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Shearing hyperbolic surfaces,
bending pleated surfaces

and Thurston’s symplectic form(*)

FRANCIS BONAHON(1)

Annales de la Faculté des Sciences de Toulouse Vol. V, n° 2, 1996

RÉSUMÉ. 2014 L’article présente un systeme de coordonnées locales holo-
morphes pour l’espace des variétés hyperboliques de dimension 3 qui
ont le groupe fondamental d’une surface. Ces coordonnées dependent
du choix d’une lamination géodésique sur la surface, et forment une

complexification des coordonnées de décalage introduites par Thurston
pour l’espace de Teichmuller. La partie imaginaire de ces coordon-
nees mesure la courbure d’une surface plissée realisant la lamination
géodésique. De plus, nous montrons comment ces coordonnées sont re-
liees, par Fintermediaire de la forme symplectique de Thurston sur l ’espace
des laminations géodésiques mesurées, a la fonction longueur complexe et
a sa differentielle.

ABSTRACT. - The article develops a system of local holomorphic co-
ordinates for the space of hyperbolic 3-manifolds with the fundamen-
tal group of a surface. These coordinates depend on the choice of a
geodesic lamination on the surface, and are a complexified version of
Thurston’s shear coordinates for Teichmuller space. The imaginary part
of these coordinates measures the bending of a pleated surface realizing
the geodesic lamination. We also show how these coordinates are related,
via Thurston’s symplectic form on the space of measured geodesic lami-
nations, to the complex length function and to its differential.
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Introduction

Given two hyperbolic metrics mi and m2 on a closed oriented surface
S, W. P. Thurston described a way to pass from one to the other, called a
left earthquake ([Th2], Such an earthquake has a fault locus
A which is a geodesic lamination, namely a closed family of disjoint simple
mi-geodesics in S. The earthquake process splits S along A, then glues
it back together so that any two pieces of S - A are shifted to the left of
their original position with respect to each other. In this way, we obtain a
new surface S’~ which is homeomorphic to S, and where the metric of S - A
uniquely extends to a hyperbolic metric which is isotopic to m2. If k is an
arc transverse to A, the amount by which the pieces of S - A meeting k
are shifted to the left with respect to each other associates to k a number

0. It turns out that the map k ~--> a(h) is countably additive, so that
a defines a transverse measure for A. The combination of A and a forms

what is known as a measure lamination. It is quite remarkable that this
measured lamination completely determines the earthquake and is uniquely
determined by the metrics m1 and m2 .

In the first half of this paper, we consider a generalization of earthquakes,
where we allow the pieces of S - A to be shifted to the right as well as to the
left with respect to each other. Thurston calls this operation a cataclysm,
although we will prefer the terminology of shear map. The amount of

shifting to the left again associates a number a(h) ~ R to each arc transverse
to A, where a shift to the right is counted as negative. However, the map
k ~ is not countably additive any more, but only finitely additive.
This a defines what we call an R-valued transverse cocycle for a.

The R-valued transverse cocycles for A form a finite dimensional vector
space M) which is well understood, for instance in terms of weights on
a train track carrying A; see [B04].
We use these shear maps to parametrize the Teichmüller space 7(5) of

S, namely the space of isotopy classes of hyperbolic metrics on S’. For this,
we fix a maximal geodesic lamination A; there are various ways to define
this in a metric independent way. Then, we associate to each m E a

shearing cocycle E such that, if rn1 is transformed to m2 by a
shear map with fault locus A, the transverse cocycle measuring the shifts to
the left of this shear map is exactly ~r,-L2 - We then prove the following
results.



THEOREM A. - The map m ~ 03C3m defines a real analytic homeomor-
phism from T(S) to an open convex cone C{a) bounded by finitely many
faces in 

In particular, given two metrics my, m2 E T(S) and a maximal geodesic
lamination A, there is a unique shear map with fault locus A that sends mi
to m 2 .

The vector space II$) carries a natural symplectic form T, called the
Thurston symplectic form. The convex cone in Theorem A can be explicitly
described in terms of this form and of the space of transverse measures for

A. More precisely, we prove in section 6 the following theorem.

THEOREM B. - The transverse cocycle is the shearing cocycle
of some hyperbolic metric if and only if T(a, > 0 for every transverse
measure ~C for ~.

Theorems A and B were essentially proved by Thurston in [Th3], al-

though the connection to shearing cocycles and to the Thurston symplectic
form is only outlined there (see also [Pa2]). The approach we use here is
analytic, as opposed to Thurston’s more topological point of view. One ad-
vantage of this analytic point of view is that it makes it easier to write down
the details of a rigourous proof. But its main advantage is that the tech-
niques developed also apply to another situation, where transverse cocycles
can be used to measure the bending of pleated surfaces.

Indeed, there is another celebrated occurrence of measured laminations,
as bending measures of locally convex pleated surfaces. A pleated surface
with pleating locus the geodesic lamination A is a map f : S --~ M from S
to an oriented hyperbolic 3-dimensional manifold M such that f is a totally
geodesic immersion on S - A and sends each geodesic of A to a geodesic in
M. Pleated surfaces have proved to be a very valuable tool to study the
topology and geometry of hyperbolic 3-manifolds (see for instance [Thl],
[CEG], [Mi], [Ca]). What prevents a pleated surface f from being totally
geodesic is the fact that it may be bent along its pleating locus A. It f is
locally convex, namely if it always bends in the same direction, the amount
of bending defines a transverse measure for A ([Th1], [EpM]). In section 7, we
show how to measure this amount of bending in the general case, expressed
in terms of an R/203C0Z-valued transverse cocycle which we call the bending
cocycle of the pleated surface f. .

The local geometry of a pleated surface f : S‘ --~ M is not modified if we
lift or project it through covering maps. It is therefore convenient to lift



the situation to universal coverings. We can then generalize the notion of
pleated surface by defining an {abstract) pleated surface with pleating locus
the geodesic lamination A as a pair f = ( f , p), where p : 03C01 (S) ~ Isom+ 
is a homomorphism from the fundamental group of ,S into the group
of orientation preserving isometries of the hyperbolic 3-space where

f : S ~ H3 is a pleated surface from the universal covering S of 5 into
JHI3, with pleating locus the preimage A of A, and where f is equivariant
with respect to p in the sense that f (yx) = p(y) f {x) for every x ~ ,

. When the image of p acts freely and properly discontinuously
on H3, this is clearly equivalent to the previous definition. From now on,
"pleated surface" will always mean "abstract pleated surface" .

In this generalized sense, a pleated surface also has a bending cocycle
03B2f E H(03BB; R/203C0Z). A pleated surface also has a pull back hyperbolic metric
mf on ,S’. We prove in sections 8 and 9 the following result.

THEOREM C. - For every geodesic lamination 03BB on S, the map f ~

(rrt f, induces a homeomorphism from the space of all pleated surfaces
with pleating locus a to the space x II~/2~r~). In addition, the

space is homeomorphic to the union of 0 or 1 tori, whose
number and dimension can be explicitly computed from a.

In the particular case where A is maximal, a pleated surface f = { f p)
with pleating locus A is completely determined by the homomorphism p.
The space of such pleated surfaces is therefore identified to an open sub-

set of the complex algebraic set of homomorphisms p : : 2014~

Isom+(H3) = PSL2(C). By Theorems A and C, an element p of 
is characterized by the bending cocycle 03B2f E R/203C0Z) of the corre-
sponding pleated surface f, , and by the shearing cocycle E of

the pull back metric m f of f. . We can combine these two cocycles in a com-
plex cocycle Fp = + i03B2f E called the shear-bend cocycle.
Because A is maximal, the space is the disjoint union of two
copies of where x(S) is the Euler characteristic of S. In

section 10, we prove:

THEOREM D. - The map p ~ Fp induces a biholomorphic homeomor-
phism from 7Z(a) to the open subset C(a) ® ,

where C is the open cone of Theorem A.

It is not hard to see that the two components sit in different com-

ponents of the space of all homomorphisms p : 03C01 (S) ~ Isom+(H3), because
the corresponding principal Isom+(H3 )-bundles are non-isomorphic.



We have already encountered the Thurston symplectic form in Theorem
B. One reason for its occurrence is that it is strongly related to a certain
complex length 1-form on the manifold ~(a). More precisely, given a
hyperbolic metric m on S, there is a unique continuous function :

.lt~,C(,S’) -~ I~+ defined on the space of measured laminations .M~C{S’) such
that, if a consists of a simple closed m-geodesic endowed with the Dirac
transverse measure of weight a > 0, .~m ( a) is a times the length of this closed
geodesic ([Th1], [Bol], [Bo2]). This length function has a straightforward
extension to geodesic laminations with transverse cocycles [B03], where it
can be interpreted as the differential of the original function on .Nt,C{,5’). In
section 3, we prove the following theorem.

THEOREM E. - If a is a transverse cocycle for the maximal geodesic
lamination 03BB, and if 03C3m E is the shearing cocycle of the hyperbolic
metric m,

Similarly, if y is a closed curve on S and if p : 7ri(S) -~ is a

homomorphism such that is a hyperbolic glide rotation, we can consider
the translation length and the rotation angle rot p {y) E of this

glide rotation. The fact that the rotation angle is defined only modulo 27r
turns out to be a problem, so it is better to consider a tangent vector p
based at p for the space of all homomorphisms --~ Isom+ {IHI3 ) . Then,
we have a well defined variation E R of rotp(y) E as well

as a variation .~p (y) of ~(7). . If a is the measured lamination on S

consisting of a closed geodesic aa with transverse Dirac measure of weight
a > 0, we can then define .~p(a) = and = Note

that the use of p is necessary for the rotation number to be defined since it
is not possible to multiply an element of by a real number.

In section 11, we extend this to the case where a is a transverse R-valued
cocycle for a geodesic lamination A which can be realized by p, namely
which is in the pleating locus of some pleated surface ( f, p). We associate
to a and to a tangent vector p at p a rotation number E R . We

show that, for transverse measures, this extension is quite natural because
it is continuous on the open subset of .Il~t,~{S‘) consisting of those measured
laminations which are realized by p.

THEOREM F. - Given a homomorphism p : --~ Isom+(IHI3) and
a tangent vector p, the map cx ~ rot(03B1) is continuous and differentiable



on the open subset U of .,~I~C(,5‘) consisting of those measured laminations
which transversely cross every geodesic lamination that is not realized by p.
In addition, if we interpret a tangent vector a of U as a geodesic lamination
with a transverse R-valued cocycle, the image of a under the differential of
this map is exactly 

Theorem F is particular relevant when p is injective and has discrete
image. In this case, there are only finitely many geodesic laminations which
are not realized by p, and LI is dense in [Bol].

Theorem F is the analog for rotation numbers of a similar result which
we proved in ~Bo3~ for the length function .~p (compare ~Bo 1~ ) .
We can also combine and into a complex length

If we fix A and a, this complex length can be interpreted as a closed

holomorphic 1-form on the space of those p that realize A.

As in the real case of Theorem E, this complex length is strongly related
to the Thurston symplectic form and to the complex shear-bend cocycle
I‘P = + . Consider a transverse R-valued cocycle a for the maximal
geodesic lamination A, and let p E 7Z(~1) . If we differentiate the shear-bend

cocycle Fp E in the direction of the tangent vector p, we get
a C-valued cocycle I‘p E C). Then we have the following result.

THEOREM G. - For every a E = T{a, particu-
lar,

All of these results have been stated for a compact connected orientable
surface S without boundary, and most of the paper is written in this context.
However, we can relax these hypotheses by allowing S to be non-orientable
and to have non-empty boundary. For hyperbolic metrics, we have the
option to require that each boundary component of ~S‘ either is totally
geodesic or corresponds to a cusp. Also, we can allow pleated surfaces
to arrive in non-orientable hyperbolic 3-manifolds, or more generally to
correspond to homomorphisms p from ~r1 (S) to the group of all isometries
of H3. In section 12, we briefly indicate how to extend our results to these
various contexts. These extensions are fairly straightforward. They involve
transverse cocycles valued in various coefficient bundles twisted by the
appropriate local orientations, and satisfying certain boundary conditions.



1. Transverse cocycles for geodesic laminations

Consider a closed connected orientable surface S of negative Euler
characteristic.

To define measured geodesic laminations on the surface S, one starts by
endowing S with an auxiliary Riemannian metric m of negative curvature;
such a metric exists because of our assumption that the Euler characteristic
of S is negative. Then, an m-geodesic lamination of S is a partial foliation of
5’ by m-geodesics, namely a closed subset A C ,S’ decomposed as a union of
disjoint geodesics which are simple and do not transversely hit the boundary.
Recall that a geodesic is simple if it does not cross itself; it may be closed
or infinite. A geodesic lamination A C S covers only a small part of 8, in
the sense that it has Lebesgue measure 0, and even Hausdorff dimension 1
([Thi, sect. 8], [BiS], [Th3, sect. 10]). In particular, the decomposition of
the subset A as a union of disjoint simple geodesics is unique; these geodesics
are the leaves of ~.

It turns out that this definition can be made independent of the choice of
the metric m. Indeed, consider another negatively curved metric m’. Every
leaf g of A is quasi-geodesic for the metric m’, and consequently there is a
unique m’-geodesic g’ which can be homotoped to g by a homotopy moving
points by a bounded amount. These m’-geodesics form an m’-geodesic
lamination A’, and this establishes a natural correspondence between m-
geodesic laminations and m’-geodesic laminations.

So, formally, we will define a geodesic lamination as an equivalence class
of pairs (A, m) where A is an m-geodesic lamination for the negatively curved
metric m on ,S, and where we identify two such (a, m) and (A’, m’) when A’
is the m’-geodesic lamination corresponding to A. In practice, if there is a
clear metric m under consideration, we will identify a geodesic lamination
to its m-geodesic representative.

A geodesic lamination A is maximal if it is contained in no larger geodesic
lamination. This is easily seen to be equivalent to the property that the

complement ,S’-a consists of finitely many triangles with vertices at infinity.

On the surface S, consider a geodesic lamination A and let G be an
abelian group. A G-valued transverse cocycle for 03BB is a map associating an
element a(k) E G to each unoriented arc k transverse to a, which satisfies

. the following properties: a is additive in the sense that a(k) = 



if we split k into two subarcs ki and k2 with disjoint interiors; and a is A-
invariant in the sense that a(k) = a(k’) whenever the arc k can be deformed
to the arc k’ by a homotopy respecting A. The reason for the use of the
word "cocycle" is that a defines a 1-cocycle twisted by the local orientation
of A on a neighborhood of A (see [Bo4] and compare sect. 3).
We will mostly be concerned with the case where the group G is either

the real line M or the circle When G = a transverse cocycle for
A is just a finitely additive transverse signed measure for A. If, in addition,
the transverse cocycle is non-negative, then it is countably additive (see for
instance [Bo4, Proposition 18]) and it defines a transverse measure for a.
We refer to [Thi], [CaB] and [PeH] for the theory of geodesic laminations
with transverse measures.

A geodesic lamination has relatively few transverse measures, but many
more transverse cocycles. More precisely, let G) be the group of G-
valued transverse cocycles for A, and let x(A) be the Euler characteristic of A,
defined as the alternating sum of the ranks of its Cech cohomology groups
(see [Bo4, sect. 4] for a more practical definition of x{~)). A relatively
elementary combinatorial argument shows:

PROPOSITION 1. - If the geodesic lamination a is connected, the group
G) is isomorphic to G-xt~~+1 if a is orientable, and to ®

{g E G 2g = 0} if a is non-orientable. In particular, if 03BB is maximal, then

G) is isomorphic to ® ~g E G ~ 2g = 0~.

Proposition 1 is proved in detail in [Bo4, Theorem 15] and (essentially)
in [PeH, § 2.1] when G = M, and these proofs straightforwardly extend to
the general case. By comparison, the dimension of the space of transverse
measures for A is at most (3/2) I (see [Ka], [Pal]), and is equal to 1
for most geodesic laminations ([Ma], [Ve], [Re], [Ke2]).
We will frequently use another description of transverse cocycles by lifting

the situation to the universal covering S of S, where A has preimage A. Let
a plaque of S - a be the closure in S of a component of S - a .

Then, a G-valued transverse cocycle corresponds to a map associating an
element Of(P, Q) E G to each pair of plaques P, Q of S‘-a, and which satisfies
the following three properties: a is symmetric, namely P) = a(P, Q);
a is invariant under the action of on S; and a is additive, namely
a(P, Q) = a(P, R) + a(R, Q) whenever the plaque R separates P from Q.



The correspondence is obtained by setting a(P, Q) = a(k), where k is the
projection to S of any arc k in S which joins P to Q, is transverse to ~, and
does not backtrack in the sense that it meets each leaf of 03BB at most once.

In [Bo4], it is shown that an R-valued transverse cocycle for 03BB is also

equivalent to the analytic notion of transverse Holder distribution for a .

Incidentally, this explains our notation for G). . A Holder distribution
on a metric space is a (continuous) linear form on the space of Holder
continuous functions on this space. A transverse Hölder distribution for a

is the data of a Holder distribution on each arc I~ transverse to ~1, which is
invariant under homotopy respecting a in the sense that, if the arc k is sent
ot the arc k’ by a Holder bicontinuous homotopy respecting ~, this homotopy
sends the Holder distribution defined on 1~ to the Holder distribution defined

on k’.

THEOREM 2 [Bo4]. 2014 There is a natural correspondence between R-

valued transverse cocycles and transverse Holder distributions for a geodesic
lamination ~, defined as follows. Given a transverse Holder distribution cx,
the corresponding transverse cocycle associates to each transverse arc k the
a-integral of the constant function 1 on k. Conversely, given an R-valued
transverse cocycle a, the corresponding transverse Holder distribution is

defined by the formula that, for every ~older continuous function ~o : k --~ II8

defined on a transverse arc k,

where, having chosen an arbitrary orientation for k, ~~ is the positive end
point of k, the sum is over all components d of k - ~, kd is any subarc of k
joining its negative end point ~~ to any point in d, and ~d and xd are the
positive and negative end points of d.

In this paper, the correspondence between R-valued transverse cocycles
and transverse Holder distributions will not be used very much, except in
sections 3 and 11. However, we will definitely use the spirit of this corre-
spondence. In particular, sections 5 and 8 are based on non-commutative
analogs of the formula of Theorem 2. In addition, what makes everything
converge in this paper are the following relatively simple estimates, which
were also among the key ingredients of [Bo3] and [Bo4].



LEMMA 3.2014 In S’ endowed with a hyperbolic metric m, let k be a

simple geodesic arc transverse to the geodesic lamination .1. Then there

is a constant A > 0 and a number N such that every geodesic arc in ~
which cuts k at least n > N times has length at least (n - 1 )A.

Proof. - This immediately follows from the fact that there is a positive
lower bound to the length of any arc in A going from k to itself. D

Note that, by adjusting the value of A, it is always possible to take N = 2
in the conclusion of Lemma 3. This also immediately follows from the proof
of this lemma. However it is more convenient to state the lemma in this

way, since we will later be interested in optimum values for A satisfying this
precise statement.

Consider a geodesic arc k transverse to A. Two arcs of A - k which are
close enough are parallel with respect to k, namely the union of these two
arcs and of two suitable arcs in k bounds a rectangle in S.

Now, let d be a component of k - A which does not contain an end

point of k, and consider the two leaves gd and gd of A that pass through
the end points of d. Orient these two leaves so that they determine the
same transverse orientation for k , and identify the correspondingly oriented
discrete sets k n gd to Z so that the end points of d correspond to 0. The
divergence radius r(d) of d with respect to 1~ is the largest r such that, for
every n with -r  n  r, the arc in g) - k separating the (n - I)-point
from the n-point is parallel with respect to k to the corresponding arc of

gd -1~. By convention, r(d) = 0 for the two components of k - A containing
the end points of k.

LEMMA 4. - There is a uniform upper bound, independent of r, for the
number of components d of k - a of such that r(d) = r.

Proof. - Consider the hyperbolic surface with boundary 5’ - a obtained
from S - A by adding the (finitely many) leaves of A which are adjacent to
it. This is a surface of finite type, with finitely many spikes on its boundary
(see for instance [CaB, sect. 4] or [CEG, sect. 4]). The components of
k - A give arcs in ,S - a going from the boundary to the boundary (with
the exception of the two components containing the end points of k). Since
S - A has finite topological type and finitely many spikes, these arcs break
into finitely many parallelism classes. By definition of r(d), each of these
parallelism classes contains at most one d with r(d) = r, for every r > 0.
This proves the lemma. D



LEMMA 5. If A and N are constants satisfying the conclusions of
Lemma 3, there exists a constant B such that the length of .each component
d of k - a is bounded by B ,

Proof. - This immediately follows from a hyperbolic geometry estimate.
The constant B depends on a positive lower bound for the angles made by
k and ~l at their intersection points, and on the lengths of the finitely many
components d of k - a with r(d)  N. D

Fix a norm ]) . )] on the (finite dimensional) vector space II8 ) . Also,
fix an arbitrary orientation for h. As in the statement of Theorem 2, for
each component d of k - ~, let kd be a subarc of k joining the negative end
point of k to any point in d.

LEMMA 6. - There is a constant C, depending only on the transverse
geodesic arc k and on the norm ~~ . ~~, such that, for every transverse cocycle
a E H(03BB; R) for 03BB and for every component d of k - a,

Proof. - We will have to refer to combinatorial arguments in ~Bo4~ .
The components of A - k can be broken into finitely many parallelism

classes with respect to k . This provides a train track T carrying A, consisting
of one switch located at k, and of one edge for each parallelism class. A
transverse cocycle a associates a number a(e) to each edge e of T. Namely
a(e) = where ke is an arc transverse to A that cuts each arc of the

corresponding parallelism class in one point and avoids A everywhere else.

In [Bo4, Lemma 6], it is shown that, for any component d of k - A, the
number a(kd) is a certain linear function of the edge weigths a(e). This

linear function is determined by the pattern of intersection with k of the
leaves gd and gd passing through the end points of d, and its norm is
bounded by a constant times r(d) + 1. The lemma immediately follows. 0

2. The shearing cocycle of a hyperbolic metric

On the surface S, consider a hyperbolic metric m and a maximal geodesic
lamination A. Lift the situation to the universal covering S, where A has
preimage A. Recall that a plaque of S - A is the closure in S of a component



of S - A. Since A is maximal, each plaque of S - A is an ideal triangle,
namely a hyperbolic triangle with its vertices at infinity.

Given two leaves g and h of A, the geodesic lamination A gives a preferred
isometry 89~ : g --~ h defined as follows.

Indeed, consider the closure E of the component of S - g U h that is

adjacent to both g and h. The leaves of A that separate g from h provide
a partial foliation of the strip E, which can be uniquely extended to a
global foliation ~ of E by geodesics as follows: since A is maximal, every
component of the complement of these leaves of A in E is a hyperbolic wedge,
bounded by two asymptotic geodesics; and such a wedge admits a unique
foliation by geodesics, all asymptotic on one side. An estimate in hyperbolic
plane geometry shows that two disjoint geodesics which pass through two
nearby points do so with directions differing by at most a constant times
the distance between these two points (see for instance [CEG, § 5.2.6]). It

follows that the normals to the leaves of G form a Lipschitz vector field on
E. We can therefore integrate this vector field, to get a foliation ~-l of E
which is everywhere orthogonal to g. Each leaf of 7~ goes from g to h, and
this defines a map 8~’~ : g -1- h. Also, ?~ respects distances on the leaves of ~
by the formula for the first variation, and it follows that 99~ is an isometry.
Note that 03B8gh = (03B8gh) -1.

Now, consider two plaques P and Q of S - A. Let g be the leaf of A
in the boundary of P which is closest to Q, and let h be the leaf in the
boundary of Q which is closest to P. Orient h as part of the boundary of
Q with the orientation induced by the orientation of ,S’. The plaque Q also
determines a preferred base point on h, namely the projection to h of the
third vertex of the ideal triangle Q. Similarly, the plaque P determines an
orientation and a base point on the geodesic g. For the oriented isometric
parametrization of h by R which sends 0 to the base point, let u(P, Q) ~ R
be the coordinate of the image of the base point of g under --~ h.

In other words, for the isometric parametrization of g and h defined by the
choices of orientation and base point, the isometry 89~ : g --~ h corresponds
to the map t ~ u(P, Q) - t.

Since = ~69~) 1, u(Q, P) is equal to u(P, Q).
Also, consider three plaques P, Q and R of S - A such that Q separates

P from R. Let g be the leaf of P n A that is closest to Q, h the leaf of Q n A
closest to P, k the leaf of Q fl a closest to Rand f the leaf of R n A closest
to Q. The map 8~’~ decomposes as



Since R admits an isometry exchanging h and k, the orientation-reversing
map sends the base point of h to the base point of k. It immediately
follows that

Therefore, the rule (P, Q) ~ u(P, Q) defines an R-valued transverse cocycle
u for A, in the sense of section 1. This transverse cocycle is the shearing
cocycle of the hyperbolic metric m.

If we change the metric m to a metric m’ by an isotopy 03C6 : S ~ S, then
y sends A to the corresponding m’-geodesic lamination A’. It immediatly
follows that m and m’ have the same shearing cocycles. Therefore, the
shearing cocycle u depends only on the class of m in 

We can give another description of the number u(P, Q), which will be
convenient later on.

Let PQ be the set of those leaves which separate P from Q, and
orient these leaves to the left as seen from P. Let k be an oriented arc

transverse to A pQ joining P to Q.
For each component let x J and :c~ be its positive and negative

end points, respectively. If d is not one of the components d+ and d-

containing the positive and negative end points of k, respectively, then

xd is contained in a leaf g~ of which is adjacent to a component
of S - A. As before, the component of S - A containing d determines a base
point on g~ , namely the projection of the third vertex. Let f : gd -~ I~8 be
the unique oriented isometry sending this base point to 0. This associates
two numbers f (xd ) and to each component d of k - which is

different from the end components d+ and d- . When d = d+ or d-, we can
similarly define and f(xd-).
LEMMA 7. 2014 With the above data,

where the sum is taken over all components d of S- which are different
from the end components d+, d- .

Proof. - We can parametrize the component E of S - P U Q that

separates P from Q by a strip M x [a, b ~ so that the leaves of g correspond
to y = constant and the leaves of ?~C correspond to x = constant. In



addition, since ?~ respects the length along the leaves of g, we can assume
that this length along 9 is given by Finally, having oriented the
leaves of Apn from right to left as seen from P, we can require that this
orientation corresponds to the orientation by increasing values of x on the
lines y = constant.

By definition of u(P, Q), it is immediate that

The subarc ] of k is the union of k n PQ and of the subarcs

, x~ ~, with d ranging over all components of k - a~ p diflerent from
the end components d+, d- . Since k n A has measure 0 on k, the integral
term can therefore be decomposed as

Consequently, it suffices to prove that

for every d.

Given a component d ~ d+, d- the component Ed 
that contains it is a wedge separated by the two geodesics gd and . This

wedge admits an isometry exchanging gd and g~ . This isometry respects
g n 1:d, and therefore respects each leaf of H n Ed. In particular, the base
points of gd and gd are located on the same leaf of ?-C. It immediately

follows that x+d x-d d.r = f(x+d) - f(x-d). []

An immediate corollary of Lemma 7 is the following result.

LEMMA 8. - With the data of Lemma 7,

where denotes the length with respect to the metric rra.



Proof. - By Lemma 7, it suffices to show that each term I
is bounded by the length of d. But we just saw that f {xd ) - f {xd ) is equal
to x+d x dx which, up to sign, is equal to the length of the projection of d to

xd
any leaf of G parallel to H. Since this projection is distance non-increasing,
the result follows. D

3. Lengths of transverse cocycles
and the Thurston symplectic form

Given a hyperbolic metric m and a geodesic lamination A, an R-valued
transverse cocycle a for A has a well-defined m-length .~~,.~ {a). In this section,
we show that this m-length can be described in terms of the shearing
distribution of m. and of Thurston’s symplectic form on the space of
transverse cocycles for A.

The length function on the space M£(S) of measured laminations
was introduced by Thurston in [Thl]. It is the unique continuous function
such that, if a E .~I~I,C(S’) consists of a simple closed m-geodesic endowed
with the transverse Dirac measure of weight a > 0, .~m (a) is equal to a times
the length of this closed geodesic. Thurston’s definition straightforwardly
extends to geodesic laminations with transverse cocycles, and we showed in
[Bo3] that this extension can be interpreted as the differential of Thurston’s
function .~I,C(S’) --~ R+.

The m-length (a) of the transverse cocycle a for 03BB is defined as

meaning that, locally, we first integrate the length measure along the
leaves of A, and then integrate the corresponding local function on the space
of leaves of A with respect to the transverse Holder distribution associated
to a. More precisely, cover A by the interiors of finitely many flow boxes
B2, i = . l, ... , n, namely subsets for which there exists for each i a Holder

bicontinuous [0 , 1 ] x [0 , 1 ~ --~ B~ C S such that ~~1~ = Ai x 0 , 1 ~ ]
for some subset Ai of [0 , 1 ~. Choose a Holder continuous partition of unity

,S’ --~ JR, i = 1, ..., n, such that = 1 and such that the support
of each 03BEi is contained in the interior of Bi . Identifying [ 0 , 1 ] to any of the
arcs ~Z ~~ 0 , 1] x t~ transverse to A, the transverse cocycle a defines a Holder



distribution on [ 0, 1 ~, which is given by the formula of Theorem 2 and is
independent of the choice of t. Then,

where [0, 1] ] --~ R is the Holder continuous map defined by 

To connect the length to the Thurston symplectic form T on the
space of R-valued transverse cocycles for a, we first define this
form (compare [Pal] and [PeH]). The general idea is that, given a small C1
perturbation ~ of a 1-dimensional object ~i on the oriented surface S‘, the
sign of each intersection point of Ii’ with K is independent of the choice of a
local orientation for .~~ . From this observation, it is possible to associate to
two R-valued transverse cocycles a and 03B2 for A a homological intersection
T(a, ,Q) G R. We can now be more precise.
An orientation for a is a continuous choice or orientation for its leaves.

The lamination A admits an orientation covering  ~ A. If U is a small

neighborhood of A, the covering  ~ A extends to a 2-fold covering Û ~ U
(the precise necessary condition on U is that it must avoid at least one point
of each component of S - A). Note that ~7 carries an orientation induced
by the orientation of S’, and that À is canonically oriented.

If a E it lifts to a transverse cocycle a for ~. The oriented

lamination A together with this transverse cocycle a define an element
~a~ e H1 ( U; A formal way to see this is to observe that :B and the
transverse Holder distribution associated to a form a geometric current in
the sense of [RuS], and therefore determine a closed de Rham current on U .
This de Rham current associates to each differential form 03C9 E SZI (Û) the
number f ~’~ o doe obtained by locally integrating W along the leaves of a and
then integrating with respect to the distribution a. Then, ~a~ E H1 II8)
is the homology class defined by this de Rham current.

The homology class ~a~ E Hl (U; I~8) can be computed in a more practical
way as follows. Select a family of disjoint transverse arcs k1, ..., kn for A
such that every leaf of  cuts at least one of the Then, the leaves of
~ - Ui ki can be grouped into finitely many bunches of parallel arcs. Form
an oriented graph F in ~7 by collapsing each ki, to a point, and by collapsing
each bunch of (oriented) parallel arcs of  - ~iki to an oriented edge joining
the corresponding points. For each edge of r, the transverse cocycle a



associates a number to the corresponding bunch of parallel arcs, namely the
number associated to a transverse arc to  which crosses each of these arcs
exactly once and does not meet À elsewhere. These weighted oriented edges
define a real 1-chain in ~7, which is actually a cycle by additivity of a. It

immediately follows from definitions that the class of this chain in H1 {U; 
is equal to the class ~a~ defined by the Rham current defined above.

Given two transverse cocycles a and /? for A, we define T{cx, ~) to be
(1/2) ~ ~,Q~, namely one half of the intersection number of the two classes
~a~, ~,Q~ E .~h (U; Clearly, ~- defines an antisymmetric bilinear form on the
vector space of transverse Holder distributions for a. The bilinear

form T is the Thurston symplectic form on The terminology is a
little abusive since T may be degenerate, which happens exactly when some
end of S’ - A is adjacent to an even number of leaves of A, as can be seen
by adapting the arguments of [PeH, § 3.2]. But T is non-degenerate in the
generic case where A is maximal, which is really the case of interest here.

This symplectic form has a nice expression when A is carried by a train
track T which is generic, in the sense that each switch is adjacent to exactly
3 edges. At each switch s of such a train track T, there is an incoming
edge and two outgoing edges ; let e; be the outgoing edge going to the
left, and let es be the outgoing edge going to the right, as seen from the
incoming edge and for the orientation of S. Then, if a, ~3 E it

easily follows from the above weighted graph description of the homology
classes ~a~ , ~~~ E Hl ( U that

where the sum is taken over all switches of T, and where a(e), ~3(e) are the
weights associated by a and ,Q to the edge e (compare [PeH, § 3.2]).
We can now state the main result of this section.

THEOREM 9. - Given a maximal geodesic lamination ~, let be the

shearing cocycle of the hyperbolic metric m. Then, for every transverse
cocycle a E for the geodesic lamination a, its length is equal
~O 

Proof. - As before, A be the orientation covering of A. Choose a
neighborhood U of A such that each component of U - ~ is an open annulus ;
for instance, we could take U to consist of those points which are at distance

. less than 6’ from A, for ~ small enough. Extend  ~ 03BB to a covering Û ~ U.



Along the leaves of the oriented lamination A, the length measure induced
by m defines a differential 1-form The direction of the leaf of  at a
point x E ~t is a Lipschitz function of x. Therefore, can be extended to

a closed Lipschitz differential 1-form E . Since is closed, it

defines a cohomology class [wm] E H1 (U; IIg).
By definition of the length function,

where the last term denotes the evaluation of the cohomology class E

I(8) on the homology class ~a~ E M), and where the last equality
comes from the realization of ~a~ by a geometric current supported by A.

By definition of T, the proof of Theorem 9 will therefore be completed
by the following lemma.

LEMMA 10. - For every homology class c E the evaluation

([~m] ? , c~ is equal to the intersection number c . ~~~.,.,,~.

Proof. - Let W be a component of U - ~, By hypothesis on U, W is
an open annulus bounded on one side by 3 leaves of A. Consequently, its
preimage W in !7 is an open annulus bounded on one side by 6 leaves of
A, with alternating orientations. Recall that each leaf of A in the boundary
of W has a preferred base point, coming from the projection of the third
cusp of the component of S - A adjacent to that leaf. This determines a

preferred base point Og on each leaf g of A in the boundary of W. .

Consider two consecutive leaves g, h of A in the boundary of tV, , and
integrate wm along an arc k joining Og to Oh in W U g U h which is made
up of three pieces: first an arc in g joining O9 to a point x 9 very close

to the spike of YIT separating g from h; then a small jump from .c~ to its
projection point x h on h; and finally an arc in h joining xh to Oh. By
definition of the contribution of the first and last arcs to this integral
are, in absolute value, respectively equal to the distances between Og and
~9 and between Oh and If x9 is far enough near the cusp, these two
distances are approximately the same because Og and Oh are at the same
horocyclic distance from the spike (which comes from the fact that, as seen
in section 1, the same property holds for their projections in S). Also,
because of alternating orientations, the integral of wm along the first and
last arc have opposite signs; their sum is therefore very small. It follows that



the integral of wm along k is arbitrarily small if we choose xg close enough
to the cusp. On the other hand, different choices for x9 give homotopic arcs,
along which the integral of is unchanged since wm is closed. Therefore,
the integral of wm along k is actually 0.

Since W is an annulus, it follows that the integral of wm along every
closed curve in W is equal to 0. We can therefore define a function fr",
on I~’ by the property that is the integral of along any arc in
tV joining some base point Og to x. This defines a function fm on 7 2014 A
such that dfm = . There is of course no way to exend fm to a global
antiderivative of over U . (The geodesic lamination A carries at least
one transverse measure, whose length has to be positive.)

Let k be an oriented arc in !7 that is transverse to A. For each component
d of k - A, let ~d and .rj be the positive and negative end points of d,
respectively. From what precedes, and because knA has Lebesgue measure 0,

where the sum is over all components d of k - A, and where is

defined by continuous extension of the restriction of fm to d. (In particular,
if d is adjacent to d’ so that x! = xd, it may very well happen that

’r’ fm (~d~ ) ~)
We can compare this formula to that of Lemma 7. Note that, if g is a leaf

of  in the boundary of a component W of !7 2014 A, and if we continuously
extend to W U g, the extension of to g is just the oriented isometry
from g to II8 which sends the base point at 0. Consequently, if k is an arc
transverse to .1 which is small enough so that the leaves of A cross k in the
same direction,

where k’ is the projection of k to !7, where ~ = +1 if the leaves of  cross k
from right to left, where ~ == -1 if they cross from left to right, and where

xl and ~~ are the positive and negative end points of k, respectively. By
interpreting %m as a geometric current, we can incorporate the ~ in an
intersection number, and the above equality becomes



By additivity, this equation actually holds for every arc k transverse to A,
without any restriction on the direction in which the leaves of A cross k.

Now, consider a class c E Hl ( U; lI8 ) . This class can be represented by a
cycle ~i 1 aiki, with ai E R and with the arcs ki transverse to A. Then,

where the terms cancel out because 03A3ni=1 aiki has boundary 0. This

concludes the proof of Lemma 10, and therefore of Theorem 9.

4. The shearing cocycle determines the metric

We want to show that, if two hyperbolic metrics have the same shearing
transverse cocycle then they represent the same class in T(S) .

Consider two hyperbolic metrics mi and m2 and a maximal geodesic
lamination A. As indicated in section 1, A can be represented by an ml-
geodesic lamination A i and an m2-geodesic lamination A2. Lift the situation
to the universal covering S, where A, Ai and A2 have respective preimages
A, ~2 ~

Since ~i represents A, there is a leaf of ai, which is naturally associated
to each leaf of A. Therefore, for each plaque P of S - A, there is a

plaque Pi of S - ~~ which is naturally associated to P, as well as a

homeomorphism P -~ Pi well defined up to isotopy. By composition, we
get a preferred isotopy class of homeomorphisms P2. Since any two
ideal triangles are isometric, this isotopy class is represented by a unique
isometry : P1 --~ P~, called the plaque map.

Define the shear map ~o : S - ~~ --~ S - ~2 by the property that, on each
component of S - Ai, the map 03C6 coincides with the corresponding plaque
map P2. Note that ~ is an isometry from the metric mi to the
metric m2.

LEMMA 11. - If the two metrics ml and m2 have the same shearing
shearing cocycle, the shear map p continuously extends to an isometry
{s~ m1~ .-~ {s~ m2~.



Proof. - We first show that p admits a continuous extension which is
locally Lipschitz..

Consider two points x x , 2/1 E S’ - ~1, respectively contained in the plaques
Pi and Qi of S - Ai. Let 03A31 be the component of S - Int(P1 U Qi) which
separates Pi from Qi. As in section 2, there is a unique foliation 91 of 03A31
by mi-geodesics such that every leaf of Ai separating Xl from 2/1 is a leaf

of G1. Again as in section 2, let Hi be the foliation of 03A31 orthogonal to G1.
Consider the mi-geodesic arc o;i joining Xl to 2/1, and let ui = 03B11~03A31~P1

and vi = ~i n Ei n Qi be the two end points of ai n In ui and vl
can be also be connected by the union of a leaf /1 of and of an arc 61
contained in the leaf ~1 n Qi of Let ~31 be the arc obtained from cx1 by
replacing ~i n ~’1 by yl U 61 .

The projection of ~1 onto ~1 n (~i along the leaves of ?~1 is distance

non-increasing. It follows that the length of 61 is bounded by the length of
~i n and therefore by the distance d(x1, y1). By the Jacobi equation,
the projection from ~1 to y1 along the leaves of 91 is locally Lipschitz,
where the local Lipschitz constant can be taken to be the exponential of the
projection distance. As in the case of the length of 61 , this projection
distance is bounded by It follows that the length of yi is

bounded by ) times the m1-length of al n and therefore by
y1). Altogether, we conclude that the length of ~31 is bounded

by (2 + a y1 ).
Now, consider x2 = y2 = Let P2 and Q2 be the plaques of

S - ~2 respectively containing x~ and y2, and let h2 be the closure of the
component of S - P2 U Q2 that separates P2 from Q2. As before, let ~2 be
the foliation of E2 by m2-geodesics such that every leaf of a2 separating ~2
from y2 is a leaf of ~2, and let ?-~2 be the orthogonal foliation. The point
u2 = P2~03A32 can be joined to the point v2 = E Q2~03A32 by
the union of a leaf;2 of ~C2 and of an arc 62 contained in the leaf E2 n Q2 of
~2. Let ,Q2 be the arc connecting x2 to y2 which is the union of p(ai n Pi),
’Y2 ~ ~2 and nQi).

Because mi and m2 have the same shearing cocycle, the end point ;2nQ2
of y2 is the image of yi n Qi under the plaque map f~2. It follows

that 62 is the image of 61 under the same plaque map; in particular, the
mi-length of 81 is equal to the m2-length of 62 .

In Ei, consider a wedge P~i delimited by two asymptotic leaves of Ai
separating .ci from y1, such that the interior of W1 does not meet Ai. Let
Rl C Wi be the plaque of S - Ai that is adjacent to the same two leaves



of Ai, and let W2 and R2 be the wedge and plaque in L2 respectively
corresponding to tVi and Ri. The fact that mi and m2 have the same

shearing cocycle implies that the plaque map Ri - R2 sends the end point
of 03B31~R1 that is closest to tti to the end point of y2 n R2 that is closest to u2.
As a consequence, the isometric extension of this plaque map to W2
sends yl n W1 to y2 n W2. In particular, the mi-length of 03B31 n Wi is equal
to the m2-length of y2 n W2.

Since y1 n Ai has 1-dimensional Lebesgue measure 0, the length of yi is

equal to the (infinite) sum of the lengths of the y1 n Wi , where H~i ranges
over all wedges in ~1 as above. Since the same property holds for y2, it

follows that the mi-length of yi is equal to the m2-length of y2.
This proves that each of the four pieces forming ,Q1 has the same length

as the corresponding piece of/?2’ As a consequence, the mi-length of 131 is

equal to the m2-length of 132.

Therefore,

Since this holds for every zi, ?/i E S - ~I, it follows that ~p admits a

continuous extension ~ : : ( S’, m1 ) -~ (S, m2) which is locally Lipschitz.
We now prove that ~o is distance non-increasing. For this, consider two

points .ci and yi E S which are not on the same leaf of Ai, and let c~i be the
mi-geodesic arc joining .ri to yi . Since a1 ~1 has 1-dimensional Lebesgue
measure 0 and since ~p is locally Lipschitz, the image p(ai n Ai) also has
1-dimensional Lebesgue measure 0 (for the metric m2 ) . Also, because ~ is
isometric on S - Ai, the m2-length is equal to the mi-length
of Ål. Therefore, the m2-length of is equal to the m1-length of
al and

By density, this inequality (y~(~1 ) ,  y1 ) holds for
every ~/i E S, namely even if the two points are on the same leaf of Ai.
In other words, ~ : (,S’, m1 ) --~ (,S‘, m2 ) is distance non-increasing.

By symmetry, the shear map ~"~ : 92014A2 -~ 5’2014Ai extends to a distance
non-increasing map (S, m2 ) ~ (S, It follows that 03C6 : (S, ml ) -
(S, m2) is an isometry. Q



THEOREM 12. - Two hyperbolic metrics ml and m2 have the same
shearing transverse distribution if and only if ml = m2 in T {,S‘).

Proof. - If mi and m2 have the same shearing transverse distribution,
let 03C6 : (S, ml ) - (S, m2) be the isometry provided by Lemma 11. Since

the shear map p : : S - Ai ~ S - a2 commutes with the action of 
03C6 induces an isometry 03C8 : (5’,mi) ~ (S, m2) which is homotopic to the
identity. In particular, mi and m2 represent the same element of T{,S). D

5. The local realization of shearing cocycles

In this section we show that, given a maximal geodesic lamination
A, the map T{,S’) --~ which associates its shearing cocycle to a
hyperbolic metric is open. By Theorem 12, this implies that this map is
a homeomorphism onto its image. Its precise image will be determined in
section 6.

PROPOSITION 13. - Let mo be a hyperbolic metric with associated shear-
ing cocycle 7o for the maximal geodesic lamination 03BB. Then, every 03C3 E

that is sufficiently close to 03C30 is the shearing cocycle of some hy-
perbolic metric m.

Proof. - The proof will require several steps. Set

Represent A by an mo-geodesic lamination which we will also denote by A,
and let A be the preimage of A in the universal covering 5. Consider two

plaques P and Q of ,S‘ - ~ .

For every plaque R separating P from Q, let g~ and g~ be the geodesics
in the boundary of R which are closest to P and Q, respectively. Orient

these geodesics to the left, as seen from P. Also, given an oriented geodesic
g of ,S’ and a number u E JR, let T: : S --~ S denote the mo-isometry which
respects g and acts by translation of oriented amplitude u on g.

Let PPQ be the set of all plaques of - that separate P from Q. Given
a finite subset P of index its elements as P1, P2, ... Pn so that the
index i of Pi increases as one goes from P to Q, and consider



where gp = g = and gG is the geodesic in the boundary of Q that
is closest to P. This formula is perhaps easier to read and understand if we
notice that each P2 contributes a term 

9i 9i
Now, we let the finite subset P converge to PpQ and we consider the

limit

By convention, we decide that is the identity. Of course, we first have
to prove that the above limit exists.

LEMMA 14.- Let k be the lift to S of a simple geodesic arc in S

transverse to 03BB. Then, if a E is sufficiently small (depending on
h~ and if the two plaques P and Q meet k, the map ~p~ converges to an

mo-isometry as P tends to PPQ . 

Proof. - For notational convenience, set

Identify the mo-isometry group of S to the matrix group S0(2,1) C
GL3(R), and endow it with the norm = The

main property we want is that this norm satisfies 

We first show that the norm ~ 03C8P II is uniformly bounded, if a is small
enough.

For every i, the distance between the geodesics gf and g? is bounded

by a constant times the length of k n Pi . By Lemma 5, this distance is

therefore an for some constant A > 0, where we identify k
to its projection to S and k n Pi to the corresponding component of k - A.
By an easy hyperbolic estimate, it follows that

As a consequence,



By Lemmas 4 and 6, the series e-Ar(knR) is bounded

by the sum of finitely many geometric series ~°° o , It is

therefore convergent if  A/C.
It follows that, if the transverse distribution a is small enough, the norm

II is uniformly bounded.

Let Pn, n E N be an increasing sequence of finite subsets converging to

PPQ, with the cardinal of Pn equal to n. The map is obtained from

by inserting a term in its expression. More precisely,
gR 9R

there are subsets P and P’ of ~p~ such that

Then

by Lemmas 5 and 6, and because we just proved that and are

uniformly bounded.

By Lemma 4, it follows that the sequence is Cauchy, and therefore
convergent, if  A/C.

This proves that has a limit 1/JPQ as P tends to provided that

a E is small enough. The same clearly holds for . D

For future reference, we note the following estimate.

LEMMA 15. - Under the hypotheses of Lemma 1,~, there is a constant

B > 0, depending on k and a, such that can be decomposed as

03C6PQ = 
) with



Proof

Having proved the convergence in Lemma 14, we can now give another

description of c~ p~ which is perhaps more intuitive. We are still assuming
that P and Q meet the lift k of a simple geodesic arc transverse to A in S.

Given an integer r > 0, let PpQ consist of the finitely many R E PpQ
such that r( k n R)  r. . Index the elements of PpQ as Pi, P2, ..., Pn so
that the index i of Pi increases as one goes from P to Q. For notational

convenience, set Po = P and = Q. For every i, choose a geodesic hi,
which separates the interior of Pi from the interior of Pi+l, and orient hi
to the left as seen from P. Then, set

Compare [EpM, sect. 3].

LEMMA 16. - Under the hypotheses of Lemma 1,~, as r tends to infinity,

LEMMA 16.2014 ~p p~ if a E is small enough.

Proof. - We will estimate the difference between and

For this, it will be more convenient to rewrite as

noting that a(Pi, Pi+l) = a(Po, a(Po, Pi), and to consider


































































