x {u};

(b) each leaf F¥(z,p) is contained in Vg x {u};

(c) F* is invariant, i.e.,

F¥(Pu(e), p) C P(F*(=z,p)) .

A global unstable foliation F2 is just the positive saturation by the flow
X, (p € I) of the local unstable foliation. Similarly we define a stable
foliation F2.

Kz € B({X,}) such that Xy has a saddle-node periodic orbit 6,
P = {P.} (the Poincaré map associated to the vector field X in the non-
hyperbolic periodic orbit (6,%)) is an arc of saddle-node diffeomorphisms.

Thus we have that, in W¢(q) (resp. W°¥(q)), there is a strong stable (resp.
strong unstable) C” foliation, r > 1, F3°(g) (resp. F3™(q))-
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DEFINITION 3.3.— A strong unstable foliation for P = {’P“} at the
saddle-node (¢, 1)), F* is a continuous foliation of g x I such that:

(a) the leaves of F* are CT discs, v > 1, varying continuously in the
C" topology with distinguished leaf

F*(q,m) = (W™ (q) N Z¢) x {m};

(b) each leaf F¥*(x,p) is contained in gy x {pu};

(c) FG* is invariant, i.e.,

FY(Pu(z), p) CP(F*(z,p)).

Similarly we define a strong stable foliation, 77°.

Let {X,} € Tl, and & € B({X,}) such that X5 has a saddle-node .
periodic orbit 6. Since for each p € I, X,, € WR*™(M), we have that
Q(X,) is the union of a finite number of critical elements of X,. For
< let oy, oeey Qppy 01, 02,4, B1ys -+ -5 Bey be the critical elements
(hyperbolic) of X,, where 6, , and 6, are the periodic orbits which
originate the saddle-node periodic orbit

0= Gl,ﬁ = 92“‘—4 of XE

On the other hand, for each p € I, X;, € WC*(M), then we may define a
partial order < among the critical elements of X,

o1 <oy ifandonly if WY(o1)NW?*(c2) #0.

This partial order is extended to a total order and we assume it is the

following
a1, < Lo,y <01, <02, <Pru< <Py

Clearly, this order holds for 4 = &z and even for u > & near fi. Therefore,
for each p € I, we order the critical elements of X, as follows
12 al,uS“‘Sak,ufel,MSGZ,uSﬁl,uf"'Sf@t,u
© ap < Sogpl0<Bip<--<Bn
n

a1y < Loy <Py < < B

ARIIWA
® R H
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DEFINITION 3.4.— Let {X,} €T}, and E € B({X,}) be as above. We
say the system of unstable and strong unstable foliations

Fea)s «-er Far), F*4(a)

18 compatible:

(a) if a leaf F of F¥(an) intersects a leaf E of F¥(a;) (an < o; < o)
then F D E and the restriction of the foliation F*(a;) to each leaf
of F¥(an) is a C? foliation;

(b) if a leaf F of F¥(a;), a; < oy, intersects a leaf F¥* of F*%(q), then
F D F“¥ and the restriction of the foliation F%%(q) to each leaf of
F¥(ay) is a C! foliation.

Similarly, we define a compatible system of stable and strong stable
foliations F*%(q), F*(B1), - - -1 F*(Be)-

LeEmMA 1.— (J. Palis and F. Takens [9]) Let {X,} € T}, and i €
B({X,}) such that X5 has a saddle-node periodic orbit 8. Then for {X,}
there ezist compatible systems of foliations:

(a) FHar), «vny F¥og),

(b) F*(B1), « s F*(Be)-

Now let {X,}, {X—u} € Tl be close families, and let &, i € I their
first bifurcation values, i close to . We have that X3 and )‘Z'; have close

saddle-node periodic orbits  and 5, respectively. If p : (I,5) — (I,R)
is a reparametrization then from the existence of compatible systems of
foliations

Fhar)y eony FHa)y, F°(B1)y+--r F*(Be)

for {XM} and of the respective one for {)‘Z' y}, we may suppose constructed
the homeomorphisms:

k k
B (U (W*(@3,u) x {u})) — U (U (W* (&) x {M})) 1)
pel; \i=1 #€1~'1 =1
such that, for each ¢ (1 < ¢ < k), the restrictions
HE, = HYW* (i) x {u} : W (ei) x {u} — W*(&; p)) % {p(1)}
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are conjugacies between the flows

Xut/W*(@; ) x {u} and X’p(“),t/w’(ai,p(“))x{p(”)};

g | (U(w"wj,,‘)x{u})) — U (O(W“(Bj,ﬂ)x{n}))

wel \j=1 uel, \3=1
(2)
such that, for each j (1 < i < k), the restrictions

HY, = H*/W¥(B;,) x {u} : W*(B; ) x {1} — W¥(B; o)) * {p(1)}

are conjugacies between the flows

Xput/WH(B) x {u} and X, /W*(B; () x {p(1)}-

Remark.— To construct a global equivalence between {X #} and {)? ,,}
as above, we first extend the definition of H*® to W*°*(q) and that of HY
to W(q) in a such way as to conjugate P/W<*(q) with P/W*<*(3), and
P/We(q) with P/W*(7), and afterwards extend the definitions given in
W¢(q) and W¥(q) to a neighborhood of (¢, %) in X4 x I; in order to obtain

a homeomorphism Hg : ¥4 x I; — 2; x I; such that:

e it conjugates the Poincaré maps P and '5;
e it is compatible with the constructions done above;

e it is possible to extend the definition of H* (or H") to

U (O(W’(ﬁj,u)x{u})) oo (U(W“(ai,“)x{u})).

uel \j=1 pel; \i=1

DEFINITION 3.5.— Let {X,} € TL, and B € B({X,}) such that X5
has a saddle-node periodic orbit 6. Let ay be a hyperbolic critical element
of X such that W*(ay) has a generic s-criticality with F**(q)/W*(q). We
say the s-criticality between W*(ag) and F*°(q)/W?*(q) is of codimension
p, 0 < p < dim W&’(q), if W¥(ag) x {g} N W&’(q) i3 a codimension p
submanifold of W%’(q). Ifp = dimW%’(q), we say the s-criticality is of
zero dimension.

An analogous definition is given for u-criticalities.

- 432 -



Global stability of saddle-node bifurcation of a periodic orbit for vector fields

Remark 1.— If the s-criticality is of zero dimension, without loss of
generality, we may suppose that az = a ; in the order given above.

Remark 2.— If the s-criticality of codimension p > 1, since we are
assuming a unique criticality in a fundamental domain for P/ Wﬁ-‘(q), we
have that W*(az) "WE’(q) is non-compact. Thus, there exists a hyperbolic
critical element p (p # oy) such that W¥(p) N W&"(q) has no criticalities
and W¥(ag) N W?*(p) is non-empty. Without loss of generality, we suppose
p = app and ap = a_1 3 in the order given above.

We will make a construction which is easily adapted to the general case.

Let {X,} € A°(M) and a be a hyperbolic singularity with real weakest
contraction of Xz. Let I; and U be neighborhoods of Z in I and of « in
M, respectively. Then there exists a C™ (r > 1) center-unstable manifold
W (az) (not unique) for X (z,p) = (Xu(z), 0) at (ag, &) such that for
each p € I,

W (ay) = W) N M x {u}

is a C" center-manifold for X, at a,. A C” center-manifold for X at (a, &)
(resp. for X, at a,) is given by

We(a) = W ()W (a), (zesp. W¥(au) = (W*(au)n W™ (ay)) x{u})-

Throughout, we will use C™ (r > 1) center-unstable foliation F°*(a) and
F5*(a) as constructed in [5]. " ‘

LEMMA 2.— Under the above conditions, for {Xﬂ} € T'L., we have:

(a) if W¥(a ) has a zero dimensional s-criticality, then there ezists a
compatible system of foliations

Fhlaa), +evy Fhogemr)s F (k) (FT (k) F*(a)

for {X“}, 1 near [i;

(b) if W*(ag—1,5) has a codimension p > 1 s-criticality, then there exists
a compatible system of foliations

Fhr)y ovey FHoh—2)y F(0h—1)(Fi(ak-1)), F*(ar), F**(q)

for {X,,}, © near ft.
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Remark. — (Important) Due to a result of F. Takens [10], we have that
if we construct a conjugacy Hq : Ty x I; — E-q~>< I; between P = {’PM} and
P = {’f’u} as above so that:

o the homeomorphism H, sends the intersections of the foliations 7%(a),
F¥(a), Fe4(B) and F{*(B) with By x I; for { X, }, into the correspond-
ing intersections of the foliations (&), F7*(a), .7-"’"(6) and F§° (,B)
with 2~ X I1 for {X u} continuously on the parameter;

e Hyis compatlble with the homeomorphisms H*, H*, and h¢ : W¢(q) —
W¢(q) which will be constructed shortly;

e Hyis Cl-close to the inclusion map.

Therefore, using Lyapunov functions, we extend the homeomorphism H,
to a neighborhood of a or 3, depending on the case, in such a way that,
using the methods developed in [9] or [4]. We construct a global equivalence
H:MxI — Mx I1 between {XM} at r and {Xﬂ} at f.

Construction of equivalences in W¢ for arcs in T'l,

Let {X,} € T, and & € B({X,}) such that X7 has a saddle-node
periodic orbit 6. We let P = {’PM} denote the Poincaré map associated to
X(z,p) = (Xu(z), 0) at (q,7). Let {X,} € T, be near {X,} with first
bifurcation value I near £, and such that X~ has a saddle-node periodic
orbit 6 near 6. We let P = {’P”} denote the Poincaré map associated to
X(:c p) = (X ”(z) 0) at (g,/z). Then P and P are close diffeomorphism
arcs.

Let a and (5 be critical elements (hyperbolic) of X7 such that W¥(ay)
is s-critical and W*(By) is u-critical. Let P, = P/W;(q) and

it 1 Bg x [1 > W(q), #1°:3g x I; - W™(q)
be the projections via leaves of F“%(q) and F**(q), respectively, and let
88 :WCS(q) _)WC(q)’ 7Ir'Ll/’l.l, :WCu(q) _)Wc(q)

be the projections via leaves of F**(q)/W*°*(q) and F“*(q)/W*°(q), respec-
tively. We have
7 oY o Py =PLon"omy®.
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We let z(F) denote the point of s-criticality between W* (o) and F°*(g)
in a fundamental domain D%’(q) of P/ wg'. Similarly, y(f) is the point of
u-criticality between W*(8;) and F**(g) in a fundamental domain DZ¥(q)
of P/W*(q). Set

2°(7) = 7 (2(7)) and y*(E) = 7 (u(E) .
We have the following lemma.

LEMMA 3.— Under the above conditions, there are € > 0 and a strictly
monotone sequence (fi,,) of parameter values such that:
(o) B<Bp <& Bp— R
(b) for each p € [ — ¢, B+ €[, we have
o if u # B, for all n € IN, then X, has no quasi-transversal
intersection orbits,

o for each n € N, B, € B({X,}) and Xz, has o unique quasi-
transversal intersection orbit between W* (o ) and W*(Bg,)-

Proof.— We use the equation 7*° o n{% o P, = PJ o #“¥ o 7{* and
Lemma 1 of [6, p. 21] to obtain the result.

In what follows, we choose I; = [i—¢, £ +¢[ as a neighborhood of zZ in
I, € as in the lemma.

LEMMA 4.— (I. Malta and J. Palis [6]) Given {X,} € Il and @ €
B({X,}) as above. Let 21, y1 € Wﬁ(q) be near q such that

2y < 2°(B) < Pa(z1) < ¢ <y1 < ¥°(B) < Pi(w1)-

Let Z be a C° saddle-node vector field adapted to {P;} defined in a
neighborhood of (q,B) in W¢(q). Then there ezists a local conjugacy,
H = (h,n), between {’Pﬁ} and Z;—1 such that:

(a) hu(2(w)) = 2°(n), hu(v°()) = v°(u);

() (Pﬁ)n(wc(u)) = y°(p) if and only ifZ{‘(:cc(u) , n(u)) = y°(p), where
2¢(p) = 2 (z(p)), ¥°(n) = m**(y(n)) and z(u) (resp. y(r)) is the
point of s-criticality (resp. u-criticality) between W*(a,) and F*°(q)
(resp. W*(By) and F¥¥(q)) in a fundamental domain D{’(q) (resp.
Dg*(q)) for P/WS(a) (resp. for P/Wi*(q)) for p near .

For the definition of a saddle-node vector field adapted to saddle-node

diffeomorphism arcs (see [8]).
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Let {Xu} {)‘Z’M} € I, be close families, and T, /i € I be their first
bifurcation values. If we let Z, Z denote the C® saddle-node vector
fields adapted to the saddle-node diffeomorphism arcs {'Pﬁ} and {ﬁﬁ}
respectively, then:

(a) there exists a conjugacy h§ : W°(q) — W€(§) between Z and Z;
this conjugacy induces a conjugacy between Z;—; and §t=1, which
we will denote by hy = (hg,,k) where k : (I1,7) — (fl,ﬁ) is
a reparametrization and hy, : Wi(q) — i(u)@) is a conjugacy

between 2Z;—;/Wj(q) and Z~t=1/wli(p)@) (see [8]);
(b) there are conjugacies:

® hq : W¢(q) — W¢(q) between {'Pﬁ} and Z;-q,

hy = (h1p,n), 7:I1,8) — (I,R)

reparametrization;

e hg : W(3) — W¢(g) between {73/3} and Z,-1,
hs = (ha,, ), 7: (11, B) — (11, 7)
reparametrization.

Thus h¢ : W°(q) — W°(q) given by
c _ -1 ~—1
h(z,p) = (h3,/.1, ohayohyu(z), 77 o kon(u))

is a conjugacy between {’Pli} and {5&} such that the reparametrization
p = 71 ok on sends the parameter values 7i,,, for which there exists a
quasi-transversal intersection orbit between W*(ay ) and W*(3; ), into
the corresponding parameter values ﬁm(n) for which there exists a quasi-

transversal intersection orbit between WU (5; ( )) and W?* (Eﬁ ( )).

Construction of equivalences in W (W)

Let a = oy be a singularity (hyperbolic) of X;; such that W¥(a) has
a generic s-criticality with 7°*(q)/W?*(q) in a fundamental domain D%’(q)
for Pg/Wg'(q)-
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LEMMA 5.— Under the above conditions, there exists a C™ (1 <7 < 00)
vector field Y defined in a neighborhood of W*(a) x {ﬁ}ﬂW-“%’(q) in D%‘(q)
which satisfies:

(a) the only singularities of Y are the tangency points between W*(a)
and F°*(q) in D (q);

(b) if the s-criticality between W¥(a) and F*°(q) is of codimension p
(p>1), then Y is of the saddle-node type, where a center-manifold

is the C1 curve given by the tangencies among the leaves of F*(a)
and F**(q);

(c) Y is transversal to the leaves of F*°(q) except at the singularity;

(d) Y is tangent at the leaves of F¥(a) and F{*(a) in a neighborhood
of the s-criticality.

Proof.— We let p denote the codimension of the s- criticality.

Case 1. p=1

Let (y1, .-+, ¥s, ) be a coordinate in W%’(q), where (y1, ..., ys) are
the coordinates in W?**(g), and z is the coordinate in W;(g). In these
coordinates, F**(q) is given by a C™ (r > 2) projection 7°* : W%‘(q) —

29),

ﬂ'”(yl, eeey Ys il:) = W+Q(y1, ceey Ys,y :l:)

where Q only has terms of degree > 2. In DZ’(q), W¥(a) N D3’(q) is given
by

IC:F(y), y:(y17'°'1ys)7

where F is a Morse function with a unique critical point z¢ which corre-
sponds to the tangency between W (a) N D5’ (q) and F**(q)/Wg'(q)- Let
4 be a C1 curve given by the tangencies among the leaves of F¥(a) and the
ones of f"(q)/W%’ (g)- Restricting =°*° to W¥(a) N Dﬁ-‘(q), the tangency
condition between F*(a) and F°*(q)/W7’(q) is given by the differential
equation

% + 3_Q a_Q . a_F =0

dy 9dy Odxr Oy
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Therefore, in a neighborhood of W*(a) N D¢ (q) in WE’(q), we consider
the vector field Y':

. 2 OF ,
zt=(z—Fy))" "+ —9

(e~ FW) + o
. 87r'”( ) BF( )+ omss
Yi = oz Y oy Y 3y;

Y:

(y,2), i=1,...,s.

The singularities of Y are given by ¥ = (91, ..., ¥,) and F(y) —z = 0:
that is the tangency point zg. On the other hand, Y/(W¥(a)N Dz () has
the form

. OF .
€= a—y(y)y

. on’® oF o’ .
%= W(y,z)a—w(y)*' a—yi(y,z), i=1,...,s

Thus, Y is tangent to W¥(a)N D%’ (¢) and g is a hyperbolic singularity
of Y/(W¥(a) N D%"(q)) . In addition

Y/r (o) = (- F@)*,0) 3

thus zg is a saddle-node singularity for Y/+.
We have

on® | on*® | orss 9 omw®® gF%® | or®s |

Oz z+ dy Y= "oz (m—F(y)) + 8z 8y y+ Ay y

aﬂ.ss 2 87r33 BFSS aﬂ.ss

= — F Y
Oz (= (¥)” + ( dr Oy + oy >y
87r33

Oz

(m—F(y))2+ ”y” >0, ifz#azg.

Then Y is transversal to the leaves of 7**(q)/Wg*(q).

Case 2. 1 < p < dim WZ*(q)

Let W(a) be a C™ (r > 2) center-unstable manifold of a. Since
W¥(a) is a codimension 1 submanifold of W(a), by Case 1, there exists
a C! vector field Y; defined in a neighborhood of W¥(a) N D (g) in
We(a) N Dg’(q). Now as in [11], we extend Y3 to a neighborhood of
W¥(a) nDg (g) in W%"(q). The only condition we require for this extension
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is that the extended vector field be tangent to the leaves of 7°“(a) and
Fi(@)-
As above: let {X,} €T ;let me B({X,}); and let P = {P.}. Let

2°(p) € (W°(q) NZq x {1})

vary continuously with p € I such that the continuous curve p —
(z°(r), ) is transversal to Wy (q). Let Aj C F*° (z°(1)) be a continuous
family of closed discs centered at z°(u). We now let C C W2*(q) be a
transversal cylinder to W?**(q) such that

C x {u}n F**(z°(p)) = 0A;,

and, for each p € [fi — ¢, fi[, C x {u} is transversal to W**(q; ) and to
W?*(ga,.), and C N W% (a) = 0 for each critical element a of Xj such that
WH(a)NW?**(q) = 0. Now we define a fundamental domain DZ for (Pg, )
in W%’(q) as: the external boundary of D%’ is CU A% and the internal
boundary is Pz(C U A%).

A fundamental domain for P/W¢*(q) is defined as: the external boundary
is A*UC x I and the internal boundary is P(4°UC x I), A® = UueIl Aj.

If {iu} € I'l, is close to {X,}, we assume the same hypotheses and
constructions for {X u} as have been made for {X ”}.

Construction of h¢* (h)

The construction of the homeomorphism h¢® (h") is carried out in several
steps which depend on the s(u)-criticality.

Step 1. Codimension one critical
We assume W¥(aj_1 ) has a codimension one s-criticality. Let zo(r) €

D2’ (q) be the point of s-criticality. Since zo(f) is generic, W*(ax—1,z) N
Dcﬁ‘(q) may be expressed as the graph of Morse function

Fa: W?(q) - Wil9) -
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Case 1. F has a minimum (or mazimum) critical point at zo(R)

Let {YZ,M} be family of C! vector fields defined in a neighborhood of

U OW*(ak-1,4) x {u}) N D*(q)

pel

as in Lemma 5. We may assume the continuous curve p — (zo(g), p) is
transversal to W;?(q). Since W*(a; ) x{p} is transversal to F°°(q) /W5’ (q),
i # k—1, we may construct a family of C? vector fields {Y; ,}, such that re-
stricted to leaves of F%(a;), i # k— 1, it is also C?, Y] , has no singularities
in DE(q), its trajectories are transversal to the leaves of F**(q)/W3(q),
and the cylinder C' x {u} is ¥ ,-invariant. We use the families {Y7 ,}
and {Yg"u}, and construct a family of C! vector fields {Yu} such that, in
a neighborhood of ¢, (W¥(ag—1,,) x {1}) N D°(q) it coincides with
{Yz,u}, and on the outside it does so with {Yl,u}-

Now let h€ : WC( ) — W¢(@) be a conjugacy between {P:} and {5"} |
and let p(I1,7) — (Il, i) be the reparametrization determined by A¢, and

k k
B: (U W (ai ) X{u}) - U (U W°(&i,u)x{n})

pel; \i=1 MEE =1

be the conjugacy constructed as before. We now consider a famlly {D1 #}

(resp. {D1 ”} of s-dimensional discs Dy, C Aj, (resp. D1 e A? %) which
varies continuously with the parameter as in ﬁgure 3.1. For each z € Dy ,,,
we have that the w-limit of z is zo(x). Since {X,,} and {X,} are close, for
each u near 7, there exists a C! diffeomorphism

Rt D1y — Dy pp)

C'-close to the inclusion map which varies continuously with u, and such
that hy ,(0D1,) = 3D1’p(u), and that hy ,(r,) = Fp(”) where r, =

WS, (20(4)) 1 D (resp. o = WS, (B0(1) 1 B )

Let D2, = UpsoYtu(D1w) andlet Dy = U,ep, D2y x {1}; similar
definitions for D3 ;, and D3. Thus, for each z € Dy, \ {wo(u)}, there exists
a unique #(z) < 0 such that Y, ;(,)(z) € D1,4. Since we know

h1u (Yu,t(z)(z)) € Dl,p(u)
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and
h° (71'“(2)) eEWe (@ N 23 X {p(p)} ,
we define
hru(2) = | U Foge (mu(ase)(@) ) | 0 F2 (5° (x()))
>0
and

k1. (zo(1)) = To(p(n)) -

This defines a homeomorphism h; : D — 52 compatible with h° and the
reparametrization p. Now, let {Tu} be a continuous family of s-dimensional
open discs centered at r, such that T, DO D; , and that T, \ Dy, is an
open annulus. On 8D;, we raise a radial one-dimensional foliation S,
whose leaves are contained in T}, \ Di,. The construction is performed
continuously with p and in a compatible way with the leaves of F*(o;),
i1#k—1. Given ¢ € 0Dy ,, let

§¢(2) = 55(2) \ {=},
and let

Fo(a) = | Yaus(Si(e)) -

>0

Clearly F°(z) is a two-dimensional surface. Let I° be the one-dimensional
foliation induced by F° in a neighborhood of i, = Wy, (zo(m)) NP(A});
we extend I€ to a singular foliation by including the pomt iy. Using H s
we extend h; to a homeomorphism

H:T= U T, x{u} —T= U T, x {u}
pnel “efi

such that, for each p € Iy, Hy , = H1 /T, x {u}:

TM X {ﬂ'} - Tp(u) x {P(IL)}

is a diffeomorphism Cl-close to the ix_\_clusion map; this H; induces a
homeomorphism H; : P(T \ D1) — P(T \ D1) where

D, = U Dy, x {u}, Dy = U ﬁl,ux{u},

uely I_‘eﬂ
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such that, for each u € I,

Hyp i Pu(Tu\ D1y) — ~p(p) (Tp(u) \ 5l,p(u)) and Hj,(e) = ~p(n) :

To extend H; to a homeomorphism

Hy: U U (Yy,t(Tu \ Dl,u) X {ﬂ‘})

k€l \t>0

— U | UFue@u\ D1 x )| ,

u€71 t20

we use the homeomorphisms h® and Hj, the foliations F°*(g) and F°*(7),
and the trajectories of Y, and V), (fig. 3.2). This defines a homeomorphism
H;:V — V, where V (resp. V) is a neighborhood of

U OV*(ak-1,0) x {8}) N D*(q)
el

(resp. Uuefl (W*(@k—1,,) x {#}) N D**(q)) in D**(q) (resp. D*(g)), which
satisfies:

e it is compatible with A°, H* and p,
e it conjugates P and P.

To obtain a homeomorphism h¢® : D®*(q) — D°(g), we extend the
definition of H; to C x I; U A® using the leaves of F°*(g) and of F**(q) as
well as the trajectories of Y and of ?, the definition of H* and the Isotopy
Extension Theorem as is done in [2]. Using H; we define a homeomorphism

Hi:P(CxLUA*) —P(CxLua.

Finally, we extend these homeomorphisms to D® using the trajectories of
Y, and of ?M, the leaves of F°*(q) and of F*%(g), and the homeomorphisms
h¢ and the one defined in (C x U A’) U’P(C xI U A"). We denote by
he® : W(q) — W**(q) the resulting homeomorphism. By construction it
is clear that h®® verifies
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e it is compablible with k¢, H¢ and p,
e it sends leaves of F**(q) into leaves of F**(q),

o 1 (zo(1)) = Z(p(k)), B (@) = T B (%u) = Tjp(uy 5 = 1, 2-

Wele) D5 (9) WH (@) N Do)

3 f“(.’tp) /
/%
! W(a) N D5(q) ;
1:“ ‘ .‘F"‘(a)nvﬁ(q)::_l/_v 4*:/

| - q

- 1y YS q -

y=\y s

Fig. 3.1 Fig. 3.2

Case 2. Fy; has a saddle type singularity at zo(7)

In this case the family {Yz’”} of C1 vector fields given by Lemma 5 has
a center-unstable and a center-stable manifolds; we construct homeomor-
phisms on these manifolds as in Case 1. The extension of these homeomor-
phisms to h®® : W (q) — W€*(q) is also done as in Case 1.

Step 2. Codimension p > 1 criticality

In this case, we take a center-unstable manifold W*(ay,_1 z) and, in

U W (ar_1,u) x {83) N D**(g),
uelh

we construct a homeomorphism as in Step 1, the extension to a homeomor-
phism h°® : W (q) — W*®*(q) is done as above.
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Global stability of families in I'},

Let {X,} € Tl, such that, in its first bifurcation value & € I, X3 has
a saddle-node periodic orbit 6. In what follows we will suppose the critical
elements of {X,} ordered as follows:

p<pm a1, <-r <o, <01, <61, <B1u< < By
p=p o< Lopp<0<fip<---<Bx
B> g al,/.l.S"'Sak,pslgl,ug"'s}@l,u
where for p <7, 61 , and 6, , are the periodic orbits of X,, which produce
the saddle-node periodic orbit 6.

Let {X’M} € I‘ . be close to {X M} which has its first bifurcation value 1
near jt at which X~ has a saddle-node periodic orbit 6 near 6. We let & QG s
ﬁ].w 91,“, 92 s 9 t=1,...,k, jJ=1,..., 4 denote the critical elements
of X u near the respectlve cntlcal elements of X As before, each time we
make an assumption for {X M} we will suppose it done for {X M}.

The proof of the global stability of families in I'},, will be done in several
steps according to the types of s-criticalities. We will prove the stability
in the codimension one s-criticality, u-criticality case; the remaining cases
may be proved with similar arguments.

In what follows we will assume that W*(aj_; ;) as a codimension one s-
criticality and that W*(8, ;) has a codimension one u-criticality. Let zo(u)
(resp. yo(u)) be the point of s-criticality (resp. wu-criticality) in Dg(q)
(resp. Dg*(q)), where D*(q) (resp. D%(q)) is constructed in such a way
that

7 (zo(1)) = 2§(n) (resp. ©**(yo()) = v§())

is in the interior of W*(q) N Dg’(q) (resp. W¢(g) N Dg¥(g)). In addition
we suppose the continuous curves p — (iBo(M), u) and pu — (yo(p) , u) are
transversal to Wg*(q), W;"(q), respectively. Recall that we already have
the homeomorphisms

CcSs . WCS(q) —_ WCS(Q‘) (1)

R : W (q) — W(9) (2)
k k

B | (U W (e ,) x {u}) — U (U W*(&; ) x {,u}) (3)
pel; \i=1 pel, V=1
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£ )4
g : | (U W¥(Bj.u) % {u}) — U (U W (B; ) x{u}) (4)

nelh \j=1 I-LGTI Jj=1
h : We(q) — W(q). (5)

Now, by the transversality of
(a) W¥(as), W*(B;), i =1, ..., k, 5 = 1, ..., £, with W(q), W(q),

respectively,
(b) W¥(a;), W*(B;), + # k —1, j # 2, with F**(q)/W(q),
Fuu(q)/W*(q), respectively,
in ¥4 x I, we may construct C1, P-invariant foliations F““(q) and
F*3(q) compatible with the systems of foliations F“(cy), ..., F(ap),
F*(B1), ---, F*(Be). Moreover, we may construct a codimension two cl,
P-invariant foliation F*%(q) in ¥4 x I; which is compatible with the above
foliations. We let {Ylf"} and {Yﬁ“} denote the families of C! vector fields
constructed in W¢(q) and W**(q) as in Lemme 5, respectively. Using
{Y‘f’} and {Ylf“ }, we construct the singular foliations F°*(q) and F*(q)
in 34 x I; as follows:

Each leaf F°* of F°*(q) is a union of leaves of 7**(q), where the union is
taken over a trajectory of Y. Note that each leaf of F°*(g) intersects
transversally W®(q) along a trajectory of {Yﬁ"‘}, and that F°°(q) has
distinguished leaves:

e one of them is F°*(zg(p)) which is raised over W§c,(m0(u));
m

e the others are those raised over the trajectories of
Yot/ (W (on-1,0) N Zq) x {K}) -

Analogously we construct F¢%(q). Without loss of generality, we will
suppose that, for each p > 7,

Ly = F*(zo(k)) N F*(yo(w))
contains the tangencies between the leaves of F%(aj_;) and F°(B;). We
set L =Uer, Lu x {p} (dim L = 2).
In Uer, (F*(zo(i)) x {#}) (resp.  Uper, (F(v0(k)) x {£})), we

consider the induced foliations:

o Fut = FoU(q) N F*(zo(p)) (resp. F** = F*¥%(q) N F(yo(u))) whose
space of leaves is L;
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o Fy = F(q) N F°* (z0(p)) (resp. F2 = F(q) N F(yo(x))),

and the homeomorphism A : L — I induced by h° : W¢e(q) — WE(q) via
leaves of F*%(q). Note that, for each p € Iy,

ou = hG/Lu x {1} 2 Ly x {u} — T x {p(w)}-

We now use the homeomorphisms hf : L — L, ke We(q) — W(q), and
he¥ : W (q) — W°(q) to construct homeomorphisms

H: |J (F(eo(w) x {u}) — | (F**(Bo(w)) x {u})

“EIl IJ«GE

and

H: ) (F(wow) x {u}) — U (F*@ow) x {1}
#EII l‘efl
such that:
e Hy and Hj are compatible with h{;
o for each u € I,

Hy = Hy/F®(2o(n)) x {u}:
Fe* (zo(n)) x {u} — F°* (Zo(o(w)) x {o(w)}

and

Hyp = Hy/[F™(yo(p)) x {u}:
F(yo(r)) x {1} — F (o (p(r))) x {p(r)};

e H; (resp. Hz) sends leaves of F** and F; (resp. F** and F3) into
the respective ones of F“* and F; (resp. F** and F3); clearly, this
construction is compatible with the ones above.

To construct the homeomorphism H, : ¥, x I; — 2‘q~ X fl which

conjugates the Poincaré maps P and ’5, we use the homeomorphisms
he*, R, Hy, Hs, h, hy, H®, H" and the foliations F*°(q), F“*(q),
F*u(q), F(q), F*(q) for {X,}, and the respective ones for {)?“} The
construction is carried out preserving the later foliations (see [8]). Finally,
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we extend the homeomorphism H? to neighborhoods of the critical elements
Bi, Bz, -, By thus obtaining a global equivalence H = (Hu,p): M xI —
M x 11 between {X,L} and {X,‘}

Remark 1.— Since W?*(B, 3) is u-critical of codimension one, we have
that dim W*(8; ;) = 1; therefore, to extend the definition of the homeomor-
phism H* to a neighborhood of 32 via Lyapunov functions, the preservation
of F*(B2) is not required.

Remark 2. — The construction in

U (F** (zo(r)) U P (30(k))) x {u})

pelh

is essential to guarantee that, for each ,, € I; given by Lemma 3, we are
sending the orbits of quasi-transversal intersection between

(Wu(ak—l,ﬁn) NZq) x {E,} and (W’(ﬁ%u 2q) x {Fn}

for X7 into the respective orbits of quasi-transversal intersection between

(Wu(ak—l,p(ﬁn)) ﬂzg) X {p(ﬁn)} and (WJ(IB2 p(un) )N E= ) {p(”'n)}
for X’p(ﬁn).

Remark 3.— Only on the surface L, the foliations 7°*(q) and F°%(q) are
not transverse, that is L contains the tangency points (quasi-transversal)
between

U W*@r-1,4) x {8})NEgx 1 and | (W*(B2u) x {w}) N B x Iy
pel pel

at the parameter values p =7,,.
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