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The Support Shrinking Properties for Solutions
of Quasilinear Parabolic Equations
with Strong Absorption Terms

STANISLAV ANTONTSEV(1), JESUS ILDEFONSO DÍAZ(2)
and SERGUEI I. SHMAREV(3)

Annales de la Faculte des Sciences de Toulouse . Vol. IV, nO 1, 1995

R.ESUME. - On etudie par methode d’energie certaines proprietes de
support des solutions faibles d’equations paraboliques du second ordre
avec absorption.

Ces solutions faibles ne sont pas necessairement de signe constant et

des proprietes de non-propagation de perturbations de la donnee initiale,
retrecissement conique de support et formation de dead-core sont établies
sous hypotheses sur la non linearite et conditions locales sur les données.

ABSTRACT. - The local energy method is used to study some support
shrinking properties of local solutions of second order nonlinear parabolic
equations with absorption terms. We deal with local Weak solutions, not
necessarily having a definite sign, and we establish properties such as
the non-propagation of the initial disturbances, support shrinking of cone
type, and formation of dead cores (null-level sets with positive measure). .
The conditions providing these effects are formulated in terms of local
assumptions on the data and the character of the nonlinearity terms of
the equation under consideration.
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1. Introduction

1.1 Statement of the problem

This paper deals with the propagation and vanishing properties of local
weak solutions of nonlinear parabolic equations. Let 0 C N = 1, 2, ...,
be an open connected domain with smooth boundary aSZ, and T > 0. We
consider the problem

assuming that the functions A and B are subject to the following structural
conditions: there exist constants A > 0 and p > 1 such that

In (1.2)-(1.3) M2, i = 1, 2, 3, are positive constants. The term "strong
absorption" involved in the title of this article refers to the additional (and
crucial) assumption

The right-hand side f(z, t) of equation (1.1) and the initial data 
are assumed to satisfy

We are interested in the qualitative properties of solutions of problem (1.1),
understood in the following sense.

DEFINITION 1. - A measurable in Q function u( z, t) is said to be a weak
solution of problem ~1.1~ if
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~b~ ~t-->o ~~ u(~~ t) - - o

(c) foT any test function 03B6(x,t) E ; W1,p0(03A9)), vanishing at
t = T, the integral identity holds

Let us note at once that we will never touch any question concerning the
. solvability of problem (1.1). As we said, the paper deals with qualitative

properties of local weak solutions of problem (1.1), regardless the boundary
conditions on E = (0, T~ x St they probably correspond to. Evidently, each
of the functions satisfying in a weak sense equation (1.1), some boundary
conditions on E, and the initial conditions is also a weak solution in the
sense of our definition.

So far, the theory of problems of the type (1.1) already accounts for a
number of existence results. We refer the reader to papers [1], [9], [12], [17]
and their references.

The class of equations of (1.1) includes, in particular, the following
equation

To pass to an equation of the form (1.1) with the parameters a = 
A = ~ /m, p = 2 amounts to introduce the new unknown v := sign u.
Equation (1.7)~ is usually referred to as the nonlinear heat equation with
absorption. If v(z, t) is interpreted as the temperature of some continuum,
the first and the second terms of the right-hand side of (1.7) represent,
respectively, the diffusion and the volume absorption of heat. The term

f(z, t) models an external source or sink of heat. Assumptions (1.4) and
a  1 are equivalent to:

The first one of these inequalities means that we study the processes
of linear and/or slow diffusion, while the second one signifies that we are
interested in the case of strong absorption. In this choice of the exponents
of nonlinearity the disturbances originated by data propagate with finite
speed (see ~16~ and references therein). Moreover, it is known ~19~, ~20~, .

[15], that in this range of the parameters the supports of nonnegative weak



solutions to equation (1.7) may shrink as t grows. It is known also, [8], [11], ,
that solutions of the Cauchy problem and the Cauchy-Dirichlet problem for
equation (1.7) may even vanish on some subset of the problem domain Q
despite of the fact that uo and the boundary data are stricly positive. These
properties were derived by means of comparison of solutions of (1.7) with
suitable sub and supersolutions of these problems.

It is to be pointed out here that in our formulation the function

A (x, t, z, p) is not subject to any monotonicity assumptions neither is s

nor in p. Next, we are not constrained by any special boundary conditions.
Lastly, as follows from Definition 1.1, the solutions of problem (1.1) are not
supposed to have a definite sign.

Each of these features complicates and makes it hardly possible to apply
to the study of the qualitative properties of solutions of problem (1.1) any
of the methods based on comparison of solutions (or sub/super-solutions)
through the data.

The purpose of the paper is to generalize the referred results and to
describe the dynamics of the supports of solutions of problem (1.1) without
having recourse to any comparison method. For this purpose the local

energy method is used enabling one to reduce the study of the support
behavior to dealing with special nonlinear first order differential inequalities
for "the energy" functions, associated with the solution under study.

In this paper we propose certain refinements of the energy methods in

the literature ([23], [24], [5], [6], [7], [4], [3]). These techniques allow us to
obtain certain conclusions about the properties of the supports of local weak
solutions to problem (1.1) which rely only on some assumptions about the
properties of initial data or even use only the information on the character
of the nonlinearity of the equation in (1.1).

The results we obtain below may be illustrated by the following simplified
description. Let t~ be a weak solution of the model equation

where L~p ~ ~ ~ denotes the p-Laplace operator given by
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Then:

(i) if 0  ~  1, m(p - 1) ~ 1 and v(x, 0) is flat enough near
the boundary of its support, the so-called "waiting time" of v is

complete, i. e.

(we also may say that there is no dilatation of the initial support);
(ii) if y, m and p additionally satisfy the relation m -~- y  pl(p - 1 ~,

we have shrinking of the initial support, i. e. the above inclusion is

strict:

supp v ( ~ t) C C supp v ( ~ , 0 ~ for t > 0 small enough ;

(iii) under the assumption of item (u) on the exponents but without any
assumption on the initial datum, a null-set with nonempty interior
(or dead core) is formed, i. e. 

’

In order to compare these results and the theorems below, recall that
a = 11m and A = y/m. We also remark that the above results remain true
when the diffusion is linear, i. e. p = 2 and m = 1, but in the presence of
the strong absorption term : y E ~0,1~.

1.2 Formulation of the results

Let us introduce the following notations: given T > 0, t E ~ [0, T ), xo E S1,
p > 0, and nonnegative parameters 03C3 and ,

It is clear that the choice of the parameters a, p, T determines the shape
of the domains P(t, p). . We distinguish three cases.

= 0, ~u = 0, p > 0; in this case P(t, p) is a cylinder Bp(zo) x (t, T);
(b) a~ > 0, ~c = 1, p > 0; P(o, p) renders a truncated cone centered in the

point and with base B03C1(x0) := {x E x0|  03C1} on the
plane t = 0;
> 0, 0  ~c  1, p = 0; then P(o, t) becomes a paraboloid.



To simplify the notation we will omit the arguments of P wherever
possible. Treating separately cases (a), (b), (c) we indicate specially which
of the parameters are essential and which are not. These three special cases
allow us to obtain qualitative properties of different nature, as is presented
in above. The domains of the type P(t, p) will play the fundamental role in
the definition of the local energy functions

associated to any weak solution of problem (1.1). This choice of domains

P (t, p) is explained by the convenience of having at our disposal the domains
of variable form but depending, actually, only on a single variable: p in cases
(a)-(b) and t in the case (c).

Let us pass to the precise statement of our results. We always ’assume
that conditions (1.2)-(1.4) are fulfilled. The unique global information we
need will be formulated in terms of the global energy function

where

Our first result refers to the situation when the support of u (an arbitrary
weak solution of (1.1)) does not display the property of dilatation with
respect to the initial support supp uo and the support of the forcing term
supp f( ~ t) (in contrast to the case of the undisturbed equation with
B = 0). It will be assumed that the data uo and f are "flat" enough
near the boundary of their supports. For instance, assume that.



Then the flatness condition is stated by the claim of convergence (near
p = po ) of the auxiliary integral

where

with some

Note that condition (1.10) implies certain restrictions on the vanishing rates
of the functions

THEOREM 1.2014 Assume (1.~~ and

Let uo and f satisfy ~1. 8~, ~1. 9~ and (1.10). Then there ezists a positive
constant M (depending only on the constants in ~1.,~~ and (1.3~, po, and
dist(zo, such that any weak solution of (1.1~ with bounded global energy,
D(u)  M, possesses the property

Under some additional assumptions on the structural exponents a, A,
p and the function f one may get a stronger result which means that the
support of u( ~ t) shrinks strictly with respect to the initial support.



THEOREM 2.- Assume (1.2~-(1.3~, (1.13~ and let

Let uo satisfy (1.8). Assume

- f - 0 in the truncated cone P - P(0, pp ; ~,1~ for some ~ > 0 (1.15)

and let (1.10) be true. Then there exist positive constants M and t* such
that each weak solution of problem (1.1~ with global energy satisfying the
inequality D~u~  M, possesses the property

Remark ~ 1. It is curious to observe that the assertion of Theorem 2
has a local character in the sense that different parts of the boundary of
supp uo may originate pieces of the boundary of the null-set of u(z, t) which
display different shrinking properties. Having a possibility to control the
rate of vanishing of uo and f( z, t~, on may design solutions of problem (1.1~
which have prescribed shapes of supports. For the model equation (1.7) this
phenomenon is already known as "the heat crystal" [22, Ch. 3, Sec. 3]. .

The last of our main results refers to the case when the initial datum

need not vanish, that is, the parameter po in the conditions of Theorems
1 and 2 is assumed to be zero. Assuming f - 0 we show how the strong
absorption term causes the formation of the null-set of the solution.

THEOREM 3. - Assume (1.~~-~~.3~, (1.13~-(1.1.~~. Let f = 0. Then

there exist positive constants M, t*, and ~ E (0,1~ such that any weak
solution of problem f 1.1~ satisfying the inequality D(u)  M possesses the
property

To get the above results one has to work with weak solutions of suitably
bounded global energy. In section 4 we demonstrate how the value of
the global energy may be estimated through the data of the problem
under consideration: i.e. problem (1.1) supplemented with some boundary
conditions. Also, we send the reader to section 4 (final remarks) for certain
commentaries on previous results in the literature.



2. Differential inequalities

2.1 Formula of integration by parts

Given xp E E ~ [0, T ~, ~ > 0 and ~u E ~0,1 ~, we define the following
cutting function on the set P(t, p~

where

, ~(a:~))} , m~)N, ,

Here and in the what follows 8,P denotes the lateral boundary of P, i.e.

By construction we have - P(t, p). It is known, ~13~, that
for every natural m, k and positive real numbers h, E



These properties allow one to substitute ((z,6) into the integral identity
(1.6) as a test function. Passing to the limits in the appearing equality and
taking into account conditions (1.2)-(1.3), one has:

Here dr is the differential form on the hypersurface 8,P n {t = const~,
nx and are the components of the unit normal vector to |nx|2 +

’

2.2 The energy differential inequalities. Domains of type (c)

Here we derive some differential inequalities for the energy function E+C
which later on will be utilized for the proofs of Theorem 1.3. We begin
with the most complicated case (c) where the domain P is a paraboloid
determined by the parameters ~ E (0,1~ , r > 0 and t:

We assume that f = 0 and that P does not touch the initial plane {t = 0~.
These assumptions simplify the basic energy equality (2.1)

Let us estimate the first term ;1. . It is easy to see that

where and are unit vectors orthogonal to the hyperplane t = 0 and
the axis t respectively.



Let ( p, w ), p > 0, cv E ~B1, be the polar coordinate system in IRN.
Given an arbitrary function F(z, t), we use the. notation x = (p, w) and
F(z, t~ = ~(p, w t). There holds the equality

where J is the Jacobi matrix and, due to the definition of P, p(9, t) =
r(~ - It is easy to check that:

Treating the energy function E as a function of t, with the use of (1.2),
(2.2), and the Holder inequality, we have now:

To estimate the right-hand side of (2.3) we use the following interpolation
inequality: given v E and ~1  p - 1, ,



with a universal constant Lo > 0 independent of v(z) and the exponents

(see, e.g., Diaz-Veron [13]). Let us introduce the notation

so that

and make use of the Holder inequality

where

Then, by virtue of (2.4),



where

Returning to (2.3) and applying once again the Holder inequality, we
have from (2.5) that if

then

for a suitable positive constant L and the exponent

To obtain (2.6) we have assumed



Inequality (2.7) is safely fulfilled if 1  qr, which is always true. We have:

The last inequality holds just due to the choice of r. Inequality (2.8) follows
from (1.4). To satisfy (2.9) one has to take  small enough, since the

condition of convergence of the integral A(t) is:

So, we have obtained an estimate of the following type:

where L1 is a universal positive constant, D~u~ is the total energy of the
solution under investigation and

Let us estimate j2. . For this purpose we use the interpolation inequality

with a universal positive constant Lo > 0, the exponent



and 03B4 from (2.4), which holds for each .v E Similarly to the
previous estimate, using (2.11 ) we have:

Here K is defined as before. If

and since always ~  1, this inequality implies

with the exponents



To perform this estimate we have assumed that

The first one of these two inequalities is a simplified version of (2.7). As
for the second one, a direct computation shows that it is equivalent to the
inequality 

-

Recalling the choice of r, we have to claim:

which is the hypothesis (1.14).
We now turn to estimating the left-hand side of (2.1). By (1.2)-(1.3) we

have at once that

Since the right-hand side of (2.1) is an increasing function of T, we may
always replace il by + in the left-hand side of (2.1). Now,
assuming that T - t and D~u) are so small that

we arrive at the inequality



whence we get the desired differential inequality for the energy function
~ ~ ~ , v 7"’1.-

where

for M* := D(u). Note that c(t) -~ 0 as t --~ T. Moreover, the exponent
I) always belongs to the interval (0,1). Indeed, the inequality

yp/(p - 1)  1 is equivalent to qr  p which, in its turn, is equivalent to
our basic assumption p > A + 1. ,

2.3 The energy differential inequalities. Domains of types (a), (b)
In these cases the differential inequality for the energy function E + C

is derived in same way that in the case (c) but with certain simplifications
due to the choice of the domain P.

Let us begin with the case (b). Let

The unit outer normal to 8,P has the form

and if we treat now the energy function Y := E + C as a function of p, we
have:



Following the above scheme for estimating the term ji in (2.1) and

applying (2.13), we arrive at the following inequality

Let r be such that

Such a choice is always possible, since

and the last e q uality is compatible with the conditions p > 1 + A, a > A,

and the starting choice of r: r E [1 -I- a , 1 + a ~ . The estimate for ji the

takes the form

with an arbitrary e E (0, (q - 1)(1 - ~)/~). .
The estimate for j2 is the same that of the case (c). The only difference

is that now we need not claim that T is small. The value of the coefficient

in the estimate for j2 is controlled now by the choice of u, since 
- Due to (1.8) we have j3 = 4. At last, we estimate j4 with the

help of the Young inequality

Gathering these estimates, we arrive to the inequality

with the coefficient

and the right-hand side term



It is easy to see now that the function

satisfies the inequality

In the case (a), the desired inequality (2.14) for the energy function
Z(p) := (E + defined on the cylinders

is a by-product of the previous consideration, since the term j2 of the right-
hand side of (2.1) vanishes.

3. . Analysis of the Differential Inequalities

3.1 The main lemma

The proofs of Theorems 1-3 are framed by the following general assertion.

LEMMA 1.. - Let a function U(p) be defined for p E (po, R), po > 0 and
possesses the properties:

where R  oo, s E (0,1~, A, G, 6 are finite positive constants, and is

a given function. If the integral

converges and the equation



Proof - Let us consider the function

satisfying the conditions

Introduce the function

and observe that always

Subtracting now termwise equality (3.3) from inequality (3.1) and mul-
tiplying the result by the function p-~G‘l~~p~, we get:

Integrate inequality (3.4) over the interval (po, p):

Let us relax (3.5), having rewritten it in the form

and then make use of the following relations:



In the result we have

Assuming existence of some p* E (po, R) such that F ( p* ) = 0, we get
U(po) = 0.

3.2 Proofs of Theorems 1-3

We begin with the proof of Theorem 1. One has just to verify that the
conditions of Lemma 1 are fulfilled. Assume = 0 in a ball 

and f = 0 in the cylinder P(o, p), having this ball as the down-base.

Let R > 0 be such that P(o, R) C Q, and the integral I defined in the
conditions of Theorem 1 is convergent. Assuming the restrictions on the
structural constants listed in the conditions of Theorem 1, we derive for the

corresponding energy function inequality (2.14). By Lemma 1, we see that it
is sufficient to point out a threshold value of the total energy M* ~1+~~~{p-1)
such that equation (3.2) would have a solution p*. Recall that in the case
of inequality (2.14) the coefficient G of inequality (3.1) depends only on
structural constants and the energy M* {1+~~~{p 1~, but does not depend on
t. So for the function F(p) defined in (3.6) satisfies

for each p E (po, R) fixed. Further, G is a linear function of the argument
M* t1 +~~l ~p 1~ so that G --~ oo as M --~ oo, G --~ 0 as M --~ 0. Then from
(3.6), having just compared the orders of M of positive and negative terms
of F(p) that

, F(p) > 0 for large M .

This means that F(R), being viewed as a function of M, is always nonneg-
ative for small M, which proves the theorem. D

The proof of Theorem 2 literally repeats the arguments just presented.
The only difference is that now one has to add condition (1.14), needed for
the derivation of (2.14).



For the proof of Theorem 3 we assume that the value of T is taken so as
to satisfy P C Q. Remind that the coefficient c~t~ in inequality (2.12) may
be estimated from above by l := c(0). Introduce the function

Since it satisfies the inequality

z’~pI (p--1)(t)  (0, T) , z(0~ = 0 , , z(t~ E ~ 0 , ~ ] ~ , (3.7~

there remains to apply Lemma 1 with i(p) = 0 to complete the proof of
Theorem 3. D

4. Final remarks

1) The conclusion made in Theorem 3 via Lemma 1 is too implicit. In order
to make evident the dependence between the parameters t*, T and M, let
us integrate inequality (3.7) over the interval t E (t1, t2) C (0, T). Then

where

It follows then

and, hence, z ~t ~ = 0 if

Therefore, for each 0  T  oo and M* such that



we get that u(z, t~ _ 0 in P(t*, 0) if D( u( z, t~~  M* and t* is given by
(4.1). On the other hand, it is clear that if u is weak solution of equation
(1.1) with the property:

there always exists t*  oo such that u(z, t) .= 0 in P(t*, 0).

2) The estimates for the total energy D(u) may be obtained by adding
some additional conditions for defining u, say, the boundary conditions
aSZ x (0, T). As an example, one can consider, for instance, the boundary-
value problem (P) which consists in finding a function u satisfying the
following conditions

where

To establish the existence of a solution for this problem one needs
additional structural assumptions on A and B. For instance, let us assume
that A and B are monotone

for each s, s 1, s2 E IR, pl , p2 E and A and B satisfy certain growth
conditions. Under these assumptions the existence of a weak solution to
problem (P) was proved in [17].

3) With the use of Theorem 2 and the estimate of the total energy in the
case when St = one may obtain the so-called property of "instantaneous ~



shrinking of support" which was found by the first time in the paper by
Evans-Knerr [14] for a very particular case of equation (1.1) (see also [18]
for certain generalization of this result).

4) As follows from of Theorem 3, solutions of problem (P) possess the
property of "formation of a dead core", already known due to [8] and [11]
for a special class of problems like (P). It was assumed that rN = 0, g > 0
and uo > 0, proving that the vanishing region (the dead core where u = 0)
was located far from the initial plane t = 0 and the lateral boundary of Q.

5) Let us present an example of the direct estimating of total energy in
terms of the input data. Consider the Dirichlet problem .

u = t) on the parabolic boundary of Q . . (4.2)

Set in (1.5)

where Tm are determined in (2.1), and is a function continuing
the initial and boundary data into Q. Proceeding now like in section 2, we
get the estimate

where K - K(a, a, p, Ml - M4), and, additionally to (1.3),

Note that in the case of model equation (1.6) the latter restriction on the
parameters of nonlinearity has the form

and, so, it is always fulfilled.



In the Cauchy problem

for equation (1.1), those solutions which vanish as Izl -i oo, possess the
estimate

with K - 
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