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On the Impossibility of a Generalization
of the HOMFLY 2014 Polynomial
to Labelled Oriented Graphs(*)

ANTJE CHRISTENSEN(1) and STEPHAN ROSEBROCK(2)

Annales de la Faculte des Sciences de Toulouse Vol. V, n° 3, 1996

RÉSUMÉ. 2014 Nous montrons que toute generalisation du polynôme
HOMFLY à des graphes nommes orientes (LOGs) est presque triviale.
Ainsi la géométrie des entrelacs est indispensable pour le calcul du

polynôme. De plus cela nous montre que ce polynôme ne peut pas etre
utilise comme invariant pour les groupes LOG.

ABSTRACT. - We show that any generalization of the HOMFLY poly-
nomial to labelled oriented graphs (LOGs) is almost trivial. This means
on the one hand that the geometry of links is essential for computing
this polynomial. On the other hand it shows that this polynomial cannot
serve as an invariant for LOG groups. 

1. Motivation, Definitions and Main Results

Consider a group presentation: D = ..., ~~, Ri, , ... where

each relator is of the form xixj = xjxk . We can assign a labelled oriented
graph (LOG) r(D) to D by defining a vertex i for every generator Xi and
an oriented edge from i to k labelled by j for the relator XiXj = . We

also call D a labelled oriented graph if there is no danger of ambiguity.
From a regular projection of an oriented tame link L in 1I~3, you can

read off a Wirtinger presentation D of the knot group ~r1 (JB?3 B L) (see for
instance [8]). This presentation has the form of a labelled oriented graph
r(D), where each component of F(D) is a circle or a single vertex. The
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latter shows up, whenever there is a component without selfcrossings in L
which only overcrosses other components. Let P be the set of those labelled
oriented graphs, where each component is a circle or a single vertex. The
orientation on the link components induces an orientation on the circles of
the corresponding LOG. We define C to be the set of the LOGs in P where
each circle has an orientation. Not every LOG r E C may be realized as

a link projection of a tame link L in (see [10] for a discussion of the
realization of such groups as knot groups). There are many statements

which are true for link (or knot) complements in 3-space, but it is not

known whether they hold for the standard 2-complexes of some more general
class of LOGs (for example asphericity of a knot complement or residually
finiteness of knot groups).
LOGs also show up in connection with Whitehead’s asphericity conjec-

ture (see for example [3], [4] or [9]). In this case the LOG F has the form of
a tree and is called a labelled oriented tree (LOT). Spines of complements
of ribbon-disks in the 4-ball are homotopy equivalent to LOTs [4]. It would

be most interesting to find new invariants for LOT and LOG groups.

Let K be the set of all regular projections of oriented, tame links in the
3-sphere under the equivalence relation of ambient isotopy. Two regular
projections of ambient isotope links differ only by a finite sequence of the
so-called Reidemeister moves (see for example ~1~).

Let ~~+, K- , ~~o E K be three projections which differ only in one
crossing as shown in figure 2. Let T E J( be the trivial knot without any

crossing. The following theorem was shown in 1985 by several different
authors (see for example [7]):

THEOREM 1.1.2014 There is exactly one map P : Jh --~ Z~.~~1 , ]
which satisfies:

(1) P(T) = 1,

(~~ .~ ~ P(I{+) + .~-1 ~ P(~i_) + ~ - = 0 and

(3) P is invariant under Reidemeister moves.

It is natural to ask, whether there is a purely algebraic version of this
theorem which does not use the geometry. The algebraic analogues of link
projections are the labelled oriented graphs of the set C. For these, the
Reidemeister moves and the triples 7~-}-, ~i _ , have algebraic analogues:







(SZ 1 ) If r contains an edge whose label is also the label of one of its
bounding vertices, cancel this edge and identify the two bounding
vertices.

(SZ 1 ) -1 Separate an arbitrary vertex a into two vertices a’, a" and insert
between them an edge with arbitrary orientation whose label is
either a’ or a" .

(f22) If r contains two edges with the same label and opposite orienta-
tions which have a common boundary vertex, cancel these edges
and identify the three bordering vertices.

(f22)-1 Separate an arbitrary vertex into three vertices and join them by
a pair of edges with opposite orientations such that the resulting
component of the graph is again a circle. Label the edges by the
same arbitrary label from the set of vertex labels of F.

There is also an algebraic analogue of (H3). But remarkably enough we
can prove our theorem without making use of this move. Hence we omit its
description, as it is rather lengthy because we have to distinguish between
the different combinations of orientations of the arcs.

Let r be a LOG two of whose components are oriented intervals with

starting vertices c, d and end vertices a, b. r is not in C, it is just a
helping device for constructing a triple (F-}-, F-, Fo) of LOGs in C which
are analogous to ~i_, !(o) as follows:

r-}- Identify band d and insert between a and c an edge labelled b = d
which is oriented with the orientation of the obtained circle.

r- Identify a and c and insert between band d an edge labelled a = c
which is oriented against the orientation of the obtained cirle.

Fo Identify a and d on the one hand and 6 and c on the other hand.

The extremal case may occur where one (or both) of the intervals does
not contain any edges, hence its starting and end vertex are the same. To
insert an edge between them means here to adjoin a loop to the vertex.

The relation between F~-, F- and ro is called a switch relation. Exchang-
ing one of these three LOGs by any of the other two is called a switch.

Let r(T) E C be the graph corresponding to the projection of the trivial
knot without any crossing. It consists of a single vertex.



Now we have the tools to generalize theorem 1.1 to LOGs in C. Un-

fortunately, the HOMFLY polynomial for LOGs in C is no longer highly
distinctive as it is for links in R. It only detects the parity of the number
of components:

THEOREM 1.2. - Let Q be a map from C to a commutative ring R of
Laurent polynomials in the variables l and m which satisfies:

(1) = 1,

(2) £ . ~{r+) + ~-1 ~ ~(r_) ~ m . = 0

(3) Q is invariant under Reidemeister moves.
Then m2 = (£ + .~-1 )2 in R, and Q is of the following form:

~+~-1 
if f E C has an odd number of compon ents

_ 

- m if I‘ E C has an even number of components.

This means that the HOMFLY polynomial cannot be generalized to all
LOGs without getting (almost) trivial. Hence a purely algebraic version
of theorem 1.1 is not possible. The HOMFLY polynomial is not even an
interesting invariant of the class C of LOGs. This implies that it is neither
an interesting invariant of LOTs by the following argument:

Assume that S : .A -~ Z j .~~1 , ] is a map which generalizes the
HOMFLY-polynomial to some set A of LOGs which contains the set of
LOTs. Let r+ E A be a LOT. Then Fo in many cases has two components
where one component is homotopic to a circle, and every circle appears in
this way. Hence the class P has to be contained in A. Let I), I
an index set, be the set of all graphs in C obtained from ro by orienting the
components. Then S(I~o) must be a quotient of Q(rb) for all i E I. But

then theorem 1.2 says that S is (almost) trivial.
Here is an overview of the proof of theorem 1.2. We start by establishing

the relation between the variables:

LEMMA 1.3. - Suppose there is a map Q from C to some commutative
ring R of La’urent polynomials in the variables .~ and m which satisfies (~~,
(2) and (3) of theorem Then m2 = {.~ + .~-1 ) 2 in R.

Next we show the existence of such a polynomial:

LEMMA 1.4. - Any LOG r E C can be reduced by switches and Reide-
meister moves to the trivial LOG I‘(T) E C.



For link diagrams, this is obvious: Any link can be trivialized by switching
crossings. Hence the assertion is true for those LOGs in C which can be

realized as links in R~. We have to show that the other LOGs in C, too,
can be reduced to the trivial LOG r(T). The proof is by induction on the
number of edges.
We then prove the main theorem by calculating the actual values of Q.

For a given LOG F, lemma 1.4 provides us with a sequence of switches
which reduces F to the trivial LOG r(T). We go through this sequence
in the inverse direction, starting with F(T) whose polynomial is given by
condition (1). At every step, we calculate Q using formula (2) and replacing
m2 by ~~’ + .~-1 ~ 2, as we may because of lemma 1.3.

In the last section we mention briefly some results about geometric
analogues of the LOGs of C . .

2. Proofs

Proof of lemma 1.3

The stated equality arises from the following example.
Let F be the LOG depicted in figure 3. Take it as Fo. Then the associated

r+ and r- both can be reduced to the trivial graph by Reidemeister moves.
By condition (1) we know that Q takes the value 1 on these. Hence, by
condition (2), we get

Now consider r~ depicted in figure 4. By the same argument as for F, we
get

Now consider r as F- and I‘~ as F+ , see figure 4. The associated Fo is
trivial. Hence condition (2) yields



Proof of lemma 1.4

Let n be the number of edges in F. We use induction on n. For n = 0, r
consists of k vertices. If k = 1, then = 1 because of condition (1). For
k > 1 regard r as Fo. The associated r+ and F- can be reduced by (Ql)
to the graph which only consists of k - 1 vertices, see figure 5. Continueing
this process on I‘+ and F-, we finally reach the trivial graph r(T).
Now assume all graphs with at most n edges can be reduced to r(T).

Let r contain n + 1 edges. We have to distinguish several cases:

Case 1

A component of F contains a vertex and an edge which have the same
label. Then there is an innermost of such pairs, that is one that bounds a
part F’ of r which does not contain such a pair. Let a be the label of the
chosen pair. Choose an arbitrary edge b in T~. Depending on the orientation
of b, regard F as F-~. or as F-. The associated Fo has only n edges, hence
by assumption it can be reduced to r(T). F- or I‘+, respectively, has still
n + 1 edges, but the part corresponding to r’ has one edge less than r’
itself. We repeat this operation until there are no edges left in the the part
corresponding to T~. Then the vertex and the edge a lie next to each other
and hence can be cancelled by (S~ 1 ) . We are left with only n edges, and the
assumption holds.

Case 2

There is no such pair as in the first case. Choose an arbitrary component
I of F . Then all the vertices carrying the same labels as the edges in I‘ lie in
other components of F. Hence all the edges of r can be transported to these
other components by switches. In each switch relation, Fo has only n edges
so that the assumption holds for it. We are left with r only containing a
single vertex which we call a.

Case ~.1. . - h contains an edge labelled a . Then regard F as ro .
Figure 6 shows the switch relation in the case where a is oriented against
the orientation of the circle in which it lies. For the other orientation, the
switch relation is analogous. Both F+ and r- obtain a new edge by this
operation, so that they both have n + 2 edges. But now we can cancel two
edges by Reidemeister moves, hence we come down to n edges per graph,
and the assumption holds.







Case ~. - r does not contain an edge labelled a. Then choose a second
component and transport all its edges to other components by switches.
Doing this, the first component does not obtain any edges, as there is no
edge a in the second component. If the second component fits in case 2.1, we
continue our series of operations there. If not, we treat a third component
and so on. If none of the components fits in case 2.1, we are left with a
graph which does not contain any edges at all. In fact, we do not have to
go that far: We can stop after the first reduction of the number of edges,
as the assumption then holds.

Proof of theorem 1.2

The proof is by induction on (n, r), where n(r) is the number of edges
of a given LOG F E C, and r(r) is the number of switches needed to get
the trivial LOG r(T) by the algorithm described in the proof of lemma 1.4.
If we follow the proof of lemma 1.4, we see that after any switch the two
resulting LOGs have either fewer edges than the one we started with, or
they have the same number of edges while the number of switches needed
to get to the trivial LOG is reduced by one. In case 2.1 this is only achieved
after one or two Reidemeister moves. -

For (n, r) = (0, 0) we have F = h(T) and Q(I‘) = 1 by condition (1),
hence the assumption holds. Now let F E C be a LOG with n edges, and
r switches are needed to get the trivial LOG by the algorithm described
in the proof of lemma 1.4. Assume that any LOG of C with fewer edges
or with the same number of edges but fewer switches needed satisfies the
assertion of theorem 1.2. Then we know from the discussion above that the
two LOGs achieved from F by the switch required by the algorithm fulfil
the assumption. Hence we can calculate Q(r) from their polynomials. If
for example F = F+ with an odd number of components, then Q(r-) = 1,
Q(I‘o) _ -(.~ + .~-1 )/m, and (2) implies:

There are another five cases to check: r can be r+, F- or ro, where
each time we have to distinguish between F having an odd or even number
of components.



Appendix: Geometric Realization of non-link LOGs

In [2] Fenn, Rimanyi and Rourke generalized the notion of the classical
braid groups and introduced the permutation braid groups. They are

generated by the elementary braids Ui which generate the braid groups,
and additional elements T2 which we get from ~i by replacing the crossing
by a black point (fig. 8). Defining relations are the braid forms of the moves

(Q2) and (SZ3) and the moves (X2), (X3), and (~2) depicted in figure 8.

LOGs which cannot be realized as link projections can be realized as a
closed permutation braid: try to draw a link projection which realizes a

presentation of a non-link group. You will find yourself having to get on
the other side of an arc without any relation left that tells you to cross it.

In this case introduce a crossing of the Ti type. We call such a diagram a

03C3-diagram. For an example see figure 7.

Using the same argument as Alexander used in order to show that every
tame link in R~ can be represented as a closed braid (see for instance [6]),
one can show that any uT-diagram can be drawn in the form of a closed

permutation braid. When reading off the LOG from a ur-diagram, the

crossings of the i type are simply ignored. It is easy to show that the

moves depicted in figure 8 do not change the associated LOG.

In [5], it was shown that this list is in fact complete:

THEOREM . - Two err diagrams represent the same LOG if and only if
they differ by a finite sequence of moves (Xl), (X2), (X3), and (~2).

Hence the classes of LOGs modulo the classical Reidemeister moves

which we treat in this paper are in one-to-one correspondence with closed
permutation braids, and our result is as well valid for these.
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