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Perturbative computation of analytic invariants
of resonant diffeomorphisms of (C, 0)(*)

EZIO TODESCO(1) and JULIO CESAR CANILLE MARTINS(2)

Annales de la Faculté des Sciences de Toulouse Vol. V, n° 1, 1996

RÉSUMÉ. 2014 On considere Ie probleme de l’évaluation des invariants
analytiques d’un difféomorphisme unidimensionnel, analytique, complexe
et tangent a l’identité. Une approche perturbative relative a une sous-
classe de difféomorphismes qui sont des petites perturbations du "standard
shif t" est présentée. On donne une procedure qui permet de calculer le
développement perturbatif de l’invariant analytique a tous les ordres. On
presente aussi la generalisation au cas d’un diffeomorphisme résonnant
générique, ainsi que quelques exemples.

ABSTRACT. - The problem of the evaluation of the analytic invariants
of a one-dimensional complex analytic diffeomorphism tangent to the
identity is considered; a perturbative approach relative to a subclass
of diffeomorphisms which are small perturbations to the standard shift
is outlined. A procedure which allows to calculate all the orders of
the perturbative expansion of the analytic invariants is given. The

° generalization to generic resonant diffeomorphisms is presented; some
examples are sketched.

1. Introduction

In this paper we consider mappings tangent to the identity, analytic in
the neighbourhood of the origin; let A be the set of these mappings.

DEFINITION . Let f , g G .A; then f and g are conjugated (or
equivalent~ if there exist a change of coordinates T such that T( f ) = g(T). .
According to the type of T we distinguish formal and analytic conjugation.
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By formal classification we mean the partition of A in classes of elements
which are formally conjugated. The formal invariant is the quantity which
characterizes such class, i. e. f and g belong to the same class if and only if
their formal invariant is the same. An analogous definition is given for the

analytic classification and for the analytic invariants.

The formal classification of A can be worked out using elementary algebra
and the explicit invariants can be constructed; on the contrary, the analytic
classification requires more involved techniques: as it was first proved by
Ecalle ~1J and, independently, by Voronin ~2J , the analytic classification of
A has a functional modulus, i.e. the analytic invariants are given by two
functions ~+ , ~ _ ,

which are analytic on the strips Im w > L and Im w  -L respectively.
The exact computation of both the coefficients ct and the functions ~~ in
their dependence on the mapping f is a hard task, and has been explicitly
carried out only for the case of the standard shift

which is the map which exhibits the simplest dynamics indise this class
of diffeomorphisms ; in fact F(z) has trivial analytic invariants ct = 0,

~~ = w.

Indeed, a perturbative approach is possible: if one considers small

perturbations of the standard shift

a theorem ([1]-[2]) states that the analytic invariants are convergent power
series in ~; Elizarov [3] computed the first order of such series for perturba-
tions h(z) = O(z4) which preserve the formal invariant, finding out that the
first order shift in ct is proportional to the Borel transform of h evaluated
at points 

Since the use of the coordinates w = 1/z considerably simplifies the com-
putation, we express the classe of mappings which are small perturbation
to the standard shift preserving the formal invariant as follows:



where the first subscript denotes the lowest order of the nonlinearity and
the second one the formal invariant. The main results of this paper is stated
in the following Theorem.

THEOREM 1.1.2014 The analytic invarianls of f are given by

~~ (w) -

this expression allows to compute all the orders of the perturbative expan-
sion. Moreover, the coefficients of the c±k expansions in powers of ~ are
functionals of the Borel transform of the perturbation. Explicit formulas for
the first three orders are given and some examples are sketched.

The generalization to generic perturbations which do not preserve the
formal invariant

is given in Corollary 4.1, where it is proved that the same formal expression
given in Theorem 1.1 holds, with

We also considered the class ,,4r+1 ~~,, containing mappings of the form
+ O(z’’+1 ), which exhibit many features of the resonant case.

Here we have to apply a ramified transformation z ~ in order to
recover the standard shift at order 0 in ~: this leads to series with rational

powers defined on the Riemann surface Cr. Nevertheless, it can be

proved (Corollary 5.1) that the same formal expression (1.5) holds, the only
difference being that now the analytic invariants are defined on Cr, and
therefore one has r sets of coefficients c~{1~ , ... , , c~~r~ .

Finally, we prove that in the resonant case

the computation of the analytic invariants can be done on the q-th iterate
(Lemma 6.1), which is tangent to the identity and therefore can be analyzed
using the previous results.



The plan of this paper is the following: in section 2 we recall some results
on the analytic classification of diffeomorphisms tangent to the identity
which are formally conjugated to the standard shift. In section 3 we prove
the main result which allows to compute all the coefficients of the series.
The generalization to diffeomorphisms which are not formally conjugated
to the standard shift and whose nonlinearity do not start with a quadratic
term are given respectively in section 4 and 5. The analysis of the resonant
case (q > 1) is carried out in section 6.

2. Definition of analytic invariants

In this section we briefly recall some classical results on the analytic
classification of diffeomorphisms tangent to the identity ( ~1~ , [2], [4], [5]).
We consider the set A of diffeomorphisms of C which have the origin

as a fixed point, and which are tangent to the identity and analytic in the
neighbourhood of the origin. Inside this class we analyze diffeomorphisms
which have a quadratic nonlinearity; rescaling the second order coefficient
to -1, such a diffeomorphism reads:

All the diffeomorphisms belonging to this class have the same topology
[6], but inside it one can find elements with different both formal and

analytic invariants ( j 1~ , [2]). We first consider the formal classification.

LEMMA 2.1.2014 Let g(z) and h(z) belong to the class then one can

find a formal power series T which conjugates g to h, namely

if and only if h3 = g3.

A proof of this lemma can be found in [2]. Setting the third order
coefficient to one we obtain a class of diffeomorphisms which are formally
conjugated to the so called standard shift (1.2), which exhibits a particularly
simple dynamics: it has a trivial iteration = z/(1 + nz) and is

interpolated by the vector field X(z) = -z2(d/dz) (cf. [4]). Since most of



the computation will be done using coordinates in the neighbourhood of the
infinity, we express both F and f in terms of w = 1/z. The standard shift
in the w coordinates becomes the translation F(w) = w + 1.
We consider the class of diffeomorphisms which are small perturbations

of the standard shift, and which can be formally conjugated to it:

here the first subscript denotes the lowest order of the nonlinear term (in z
coordinates), the second one is the formal invariant (i.e. the coefficient of
the term of order 1/w), and ~ is a small complex parameter.

Taking f E A20, we conjugate it to the standard shift _ r~ + 1

through a formal transformation T tangent to the identity

following reference [5] we fixed the note terms of T (which is a priori
undetermined) to zero: this is not restrictive and simplifies the formulation
of the analytic classification as given in ([I], [2]). The functional equation
which defines f is = T(f(w)) and substituting (2.4) one has

It is well known that the formal series t is divergent in the generic case;
nevertheless, using the Borel resummation technique or other methods one
can prove the existence of solutions analytic on sectors.

THEOREM 2.1 (Kimura [7], Ecalle [1]).2014 Let f e ,~42~a; we define the
sectors 

, , 

with b E ] 0 and p = 03C1(03B4) sufficiently large; then:

(i) exist T’i, analytic on Di which conjugate f to F for i = 1, 2;
both T1 and T2 have the same asymptotic expansion T;



(iii) D1 is the attractor sector : if w E D1, then f (w) E D1 and

= oo; D2 is the repulsor sector : if w E D2, then

f ° -1 (w) E D2 and f ° = oo.

Proof. - Proofs of this theorem can be found in ( ~l~ , ~5J , ~7~ ~ . T1 and T2
are defined on a common domain D1 ~D2 = D+ being D+ n D- - Ø;
the analytic classification is given in the following theorem.

THEOREM 2.2 (Ecalle ~1~, Voronin ~2~). We define ~~(w) = ~’1 0

; then on has:

(i) ~~ (w) are analytic functions on D~; ~~ (w) - ware periodic of
period one and tend to zero when w --~ oo;

(ii) can be analytically prolonged to ~~(w), defined on

where L > 0 depends on the parameters p, b of D~;

(iii) ~~ (w~ are analytic invariants of f(w), f E .~42~0, i. e. being

~~ (w~ the analytic~ invariant of g E .~12,0, f and g are analytically
conjugated if and only if ~~ - ~~ ..

Proof. - A simple proof of this theorem is given in ~5~ . For sake of

simplicity, throughout the text the tilde will be suppressed and ~~ will be
defined on A consequence of theorem 2.2 is that the analytic invariants
are given by convergent Fourier series:

whose coefficients c~ are bounded by an exponential growth in k.
The dependence of the analytic invariants on a parameter is analyzed via

the following theorem.



THEOREM 2.3 (Ecalle ~1~, Voronin ~2~). If f belongs to a family of
diffeomorphisms which analytically depend on a parameter ~, then c~ and
~~(w) also analytically depend on ~, i.e. we can write

where both series are convergent for ~~~  ~Q.

3. Computation of the analytic invariants

The exact computation of the coefficients c~ is trivial only for the case of
the standard shift: here we have h(w) = 0, ~’1 = T2 = w and c~ = 0; in this
section we will show how to compute the perturbative expansion (2.9) and
(2.10) of the analytic invariants, generalizing the first order results given by
Elizarov [3].

LEMMA 3.1.2014 If f E ~2,0~ then

Proof. - Taking the functional equation (2.5) which defines t(w), iter-
ating n times and summing all the equations we have

If w E theorem 2.1 implies that limn~~ fo n( w) = oo and t(oo) - 0:
therefore taking the limit n - oo one proves (3.1). Since h(w) = O(1/w2)
and f ° ~ (w) = w + j + O( 1/w), the series absolutely converge and defines ~’1
on the analogous expression for T2 can be found by iterating backward
the functional equation and applying the same procedure.



Now we are able to give an expression of the analytic invariants which

allows to compute for all orders .~.

THEOREM 3.1. If f E .A2,o, then, for small |~|  ~0 one has:

~ (w)) satisfies the functional equation

this expression allows to expand ~~ in a power series in ~.

Proof of part ~i~. - We define T(w) according to

since T2 o (w) = w, using Lemma 3.1 we can prove that T(w) satisfies
the functional equation:

The analytic invariants are given by 03A6± (w) = T1 oT-12 (w), and substituting
(3.5) and the definition of T1 (3.1), one has

Proof of part (ii). - Let us consider the case j > 0: since

we have

and substituting (3.5) we obtain the thesis. Similarly, one proves the case

j0.



COROLLARY 3.1. - If f E .A2,0, then

this formula is obtained by replacing (3.3) infinitely many times in (3.6).

Expanding this expression in power series of ~ we compute the terms
~p~~~ {w): the first three orders read:

The coefficients c~ ~ are functional of the Borel transform of the perturbation
/t(t~): " 

’



We prove this last statement for the first order coefficients; the generaliza-
tion to the higher orders is straightforward. are the Fourier coefficients

of~i(~): v 
’

(where L is the lowest imaginary part of w E D~ , see (2.7)). Substituting
(3.10) we have

We recall [9] that the Borel transform of a function analytic in a neighbour-
hood of infinity is given by

where F is a circle of radius R sufficiently large so that it lies in the

analyticity domain of h(w). We divide F in two arcs: f 1, above the line
Im w = Q, and F2, below it. Since h(w) is analytic on a neighbourhood of
infinity, Cauchy theorem implies

On the other hand, the integration on F2 vanishes in the limit R -~ oo,
since the exponential is bounded by e2"~~ and h satisfies the estimate

I  AR-2 . In a similar way one proves the analogous expression
°

F.ram~e.2014 We consider = w + 1 w-2; then we have
= et - 1 and therefore



4. Generalization to generic diffeomorphisms
tangent to the identity

We examine the case of an analytic diffeomorphism which is not formally
conjugated to the standard shift, i.e. the class

a generic f expressed in z coordinates and starting with a quadratic
nonlinearity is transformed to this form by the coordinate change w = 1/ z,
where ~y is the formal invariant ; theorems 2.1-2.3 can be generalized to this
case (~1~, ~8~, ~10~). The computation of the analytic invariants is given by
the following

COROLLARY 4.1. - If f E ,~42~,~, then the analytic invariants of fare
given by formula ~3.9~, where h(w) = O(w-2) is an analytic function of w
in a neighbourhood of infinity and is defined according to:

Proof. - We recall ( ~4~ , ~8~ , ~ [10]) that in order to conjugate f E .A2 ~,~ to
the standard shift we have to insert in T a logarithmic singularity: 

Using this Ansatz, one can find a formal power series for t and resum it to
two functions t1, t2, analytic on Di, ~2. . In fact, the functional equation
reads:

therefore one can carry out the computation such as in the case, = 0,
defining as the r.h.s of (4.4).

Example. - Let f E A~2,03B3; then the first order analytic invariants read



5. Generalization to higher order nonlinearities

We consider the family of diffeomorphisms

here r > 2, r E N and y is the formal invariant.

The analysis of this class exhausts all the possible diffeomorphisms
tangent to the identity, and exhibits some features of the resonant case. We
first rewrite the class in the coordinates w which explicitly exhibits
the formal invariant. .

LEMMA 5.1.2014 Let d G then d is analytically equivalent to a
diffeomorphism which is analytic on and reads

Proof. - We conjugate d(z) to e(y)

using a transformation which is a polynomial of finite order, and therefore
analytic (see [2]). Then, we apply the ramified transformation w = y-r
which transforms e ( y) to f(w): :

where y = 1 - re2r+1 + (1 - r)/2r.
When y = 0, few) is formally conjugated to the standard shift of order

r which in the coordinates y reads E( y) = + and which has

trivial iteration = -I- j y’’ ) 1 ~T and interpolating vector field
Y(y) = _’ yr+1 d/dy (see [4]).

The transformation T(w) which conjugates f (w) to the standard shift is
formally equal to the case r = 1 (see (4.3)), but here few) is a formal power
series in w -1 ~’’ . A generalization of theorem 2.1 can be proved ( ~1~ , ~8J ) .



THEOREM 5.1 (Ecalle [I], Martinet-Ramis [4]). - Let f E Ar+l,.y and
let

(throughout this section the index s will always assume the r integer values
s = 1, 2, ... , r~ be 2r sectors of aperture - b) of ; then:

(i) there are t~s~, analytic on D~S~, respectively, which conju-
gate f to the standard shift F;

all the have the same asymptotic expansion t around the
infanity;

(iii) are attractor sectors of f, , and are repulsor sectors of f.

and have common domains: we define

and similarly T(s)2 and are defined on a common domain

The analytic classification r > 2, is given by the composition
of the transformations on the common domains.

THEOREM 5.2 (Ecalle ~1~, Martinet-Ramis [4]). - We define



then:

(i) are analytic on - ware periodic of period one
and tend to zero when w -~ oo;

~~s} (w) can be analytically prolonged to functions ~~5~ ~w) defined
on , where D~{S~ C :

Therefore, can be expressed by Fourier series

lhe coefficients c±(s)k are bounded ôy an exponential growth in k;
(iii) (s)± are lhe analylic invarianls of f e Ar+i,q.

Such as in section 2 , we suppress the tilde for sake of simplicity. One can
also generalize Lemma 3 . I .

LEMMA 5.2. - lel f G ; lhen

Proof. - The proof follows the same scheme of Lemma 3.1 and Corollary
4.1. Therefore, one can generalize Theorem 3.1.



COROLLARY 5.1.2014 Let f E i. e.

analytic on Cr in a neighbourhood of the infinity; then:

~i~ the analytic invariant of f read

the coefficients c~{S? are functionals of the Borel transform of h ( w ) ;
the same formal expressions (3.11) hold. For instance, one has

c±(s)k,1 = , (5. 14)
where the determination of the Borel transform is taken on the same
sheet of Cr where is defined.

Proof. - Part (i) can be proved following the same scheme of the case
r = 1; in order to prove part (ii) we first recall the definition of the Borel
transform of a function analytic on Cr ~9~ . 

’

DEFINITION . - Let h(w) = w E be analytic in a
neighbourhood of infinity ; then

is the Bored transform, entire on is a path on the s-th sheet of ;

here R is arbitrarily large so that the path lies in the analyticity domain of
h; 8o E 0 , 203C0r] defines the cut and the sheet of both hand hg .



A proof of this property can be found in [9].
We now prove formula (5.14); the Fourier coefficients of the analytic

invariants are given by

On the other hand, we can exploit expression (5.15) ; we put the cut
close to R+ at ] 27rS - (1/2)7r , 27rS [ so that is divided by the line

Im w = (3 into two parts ans respectively above and below it; the

integral over I’ 11~ vanishes in the limit r --~ oo such as in the case r = 1;
moreover

since sin 80  0. Similarly one can prove that the integration over g ives
no contribution, and therefore f 2’~±~ _ - f t s~ and formula (5.14) holds ;’~ ~°° 10
the formulae for the higher orders can be proved following the same scheme.

6. Generalization to the resonant case

We define as the set of diffeomorphisms whose linear part is

aq z, where Aq = exp(2?rzp/g) and whose q-th iterate belongs to --_

The computation of the analytic invariants of this class can be
done directly on the q-th iterate.

LEMMA 6.1. - Let f1, f2 E and let e1, e1 be the q-tlt iterates,
belonging to then f1 and f2 are analytically conjugated if and
only if ei and ei are analytically conjugated.



Proof. - If f 1 = h o f2 o h-1, , h analytic diffeomorphism in a neigh-
bourhood of the fixed point, then, iterating q times, one has ei = f1 q =
h o o h-1 = h o e2 o h-1. In order to prove the other sense of the im-

plication, we first show that given ei E e1 = ,f1 q, f1 E ,

then there exist only one f E which satisfies 
~ 

and therefore f = fi . A solution of equation (6.1) can be built using the
functional equation which conjugates ei to its normal form:

where is a formal power series which can be resumed to 2kq functions
analytic on sectors of aperture 8, as outlined in section 5. The

unique formal q-th iterative root can be constructed using the above
equation [1]:

since we know a priori the existence of a solution fez) analytic in a

neighbourhood of zero, the formal series is convergent, coincides with

fez), and therefore fez) is unique.
This result allows to prove the second part of the Lemma: in fact if
= o ~-1, then = (h o f2 and the uniqueness of the

q-th iterative root implies 

The above Lemma allows the computation of the analytic invariants of a
resonant analytic diffeomorphism f E by computing its q-th iterate
ad applying the procedure outlined in the previous sections; this exhausts
the aims of this paper.
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