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Trace imbeddings for T-sets
and application to Neumann2014Dirichlet problems
with measures included in the boundary data(*)

ANDRÉE DECARREAU(1), JIN LIANG(2)
and JEAN-MICHEL RAKOTOSON(1)

Annales de la Faculté des Sciences de Toulouse Vol. V, n° 3, 1996

R,ESUIVtE. - Dans cet article, on etudie l’existence de solutions pour
un probleme quasi-linéraire elliptique a donnees mesures y compris sur
la frontiere et on montre l’unicité de solutions lorsque ces donnees sont
dans L 1.

ABSTRACT. - In this paper, we investigate in the existence and unique-
ness of a quasilinear elliptic problem with measure data included in the
free terms both of equation and boundary. We study first some Sobolev-
type imbeddings for T-sets and we use the notion of renormalized solution
for having uniqueness. .

0. Introduction

Dirichlet problems with measures as data have been widely studied
recently by various authors, for instance [BG], [BGV], [BS], [BCP], [GV],
[Ral]-[Ra6], [Lia], [LM], [At]. Most of them concern the homogeneous
boundary Dirichlet condition except in [GV], where a semilinear equation
is studied with a measure as a boundary condition. In this paper, we will
discuss a kind of more general mixed boundary condition.
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More precisely, consider the following problem:

where a is a Caratheodory function defined in H x R x II~~, H is a smooth
bounded open set B is defined on ~SZ = F = Fo U Fi formally by
Bu = u on Fo and Bu = a ~ n on I‘1, ~a and ~b equal to 0 or 1,
p E ] 1, cx~ ~, s will be precised later, n is the outer normal to r 1, M(Q)
(resp. M(F)) is the set of bounded Radon measures on S2 (resp. F). We
assume v = 0 on Fo.

The function â is required to satisfy the standard Leray-Lions assump-
tions :

(A2) for a.e. x ~ 03A9, for all u ~ R, all 03BE ~ RN

where C is a positive constant, 7  p)) and

(A3) for a.e. 

As a model, we can condiser



If Ea = 0, there is generally no solution for problem (P) ; for this reason,
we need a compatibility condition involving the measures p and v, that is

+ = 0.

The problem (P) does not possess solutions in the usual Sobolev spaces:
one can verify that fact on the fundamental equation.

For this reason, as in [BBGGVP], [RA2] and [RA3], we introduce some
convenient functional sets in which we search weak solutions (sects 1 and 2).
In the first time, we interpret in the distribution sense, but as pointed out
by a counter-example given by Serrin [Se], the weak solution given in that
sense is not unique. This lack of uniqueness is widely explained in [Ra6].
Another notion of weak solution is then useful to ensure the uniqueness of
solutions. When the data p and v are in L1, we can borrow the notion of
renormalized solution of Di Perna-Lions and adapt it to our case. As it is
shown in [Ra6], when  and v are smooth, say in Lp’ (Q), then this notion of
renormalized solution is completely equivalent to the notion of classic weak
solution.

For proving the existence of a weak solution, we consider a family of
approximating problems, and, by compacity arguments, we construct a
solution u. This function u is also a renormalized solution (when  and
v are and we prove uniqueness result in this case by comparing an
arbitrary renormalized solution w with the solution u mentioned above (see
[Ra6] for Dirichlet equations).
An uniqueness result is also given in [BBGGVP] under less general

conditions than ours and technics are completely different, for instance they
compare directly two arbitrary solutions.

Recently, Xu [X] borrows the same ideas as in [BBGGVP], [Ral] and
[Ra2] to show the existence of solution for a multivoque problem. There is
no uniqueness result in this paper and the data are in L1.

We will distinguish in the proofs the mixed problems corresponding to
the case of > 0 is the N - 1 dimensional Hausdorf

measure of Fo) and the Neumann problems corresponding to the case of
= 0. We give a sense for the traces of the founded weak solution

by using truncations.



1. Functional sets ; T-sets

Let S2 be a smooth bounded open connected set of N > 2,
p E ~ 80 = r - ho U r1, Fo and Fi disjoints. We introduce

the following sets:

Here L~(H) (resp. and is called T-set (resp. T-subset).
We note that C~(H) G and, in the case of = 0, the

spaces C~(~) and are the classical spaces and 

and the T-set and T-subset are simply denoted by and 

These spaces and sets possess similar properties as Sobolev spaces. The
first lemma concerns the derivability result.

LEMMA 1.1.2014 If v E exists almost everywhere and for

For the proof see [Ra3] or [At].



LEMMA 1.2. - C L~(n).
The proof is easy.
The two lemmas below are fundamental: they concern trace results

in the T-spaces and provide inequalities for estimations in section 3 and
convergence results in section 4. We introduce four constants defined with
PC ]1,~V]:

LEMMA 1.3. - For r E ] 0, rc ~ and r’ E ] 0, r~ ~ satisfying r(N - 1) =
r’N, there exists a constant C, depending only on S2 and r, such that for all
u E n u(x) makes sense for a. e. x E F, and we have with
T = ~p - = ~p~ - r~ ~ ~~~ :

Moreover, if u E and for any T E ] 1/p 1 [,

Proof. - Consider 4Y(t) = J) da/ (i + Let u E n (Q),
by definition V(u*’) e c LP(Q) , for all k > 0 we write,



We arise this equality to the power p and integrate over Q, we get

Thus we obtain:

by the usual Sobolev inequality applied to ~(u~~, we deduce:

Since ~(u~) ~  we then have

Similarly, by the trace imbedding theorem on usual Sobolev spaces,
applied to the function u~ = we have:



(C is independent of l~) . For x E F, = u ~x) + ~ - ~c ~~) ~’ : thus, it has
a limit in -oo , -~-oo ~, when k go to infinity; we denote this limit by 
By Fatou’s lemma and Lebesgue dominated convergence, when letting k go
to infinity, we obtain the inequality (1).

For the last inequality, let u E with the condition

From usual Sobolev imbedding theorem, applied to ~(u~), we can obtain:

(C is independent of k) and noticing that

thus arguing as for the inequality (1) and using the above inequality, we
derive the inequality (2) . ~

Remark. - The existence of a trace function can also be derived by
showing that u is p-quasicontinuous in Q.

LEMMA 1.4. For all q E ~ 1 , N/(N - 1) ~, there exists r E ~ 0 , rc[, ,
there exists a constant C such that for all u E 



Proof. - Choose t = q(p - 1 ) and b > 0 small enough, then

with r = t(1 + 8)/(p - t)  re. 0

The proof is the same as in [Ra3]. .

2. Weak solutions and renormalized solutions.

Main results

For p E ] 1, oo [ we set (N - 1)(p - 1)/(N - p) if 1  p  N.

We want to solve the following problem: find u in an appropriate T-set

satisfying:

B is defined on F = Fo U Fi formally by Bu = u on Fo, Bu = a ’ ~ n +
u on = 0 on Fo, ~~ and Eb equal to 0 or 1, s  sc.

The above problem has to be understood in a precise sense, this is why
we introduce a few definitions (see below). The first one is available for

general measure and the second one is true for integrable function. We will
see that one can get an uniqueness result for renormalized solution.



DEFINITION 2.1. - We will say u is a weak solution of the problem (P)
if u E and for any v E there holds:

DEFINITION 2.2.- lel p E and v E we will say that
u e fl%§" is a renormalized solution if: for any v e Wj§"(Q) n L°(Q), for

T E W1,~compact(R), there holds:

The main results in this paper are stated in Theorem 1 below and
Theorems 2 and 3 in section 7: Theorem 1 concerns an existence result
and the others concern uniqueness results.

THEOREM 1.2014 Let  E M(n) and v E M(F). If p E ] 1, N] and
s E ~ 0 , [ if p  N, under the assumptions to ~A3~, there exists
at least a weak solution u of problem (P). (HN-1(03930) = 0 in the case

Ea = Eb = 0, and v = 0 on I‘o if > 0~.
Futhermore, if u E and v E this weak solution is a

renormalized solution.

The proof will be divided in two cases according to the values of ~~ and
6~: The first one is the case when Ea or Eb = 0 which will include three
subcases (that is Ea = Eb = 1, ~~ = 1 - Eb = 1, Ea = 1 - Eb = 0). But since
the discussions of them are similar, we just consider the case 
And the other case that we will discuss is Ea = Eb = 0.

The first step consists in considerating an approximating problem. We
will make some uniform a priori estimates compatible to the structure of
T-set that we consider. Using some compactness results similar to those
produced in [Ral]-[Ra3], we pass to the limit.



3. An Approximating problem of problem in the case Ea = t b = 1

We will consider an approximating problem of problem (P) in the

following manner.

Let n E E n = 0 on Fo satisfying: for

any 03A6 E (set of continuous functions)

and for all n,

With the assumptions of Theorem 1, there exists a weak solution r~, E
of problem (Pn ) below and the proof can be found in [LL].

Uniform estimates for the sequence u,n

(i) We prove first that the sequence un lies in a bounded subset of

and a bounded subset of 

We take v = > 0 in (6) where

after dropping the positive terms in the first member and letting
r~ -~ 0, we obtain:



(ii) Let T E we shall prove that the sequence D(T(un)) lies

in a bounded subset of LP(Q) oo): for this, we take
v* - dO’ in (6) and we obtain

(because II v* II L~ (~~  where C is independent of n.

Thus T(un) remains in a bounded set of 

(iii) Now take

as a test function in (6), we obtain:

where C is independent of nand k.

(iv) We apply Lemma 1.3 to un and we have for any r and r’ verifying
0~r~, 

(using the previous estimate and noticing that pT > 1), where C is
independent of n.

Nloreover, using Lemma 1.4 and the above estimate for q E

~ 1 , ~~~~ - 1) ~ ~

where C is independent of n.



4. The limit process.
Existence of a weak solution in the case Ea = ~.b = 1

Let us choose = arctan(t) E Set wn = 

remains in a bounded set of By (ii) in section 3, and the usual
compactness on Sobolev Spaces there exists a subsequence still denoted wn
which verifies:

We introduce u = tan(w), then we have

For T E the sequence T(un) lies in a bounded subset of 
thus we have T (u) E From the previous estimates on un , we see
that u belongs to 

We can use v = S",(un - E as a test function in (6), where

to obtain, as in [Ra2]-[Ra3],

and then

We want to show the following result on the trace of u on F: u exists a.e.
on r and un ~ u on F when n ~ oo.

For any integer k > 0, we have u~ E uniformly with respect to n.
So un -~ u~, in weakly. Thus by trace lemma - 0

{as n -~ oo). Then there exists Ek such that = 0 and 

exists on F B Ek. Now, for any x E I‘ ~ E~, exists for all l~, then



letting k = oo as in Lemma 1.3, we have that has a limit a.e. on r

denoted by u( x) E ~ -oo , +00]. To show that u(x) is finite, we remark that

with C independent on n and k, so that C, and

consequently  +00. Futhermore, we have

We decompose F in three subsets: F = U r!3n U with

and, E ]0, s [, we consider dHN_1:

and



and we have proved that

The estimates (7), (8) and (9) show that there exist r and ~~, p-1  r  ~~,

s  r’  r~ = sc so that u E Du e L’’ (SZ), u E and

then with Vitali’s lemma we deduce from the previous pointwise convergence
that 

,

We finally can pass to the limit in (6) and obtain that u is a weak solution
of problem (P). 0

5. An approximating problem in the case éa = 0

In this section = 0, we consider the problem (P) when
éa = 0 under the supplementary following compatibility condition:

We define the sequences and 1/n as in section 3, but and vn must

satisfy an additional condition:

We will distinguish the cases p > 2N/(N + 2) and p  2N/(N + 2).



First case, p > + 2)

We consider the approximating problem below.
Find un E verifying f un d.r = 0, and for all v E 

There is a solution u~, E n for this problem (see [LL] for
the existence and [RT] for L~-estimates). We have for un the following
estimates obtained with the same test functions as in section 3, that is:

where is independent of n;

with C independent of n.

But we cannot use Lemma 1.3 for un ; we introduce another function un
by noticing that, for all T  1 there exists cn such that

We fix

Note that

and Lemma 1.3 can be applied to Un with r = (1 - T)Np/(N - p) (> 1). .
Exactly:

with C independent of n (choose v = in ( 10) ) . So ~  C with C
independent of n and then 03A9 |un (’’ dx  C.



Using Lemma 1.4 for un we have the following inequality with

with C independent of n.

We introduce u as in section 4. We can apply Vitali’s lemma when n -~ o0

(note that r > cr) to prove that un, a(x, u, Du) and that u is a
weak solution of problem (P).

Second case, p  2N/(N + 2)

We assume here that â does no depend explicitely on un; we note

â(x, Dun) and we consider the following problem, after fixing a real

Find un E verifying f~ d.r = 0, and for all v E 

There exists a solution u~ E verifying (10bis): for proving
this we apply the Leray-Lions theorem [LL] and L°°-estimates results [RT] ;
we find a function wn E n such that ~’~ wn d.r = 0, and for
all v E 

As in the first case, there exists cn such that ~’~ + c~) dx = 0. .
So, un = wn + c~ verifies ( lobis), and we derive the estimates below:

where is independent of n;



with C independent of n;

with C independent of n.

We conclude as in the first case and find a weak solution u for the problem
(P). 0

6. End of the proof of Theorem 1

u is also a renormalized solution when ~c and v are in L 1.

Here p and v are respectively in and We use the sequences
un defined in sections 3 and 5 and u the corresponding weak solution.
We give additional properties to prove (5) for v E n and

T ~ W1,~compact(R).

LEMMA 6.1.2014 The sequences un introduced in (6) and (10) verify:

Proof. - Case ~a = ~b = l. First we take v = un +1 - as a test

function in (6) and we obtain:



and consequently, using the properties of the sequence un and Fatous’s

lemma,

Then let m tend to infinity, using the dominated convergence theorem
we get (11).

Case 6;a = 0. For the sequence defined in section 5, taking
v = as a test function in (10) or (lObis), we obtain:

and for m -~ oo we get (11). ~

COROLLARY OF LEMMA 6.1. - Let hm be the continuous function de-
fined on II~ by:

then for any v E n for any T E 



Proof

with hypothesis (A2); futhermore I T(u)vI is bounded with M, the support
of T is compact, ao is in L~~ (SZ), then



where C is independent of n,

We conclude with Lemma 6.1. D

We now prove that u is a renormalized solution of problem (P).

. First we consider the case Ea = 1. For v C n 

T C and m e N , we take hm(um)T(u)v as a test function in
(6) :

First, when n -~ o0

The five terms in the second member have a limit and then:



Secondly, when m -~ o0

For m, large enough (say supp T C [-m, m ]), we can write

The corollary of Lemma 6.1 and the dominated convergence theorem permit
to conclude that u verifies (5).

. In the case of ~o = Eb = 0 and u~ Is the sequence defined in section 5,
the proof is similar.

7. Uniqueness result

We have seen that there exists at least one function u G being
a renormalized solution in the sense of definition 2.2. Futhermore, this
solution is a limit of a smooth sequence i~ being a classical solution of an
approximate problem.

We want to show some uniqueness result ; we begin by a "simple" case.

THEOREM 2.- Assume that (x,~,03BE) is independent of ~ (we note

(x,03BE)), then there exists a unique renormalized solution w G up to

a constant if ~a = Eb = 0 verifying for e n for any
T ~ 

Proof. - It remains to show the uniqueness of the solution; let us call w
an arbitrary solution of the preceding problem; we keep the notation u for
the particular solution being a limit of sequence un (that we found before).
The aim is to show that w = u.



Let and consider as in section 6; the function

can be used as a test function in (6) or ( 10) or (10bis),
that is

But we have also (5) for u = w with T = hm and v = 
that is

Let us make the difference between the two last equations; we get:



The third ans fourth terms of the left hand-side are non-negative; when
dropping those terms, we get:

. In a first time, letting m go to infinity (n and k being fixed), we have the
two inequalities:

and, with the fact w E it comes:

. Now, k being fixed, we let n -~ oo; Fatous’s lemma and the monotony of
a (condition A3) lead to:

. Finally, we let k --~ oo and we have, using Beppo Levi theorem,



Consequently Dw = Du, then Dwk = Duk for that is and uk
differ from a constant Ck ; these constants are uniformly bounded because
u~ and w~ are in a bounded subset of so a subsequence of (Ck)
converges to a constant C, and we conclude w = u + C.

We prove that C = 0 if ~ ~ 0: if 0, without dropping the positive
terms in (12) and using Fatou’s lemma, we deduce:

and, when k --~ oo,

for the same reason, and then- C = 0. D

Now consider the general case for a, that is r~, ~) depends of r~, for
problem (P) with ~a = ~b = 1.

If a satisfies the supplementary condition:

(A4) for a.e. x E Q, for all / for all r~1 and r~2 in -h , -i-h ~ C I~B:

~T1~ ~) - ~12~ ~)I C + 

where C(h) is a constant depending only of h, and bo E L~~ (S~),

then we have an uniqueness result for the mixed problem.

THEOREM 3. - Assume a satis fies the hypothesis to (Al~~. There

exists a unique renormalized solution E verifying for any v E

for any T E "



Proof. - As in the proof of Theorem 2 we call w an abritrary solution
of (13) and compare w and u (the solution founded in section 4).
We introduce, for q e ] 0 , 1 [ the function F~ defined from R to R by:

Then, for m ~ N, k ~ N, ~ ~ ]0,1[, we take v = 
as a test function in (6); we have also (13) with T = hm and v =

we take the difference between the two corresponding
equations and we obtain:

We consider separately all these terms (four in the first left hand-side and
two in the right hand-side) and let successively m -~ oo, r~ -.~ 0, n ~ oo,

The fourth term of the left hand-side of (14) is non-negative; we drop it.
The two terms in the second member are respectively bounded by

The first term is decomposed in two parts, using



we use the hypothesis (A2) and (A4) on â, it comes

which is less than

where C = hy-

pothesis (A4) is uded with h = 1~ + 
Now, let m go to infinity (r~, n , k fixed) ; we get the following convergences:

has a limit which is non-negative (A3),
,. _



In a second step, r~ --~ oo:

In a third step n -~ oo and finally k -~ oo,

We can conclude that (z,c~ - u)+ = 0.
By an analogous manner we prove that (u - w)+ = 0, and the Theorem 3

is proved. D
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