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Spectral study of a self-adjoint operator
on L2(03A9) related with a Poincaré type constant(*)

MAURICE GAULTIER(1) and MIKEL LEZAUN(2)

Annales de la Faculté des Sciences de Toulouse Vol. V, n° 1, 1996

Soit SZ un ouvert borne et connexe de N > 2, de
frontiere lipschitzienne. L’espace 7yj (S2) est muni de la norme du gradient.
L’inégalité suivante a lieu pour les elements de 

ou C(SZ) > 0 ne depend que de SZ. A l’aide d’un opérateur autoadjoint sur
L2(03A9), on caractérise la meilleure constante dans l’inégalité précédente.
Lorsque Q est une boule de R N, N > 2, on fait l’analyse spectrale de cet

~ 

opérateur et on montre que la meilleure valeur de la constante est N.

ABSTRACT. - Let 0 be a connected bounded open set in N >_ 2,
with lipschitzian boundary. Ho (SZ) is equipped with the gradient norm.
The following inequality holds for the elements of 

where C (0) > 0 depends only on Q. This paper provides a characteri-
zation of the best constant in the previous inequality using a self-adjoint
operator on L2 (S2). When Q is a ball in N > 2, the spectral study of
this operator is made and in this case, we obtain that the best constant
is N.

(*) Reçu le 12 janvier 1994
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1. Introduction

Throughout this paper Q is a connected bounded open set in 2,
and its boundary r is Lipschitz-continuous as [5]. The space will

always be equipped with the gradient norm. Derivates of functions on 0

will be taken in the sense of distributions.

We denote by H ‘1 (S~) the dual space of normed by:

where ( . , . ) denotes the duality between H-1(03A9) and 
The following inequality

or the equivalent inequality: V u E L2 (S~),

where C(S2) > 0 depends only on 03A9 occurs in very many problems in
the mechanics of continuous media [4]. Constant C(Q) then occurs in the
conditions for the uniqueness and sometimes for the existence of solutions.
Knowledge of a value of C(Q) is also important for the Numerical Analysis
of these problems.

This paper provides a characterization of the best constant P(S2) in
inequalities (1)-(2) using a self-adjoint operator on L2(0). Except if Q is a
ball in the explicit value of this best constant is out of reach. In
the particular case where Q is a rectangle in 2-D, we obtain an approximate
value of this best constant P ( S2 ) .



The reader will recall that if u E H1 ts2), we have the following inequality,
called Poincaré’s inequality:

where > 0 depends only on H. It is well known ([3]) that the best
constant in this inequality, called Poincaré’s constant, is the inverse of
the smallest (positive) eigenvalue of the operator -A (in L2(S2)) for the
Neumann problem. The explicit value of this constant is in general out of
reach.

This paper is organized as follows.

Section 2 introduces some function spaces and we draw attention to an

important inequality due to J. Necas [6] for the elements of which

plays an essential role in the proof of inequalities (1)-(2).
In Section 3, we propose a proof of coercivity inequality (2) and, in

particular, as a consequence, we obtain the following well known result:

In Section 4, we prove that the best constant in inequalities (1)-(2) is the
inverse of the smallest spectral value of the operator T = - div o ~-0) 

-1 
0

grad on 

In Section 5, we prove that the inverse of this best constant is
the limit of a decreasing positive sequence which has for general term
the smallest eigenvalue of the matrix corresponding to a positive definite
quadratic form on a suitable finite dimensional euclidean space.

In Section 6, we consider two particular cases:

. S2 is a rectangle in 2-D. Using an appropriate basis of L2(rl), we obtain
an approximate value of this constant P(S2);

. Q is a ball in JR N with N > 2. We make the complete spectral study
of operator - div o(-0394)-1 o grad and we obtain that = N.



2. Preliminaries

Throughout this paper we suppose for simplicity that all functions are
real.

We use the usual product topology on the product spaces. We denote

For u = (~i, ..., e (D~))~, we set A~ = (A~, ..., For

/ = D’(n), we set grad(/) = (~/, ..., ~/).
In Z~(Q) the Hilbert norm and the scalar product are written and

(---)2- °
Let M(H) be the closed subspace of L~(Q) of functions of zero mean

(orthogonal to constants) :

M(Q) is equipped with the norm induced by Hilbert space L2(0).
The quotient space equipped with the usual quotient norm, is

isometrically isomorphic to M (0). This isomorphism maps each equivalence
class to its element of minimal norm, which is also the unique element of
mean zero in the class. By convention we write L2(S~2)/II8 = M(SZ).
We recall that .~o (S~) is equipped with the gradient norm, denoted by
and H-1 (SZ) is equipped with the dual norm. (~Io {~2)) ~ is isomorphic

to {H-1 (SZ)) N and -~ is this isometric isomorphism.
For simplicity, in the remainder of this paper, we shall write indis-

criminately for the norm on ~o (S2) or on (~o (SZ)) ~ and 
(resp. ~( ~ , . )) -1 ) for the norm (resp. scalar product) on .H-1 {SZ) or on

~~_1 (~)) ~.
We introduce the following closed subspaces of ~~o {SZ)) ~ : 

yJ.. : the subspace of ~Ho (S~)) ~ orthogonal 
V and yJ.. are equipped with the norm induced by ~Ho (S2)) ~ (for properties
ofV see eg. [7]).



The important inequality which follows is proved in [6].
There exist a positive constant which depends only on S2 such that:

3. Poincaré type inequality on L2(S~)

PROPOSITION 1. - There exist a constant C(S2) > l, depending only
on S2, such that:

Proof. - grad e L(~(Q), (~-~(Q))~) and the kernel of grad is ?
because 03A9 is connected. Consequently, grad is a linear continuous injective
mapping from L2(03A9)/R into (H-1(03A9))N.

Now we are going to show, by contradiction, that grad is bicontinuous.
We suppose that grad-1 is not bounded at 0. Then there exists a

sequence {u?} of L2(ü)jIP? such that = 1 and

whence |u0p|2 = 1 and

where u0p is the unique element of ûp of minimal norm.
Taking into account that the injection from L~(Q) into H-1 (SZ) is

compact, there exist a subsequence {u0pk} which converges in H-1(03A9).
It follows from (3) that there exist uO E L~(Q) such that:



This result implies that = 0, therefore

in contradiction with the definition of sequence {ûp}.
Consequently, there exist a positive constant C(SZ), depending only on

H, such that:

On the other hand, for each u (E L~(Q), there exist an unique element
v ~ such that

Hence

Then, it follows from inequality (4),

As Idiv( 4» 12 :::; II for all ~ E ~ o( )) [7, p. 140], 
.

I) 1 = Sup v~ = Sup (u , div(v)) 2  I u !2 ~ div(v) ! 2 .

Therefore Then, it follows from (4) that C(S2) > 1.

COROLLARY 1. - div o ~-0) 1 o grad is an isomorphism from 
onto M(SZ).

Proof. - We identify L2(S~2) with its dual. It follows from proposition 1
that grad is an isomorphism from into (R~(Q)) . . Then its adjoint,
- div, is an isomorphism from onto M(S~). By transposition,
grad is an isomorphism from M(H) onto the dual space of 
that is onto V o (the annihilator of V). It is not difficult to see that
VO = 



We deduce from corollary 1 the following well known result.

COROLLARY 2. If f E D’(SZ) and grad(f) E (H-1 (SZ)~ ~, then
u E L2{S2).

Proof. - Let v E (D(S~)~ N such that div(v) = 0. Then we have:

v~ _ -~ f , div(v)) = 0 ..
Therefore grad(/) E ~~. Thus, there exist g E such that

grad( f ) = grad(g). It follows that f = g + C because SZ is connected.

NOTATION . ~n the remainder of this paper, the best value of constant
C{S2) in inequalities (.~~-~5~ is denoted by 

4. The operator related with the Poincaré type constant 

From corollary 1, the operator T o grad is an isomor-
phism from M ( S2 ) onto M ( S2 ) . Moreover, for all u E M(H):

Consequently,

Important properties of this operator T are as follows.

THEOREM 1

1~ T is a self-adjoint and coercive operator.
2) P(SZ) is the inverse of smallest spectral value of T.
3) T - I is a harmonic mapping in 

.~~ = l, 1 is a eigenvalue of T and his eigenspace is infinite
dimensional.



Proof

(1) For all (u, v) E M(S2) x we have:

Then T is a self-adjoint and coercive operator and ~(~) ~ is the best value
of the coercivity constant.

(2) We denote by the spectrum of T. . It follows from (1) [1] that
the residual spectrum of T is empty, is closed and it lies in the closed

interval [m, M] on the real axis, where

So, P(S2)-1 E and it is the smallest spectral value of T.

(3) For all u E we have, in the sens of distributions on Q:

So, T(u) - u is a harmonic distribution on SZ, thus it is a harmonic function

(4) Let be the closed subspace of M(O) of harmonic functions:

and we denote by H(S~)1 the orthogonal complement of H(S2) in M(Q).



Let v E H(S2)1 be such that 0 and w E H(S2). It follows from (3)
that

Then T(v) - v E consequently Tv = v and 1 is an eigenvalue
of T.

Now let 4; E D(Q) be with ~~ ~ 0, we have that T(0~) = A~. Then,
the eigenspace corresponding to the eigenvalue 1 is infinite dimensional.

On the other hand, for all v E H(SZ)1, v ~ 0, we have:

= ~T(v), v)  ~~T~) v 2 , from where ~~T~) > 1 .

Moreover:

Consequently, = 1. Finally [1],

So, the eigenvalue 1 is the largest spectral value of T.

COROLLARY 3. 2014 If u is an eigenvector of T corresponding to an

eigenvalue À ~ 1, then u is a harmonic function on S2.

In the following section, we are going to give a method to approximate
the constant 

5. Approximation of the Poincaré type constant 

M(Q) is separable. Let 0  j  ~} be an orthonormal basis
of M(Q), we consider the sequence of finite dimensional

subspaces of M{S2) defined as follows: for all integer ~> > 0, is

spanned by the family of vectors ~~~ ~ 0  j  ~l’~.
Then C > 0, and for all u E M(Q), there exist

a such that uh (2 = o.



For all integer K > 0, let us put

Then and a~.+1, ’d K > 0. Thus, the sequence
is convergent and its limit a is such that ~ ~ On

the other hand, let u be some element of M(Q). Then, there exist a
sequence with uK E such that if K ~ ~, uh. ~ u

in and therefore grad(u) in (H-1 (S~)) ~. Furthermore,
we have Passing to limit when ~~ -’~ oo, we

obtain This result implies that a  and

consequently = a.

Now, we are going to specify the elements of 

Let ~~ be some positive integer. Each u E has a unique
decomposition u = Put x = Gu = (a1, ~2, ..., ~lk-) E 

In what follows, is equipped with the norm induced by 
and RK is equipped with the usual euclidean norm Then G is an

isometric isomorphism from onto 

On the other hand,

Therefore

is a positive definite quadratic form on and furthermore:

So, we have proved the following result.

PROPOSITION 2. a~ is the smallest eigenvalue (minimum of a
Rayleigh quotient) of the matrix AK of the quadratic form defined on RK
by formula (6) and -~ 

, when ~i -~ oo.



6. Two particular cases

6.1 The open is the rectangle 0 = { (x, y) 0  x  L , 0  y  .~~
We use the previous results with N = 2.

We must now calculate the elements of the matrix AK. For
all (m, p) E I~ 2, we put

and introduce real positive numbers cm,p defined by

We choose the following orthonormal basis of 

The elements of the matrix are the following real numbers:

More precisely, (Tem,p, is the element of the (m(K + 1) + p)-th row
and ( j(K + 1) + q) -th columm of the matrix 

In order to give explicit values of (Tem,p, it is convenient to
introduce a(r, s) for (r, s) E N2 with r > 1 and s > 1, given by

The calculation of the scalar products ~Tem~p, ej,q) 2 is long but not very
difficult. We obtain:



where

Remark 1. - A~ and consequently depend only on the ratio
of the dimensions of the rectangle.

Numerical results. - We have performed a few numerical tests. Let

.~i be a positive integer. We have computed an approximate value of the
smallest eigenvalue a K of the matrix AK by means of the power of Mises
[2, pp. 226-227]. We stopped this calculatioin when the relative error was
less than 10-9 . We have ascertained that converges

quickly.
The above mentioned values of the constant have been rounded

up to the 3-th decimal place.

Then open ~2, ... , ~n+2 ) E ~ x1 -~ ... ~.. ~n+2  1 ~
with n E N

In this case, we are able to give the spectrum of T. In that follows, the
following proposition is essential.

PROPOSITION 3. - Each harmonic homogeneous polynomial in S2 of
degree m > 1 is an eigenvector of T corresponding to the eigenvalue
m/(2m + n). .



Proof. - Let x2, ... , Xn+2) be a harmonic homogeneous polyno-
mial in H of degree m ~ 1. We have

Hence, for all j = 1, 2, ... , n -~- 2,

On the other hand:

and from (7)

Since the function (~ + ~ + ... + ~~ - ~ D(H), it follows from

(8)that 

Therefore,

We denote by the eigenspace of T corresponding to the eigenvalue
m/(2m + n) with m E N*.
We recall that is the subspace of M(Q) of harmonic functions and

its orthogonal complement in M ( S2 ) . We have the following result.



PROPOSITION 4 [3]. - The family of harmonic homogeneous polynomi-
als in S2 of degree m > 1 is free and total in H(SZ).

PROPOSITION 5. The orthogonal complement of H(S2) in

is the eigenspace of T corresponding to the eigenvalue 1.

Proof. - We denote by H_n (SZ) the eigenspace of T corresponding to
the eigenvalue l. It is proved in theorem 1(4) that C H_n(SZ).
On the other hand, eigenvectors corresponding to different eigenvalues of

T are orthogonal; from propositions 3 and 4 we have H -n(Q) C 

Then, = and consequently,

COROLLARY 4. - The only eigenvalues of T are 1 and m/(2m + n) with
m E N*.

T is a bounded self-adjoint operator on M(S~). Its spectrum a(T)
is partitioned into two disjoint sets: the point spectrum and the

continuous spectrum 

Now, we are going to specify two cases.

In this case, the harmonic homogeneous polynomials of degree m ~ 1 are
eigenvectors of T corresponding to the eigenvalue 1/2.

THEOREM 3.2014 T has a pure point spectrum. 1/2 and 1 are Ae only
eigenvalues ofT.

Proof. - It follows from corollary 4 that Tp(r) ={1/2,1}.
Now, let a e M be different of 1/2 or 1, and v ~ M(Q). We have

v = v1/2 + v0 with v1/2 6 H1/2(03A9) and v0 ~ H(03A9)|,
where ~i/~(~) is the eigenspace of T corresponding to the eigenvalue 1/2.
We take 

_ _

then w E M(Q), and we check that (T - aI)w = v. Therefore, a  



Remark 2.2014 The two eigenspaces ofT are infinite dimensional.

THEOREM 2. - = { l, m/(2m + n) ~ m E I~Y*} and =

{1/2}.

Proof. - From corollary 4,

Now, let a E R be different of 1/2, 1 or m/(2m + n) with m E N*, and
v E M(Q). We have

We take

then w E M(Q), and we check that (T - aI)w = v. Therefore, a ~ 
Consequently, the limit 1/2 of the eigenvalues is the only element of the

continuous spectrum of the operator T.

COROLLARY 5. - The eigenspace of T corresponding to the eigenvalue
m/(2m + n) is finite dimensional.

Proof. - Let Pm be the vector subspace of lVl (S2) spanned by the
harmonic homogeneous polynomials of degree m > 1 (dim Pm  +00).
It follows from propositions 3 and 4 that is spanned by the family

~ m > 1 ~ :

On the other hand, suppose that there is an eigenvector u corresponding
to the eigenvalue Àm = m/(2m + n), such that Pm . . From corollary 3,
u E H(S2). Since u 1 H(S2)1, u can be written



But this is impossible because the family ~u~ ~~~x is free.
Hence u E Pm; thus Pm is the eigenspace of T corresponding to the

eigenvalue m/(2m + n) and the corollary is proved.
We recall that the eigenspace of T corresponding to 1 is infinite dimen-

sional.

COROLLARY 6. - If 03A9 is the ball 03A9 = {(x1, ..., |x21, ..., x2N  1}
with N > 2, then P(SZ) = N. ’

Remark 3. - The spectrum of the operator T is independent of the
radius of the ball in 

Remark 4. - Now we are going to give a family of eigenvectors of T
which is total in 

’

First we consider the orthogonal basis for M(Q) formed by the eigenvec-
tors of -t~ (in for the Neumann problem.

To write these functions, the appropriate polar co-ordinates are



For simplicity, we put:

if n - i is a positive even integer and

if n - i is a positive odd integer, where P~ is the associate Legendre function
of the first kind of order p and degree 7y, and C~~ is the associate Legendre
function of the second kind of order J.l and degree ?y [8]. .

In these polar co-ordinates this orthogonal basis for M(H) is the family
of defined by

with q E N*, v = (v1, v2, ..., vn) E I~1’z, J~ = ...  where

the Bessel function of the first kind of order v1 + n/2 [9], and
03BB03BD1 +n/2,q are the positive roots of equation

If we write the harmonic homogeneous polynomials of degree 1 in these

polar co-ordinates, we have



where !/ = ~2~ ...) ~) ~ N~, ~ == ~+1 ~ ~ ~ - ’~ ~i. We say
that this family of harmonic homogeneous polynomials is an orthogonal
basis for and, as proved in proposition 3, they are eigenvectors of T

corresponding to the eigenvalue + ?~).

Now we consider the functions ~ o~~ "’ ~ and ~/c ’" ~~ ~
with ~ e N~ ~ N*,~ = (~i, ~2, ..., ~) C N"~ = " ~ ~i;
where

We obtain that these functions are eigenvectors of T corresponding to the
eigenvalue 1.

Finally, we prove that the family of eigenvectors of T

is total in M(H).
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