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A hitting time for Lévy processes,
with application to dams and branching processes(*)

ANTHONY G. PAKES(1)

Annales de la Faculte des Sciences de Toulouse Vol. V, n° 3, 1996

RESUME. - Nous obtenons de façon simple la densité du processus de
Levy à spectre positif pour le temps d’atteinte de zero. Nous discutons de
la relation avec les preuves antérieures, ainsi qu’avec celles de la théorie
de la fluctuation en temps continu.

Le temps de vidange d’un barrage rempli par un subordinateur en est
un cas particulier, pour lequel nous etablissons une identité nouvelle. On
utilise cette identité pour déduire une expression simple de la mesure
canonique du phénomène regenerateur de vidange.
On obtient plusieurs théorèmes limites donnant des analogues continus
de résultats connus sur les lois de Lagrange.

ABSTRACT. - A simple derivation is presented for the density of the
zero-hitting time of a spectrally positive Levy process. It is discussed in
relation to existing proofs, and the result itself is discussed in relation to
continuous time fluctuation theory.

The time to emptiness of a dam fed by a subordinator is a particular
case. For this, a new identity is given, and it is used to derive a simple
expression for the density of the canonical measure of the regenerative
phenomenon of emptiness.

Several limit theorems are derived giving continuous analogues of known
results for Lagrange laws.

KEY-WORDS : Levy process, Subordinator, Hitting time density, dams,
Branching processes, Exponential families, Limit theorems.
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1. introduction

In this partly expository paper we consider (Lt), a conservative, spec-
trally positive Levy process with Lo = z > 0, that is, a real-valued pro-
cess with stationary and independent increments whose paths are right-
continuous with left hand limits. See Fristedt [12] or Skorohod [35].

Let Pz ( . ) = and ~~ ( ~ ) = . We are

interested in the hitting time T = inf {t ~ Lt = 0 ~ . Of interest in its own

right, this random variable occurs in several models of applied probability.
To describe these, we need some notation.

The process (Lt) is determined by its cumulant function (cf) For 03B8 ~ 0
and all z,

where

and n is the (Levy) measure, that is, a positive measure concentrating its
mass on (0, oo) and satisfying ~0(1 A  oo. The constant D E R

is the rate of deterministic drift and v > 0 is the variance of the Gaussian

component. A corresponding decomposition is

where (Bt) is a standard Brownian motion, and (Jt) is a Levy process which
jumps only to the right and Jo = 0. This component is nondecreasing, i.e.
it is a subordinator (Bingham [2] and Fristedt [12]), iff

Condition (S)

We assume that ~(8) --~ -oo as 0 - oo. This occurs if Pz(Lt  0) > 0
for any, and hence all, t > 0. A sufficient condition is that D > 0, v = 0,
and condition (S) do not occur together.



The continuous-state branching (CB) process controlled by ’Ø is defined as
follows (Bingham [2]). Let jet) = f~ dv/Lv when t  T, = oo when t > T. .
Since j( . ) is continuous and nondecreasing it has a generalized inverse

= inf( u ~ j (u) > t } . The randomly time changed process Zt = is
a CB process. For this process the analogue of the total progeny is 

()

and the change of variable T = r(t) easily yields

The fundamental results about the law of T are as follows.

THEOREM 1.1. Suppose ~(8) ~ -oo as 0 ~ oo and z > 0.

~a~ For each s > 0 there is a unique positive solution 0 = of

and

(c) If ~ , t) has a density kL( ~ , t), then G( ~ ~ z) has a density

Although these results are by no means new, some published proofs are
incomplete and we discuss this in Sections 2 and 3. A proof of the following
integral version of (1.4),

is given by Gihman and Skorohod [14, p. 313] and, more recently, by
Skorohod [35, p. 221], using factorization methods. These accounts are
in terms of spectrally negative processes.



While preparing lectures on storage theory, the author read Borovkov [6]
and as a consequence found an elementary real variable approach to Theo-
rem 1.1. Its simplicity seems to be worth recording. Also, it is opportune to
do this in view of recent interest in natural exponential families (NEF’s); see
Seshadri [33]. Recently Letac and Mora [24, p. 20], cited the later proof of
Borovkov [7] for its completeness and accessibility. Hence it is worth record-
ing an even simpler version together with commentary on related literature
and results.

The connection with NEF’s is that the hitting time law, which we denote

by .c(T), is the second element of the inverse pair ~,C(L1 ) ; ~C(T) ~ see Letac
and Mora [24]. We meet this again in Section 4.

An important special case is where v = 0, D  0, and condition (S)
holds. Then we can write

where

The integral in (1.7), denoted by is the cumulant function of a

subordinator (It). A common interpretation is in terms of a store, or dam,
which receives an inflow It during [0, t] ] and the content is withdrawn

at rate r, when it is available. See Kingman [23] for discussion of the
precise specification of the content process, denoted here by (Ct). Thus

Lt = It - rt is the net inflow during 0 , t ~ ] and T is the time to first

emptiness of the store. Another interpretation in terms of Jinira processes
is mentioned in Section 3. There we also discuss Theorem 1 for these

contexts. We prove an identity ((3.8) below) and use it to derive a

simple expression for the canonical measure of the regenerative phenomenon
C = {t let = 0, , Co = 0 ~ (Prabhu and Rubinovitch [30]).

Comparison of (3.4) below with the discrete density of the zero hitting
time of a left-continuous (or skip-free) random walk on N-}- (see Wendel [39]
and Pakes and Speed [28] for references) suggests thinking of the density
(3.4) as a continuous basic Lagrange law. Johnson et al. [19] is a general
reference, and Devroye [10] is a sound representative of the voluminous and
very repetitious literature on Lagrange laws. Aspects of this connection are
discussed in Section 4.



2. Proof of Theorem 1

(a) Clearly ~(0~ = 0,

and ~( ~ ) is continuous. The assertion about (1.1) follows from graphical
considerations. Since (Lt) is skip-free to the left, for 0  x  z we have,
writing Tz for T when Lo = z,

The components on the right hand side are independent and T~ has the
same law as Tx. . In other words (Tx : z > 0) is a subordinator. Hence (1.2)
follows for some positive, increasing, and function r~( ~ ) .

Next, observe that T is a stopping time with respect to the natural
filtration (0t) of (Lt), and

defines a positive martingale with respect to (~’t). Applying Doob’s optional
stopping theorem for the stopping times nAT, then letting n i oo and noting
that LT = 0, gives Ez(MT) = 1, i.e.

It follows that x~~ - ) indeed is as asserted in (a). This argument, included
here for completeness, is due to Bingham [1, p. 721]. For the record, we
mention that r~( - ) has the representation

and f °° 1 n  oo.

(b) A first passage decomposition and the strong Markov property for (Lt )
yield



But

where the last line results from using (2.3) to evaluate the left hand

side. The second term on the right hand side is finite for 03B8 > 0, and
0  (s + ~(8)) 1  oo when 0  8  1]( s). Hence, by multiplying
throughout and letting 0 --~ r~(s), 1’Hospital’s rule gives

the last term comes from differentiating (1.2).

Consequently (2.3) takes the form

Integrating with respect to s over (s, oo) and changing the order of inte-
gration, which is permissible by Fubini’s Theorem and the measurability of

(Lt), we obtain



The uniqueness theorem for Laplace-Stieltjes transforms (LST’s) now yields

Since the right hand side is absolutely continuous, (1.4) follows.

Suppose now that the density hL{x, t) of t) exists and is measur-
able. The left hand side of (2.5) is

whence

and (1.5) follows.

For v > 0, Borovkov [6] proves the following version of (1.4),

which he understands to be equivalent to (1.5) in a generalized (but
undefined) sence. Subsequently he (Borovkov [7, p. 66]) avoids both of
these. Both of his presentations are set in the complex plane.

Most proofs of (1.4) and (1.5) from the 1960’s use some form of limiting
argument. This occurs by imbedding the laws of (Lt) in an indexed

family, proving (1.4) and (1.5) for members of the indexed family, and
then proceeding to the limit. For instance, Bingham [1] quotes (1.4)
from Zolotarev [41]. In an earlier paper, Zolotarev [40] gives an intricate
analytical proof of (1.5) when n ~ ~ ~ , oo ) } is regularly varying at the origin
with index é E (0, 2]. In the later paper he introduces a family {n~} of
such Levy measures which converges weakly to n as é -~ 0. Then (2.6)
is satisfied by the corresponding DF’s G~( ~ ~ v) and .~i’~~~( ~ , t), and hence
generally by letting ~ --~ 0, but his argument is incomplete at this point.
Also, he assumes E(Lt) :s; 0, though this seems unnecessary for his proof.

Using a "compensation" method, Keilson [21] derives (1.5) for the case
v > 0 and  oo, that is, (Jt) is a compound Poisson process. He
refers to the case v = 0, without showing how to attain it.



We end this section by explaining the fundamental nature of (1.3) for
continuous time fluctuation theory. Suppose that v > 0 and that the average
drift rate 

_~_

satisfies -oo  m  0. Then M = supt>0 Lt has a non-defective law whose
LST is

This was first derived by Zolotarev [41] ; see Takacs [38, p. 47], Bingham [1,
p. 725], and Prabhu [29, p. 78] for different proofs. Harrison [15] gives an
elementary proof which makes essential use of (1.3). He also gives a simple
proof of the familiar result that M has the same law as the limiting content
Coo of the (generalized) dam process.

Let F be the distribution function (DF) of Coo and suppose the dam is
modified to have a finite capacity y. Then the limiting content of this finite
dam has the DF F(~)/F(y). In addition, this also is the probability that
a dam with initial content x empties before it overflows. Both results were
found by Takacs [38, chap. 6, for example]. Rogers [31] gives an elementary
proof of the second result. See Bingham [3] for a summary of Takacs’

contribution to these topics.

3. When condition ( S ) holds

Throughout this section we assume condition (S), v = 0, and r > 0 in
(1.7). This gives rise as follows to the Jirina process (Zn ), a discrete time

valued branching process - see Pakes [27] and his references. In (1.7)
suppose r  0 and set a = -r. Then (Lt) is a subordinator with positive
or zero drift. Discrete time n counts successive generations. At time n,

Zn measures the amount of "mass" present, a unit of which contributes
to the next genera,tion an amount equal in law to Li. Disjoint subsets
of n-th generation mass contribute independently to the next generation.
Thus (Zn) is a Markov chain whose transition kernel K(a, A), z E R+ and
A C R+, is determined by



Let Zo = z and S(z) = Zn be the total mass ever existing. Then
(Kallenberg [20, p. 21]) (,s~’(z) : z > 0) is a subordinator whose cf, 1](8), is
the unique solution for 03B8 of

This means that S(z) is equal in law to the zero hitting time of (Lt - t),
Lo = z. Note that S(z) = oo, if a a > 1.

To reformulate Theorem 1.1 under condition (S), let , t) be the DF
of It and ~~{ ~ , t) be its density, when this exists. Both are supported in
II8+. Since t) = + rt, t), the following result is an immediate
corollary of Theorem 1.1.

THEOREM 3.1. - Let T be the time to first emptiness of a dam with a
subordinator inflow process (It) and withdrawal rate r. The cf of T is
the unique positive solution for 8 of

When Co = z,

and when ~~( ~ , t) exists,

Comparison of (3.1) and (3.2) reveals that the total mass S(z) of a Jirina
process has the same law as the first emptiness time provided that in (3.2)
we replace r by 1 + r.

The formula (3.4) has a long history. Kendall [22] observed that (3.4)
solves the integral equation

obtained using a familiar hitting time decompostion. He explicitly set aside
the question of uniqueness of its solutions. Hasofer [16] observed that the
most general solution has the form uz:t)dV(u) where V( . )
is an arbitrary function of bounded variation. By computing the Laplace



transform of the right hand side of (3.4) he shows this gives the solution that
is sought. His proof requires that Eoli  oo, a condition which excludes

stable inflow processes, amongst others, and he imposes a further bounded
variation condition (see his Theorem 3).

Zolotarev [40] (see his "Theorem" ) gives essentially (3.4) by a purely
analytical argument having no explicit reference to Levy processes. See

also Corollary 5 of Zolotarev [41]. We should mention that Takacs [37] uses
the ballot theorem to derive a version of (1.6) under our present conditions.
Also, see his later account Takacs [38, p. 57]. Prabhu [29, p. 81], proved
(3.4) using factorization methods.
We have mentioned above that some authors derive identities like (2.6)

when v > 0 and then allow v -~ 0. It is worth showing that this gambit
has problems. For example, differentiating (2.3) with respect to z , , then
formally taking the derivative inside the integral defining t), and
then letting z -~ 0 and using (2.4) gives (Borovkov [6, eq. (7)])

This is legitimate when v > 0 because then I~L ( ~ t) is bounded and Coo.
But this relation is not generally valid when v = 0. The left hand side of

(3.6) -~ 0 as s --r oo for any v > 0. When v > 0, and/or condition (S) fails,
the law ,C(T ) has zero as its first point of increase (for any z > 0). This

occurs because (Lt) can diffuse back to the origin within arbitrarily short
intervals. But under the conditions imposed in this section, movement back
to the origin is governed by the linear drift term whence the first point of
increase of ,C{T) is z/r, and then r~~(s) - 1/r as s - oo. It seems in this

case, then, that (3.6) should be replaced by

and direct computation with the stable(1/2) inflow process supports this
conjecture.

Using an argument similar to that leading to (2.4) shows that (3.7) from
follows from

Essentially this identity, but lacking the first term on the right, occurs as
(4) in Borovkov [6], and it is asserted as above (with r = 1) in Gani and
Prabhu [13, eq. (6.3)].



We prove (3.8) directly as follows. Observe that

The argument of Pz( . ) is achieved by

(i) first hitting the origin at T (0  T  t) followed by motion back to
zero at t, and the union of such events accounts for the integral at
(3.8) ;

(ii) first hitting the origin near time t.

This has probability get ~ z) dt. But the increment in (Lt) as it crosses
the origin at t is

where we have used Fubini’s differentiation theorem, or Theorem 1 of
Shtatland [34]. Hence this contribution is g(t ~ z) dz/r, and (3.8) follows.

The Levy measure p of /;(r) has a positive atom at infinity ~c ~~oo~~ _
1] == ~(o-f-), iff m > 0, and then

When exists, integration of (3.7) gives the explicit representation (cf
(2.1))

In particular J-l has the density

on (0, oo). This seems to be new and it can be used as follows.
Prabhu and Rubinovitch [30] have shown that rp is the canonical measure

of C, i.e. if p(t) = ~a (t E C) then



See Prabhu and Rubinovitch [30] for a thorough account of the properties
of C. They show also that

But since the integrand is equal to 1- + g(T ~ z) dT we deduce that

another new identity.

4. Asymptotic properties of Let)

As we mentioned in Section 1, the density (3.4) is very similar in

functional form to the class of discrete laws known collectively as basic

Lagrange laws. See, for example, (2/) in Pakes and Speed [28] and also the
references cited there. However, in the absence of a continuous version of the

Lagrange formula (for reversion of series), we do not recommend associating
"Lagrange" with densities of the type (3.4).

Explicit examples can be written down using known examples of the

infinitely divisible (infdiv) densities t). . Recall that the underlying law
cannot be compound Poisson, thus eliminating from consideration many
common infdiv laws.

Example 1. . - For the gammainflow process we have i(8) = log(1-I-6/a),

i 1

Here r enters simply as a scaling constant so with no loss of flexibility we

set r = 1 to get



This was first given by Kendall [22, p. 211] and subsequently has been
attributed by Letac and Mora [24, p. 20] to P. Ressel. They appended a note
recommending the descriptor "Kendall-Ressel". This family is analogous to
the Borel-Tanner law (Moran [25, p. 101]) which, annoyingly, is called the
Poisson-delta law by Johnson, Kotz and Kemp [19, eq. (3.119) on p. 143].

Many positive infdiv laws have infinite first moment, and then ~C (T ) is
defective. Non-defective hitting laws can be obtained be defining NEF’s
of subordinators as follows. This construction obviously is more generally
applicable.

For each c > 0 denote by (Ic,t) a subordinator whose cf is i(B + c) - i(c).
Its density, assuming it exists, is

Letting me = - r denote the mean drift rate, we see that m~  0
iff c > c where ë = 0 if i~(o)  r, and ë is the unique positive solution of
i~(c) = r when i’(o) > r.
Now let T denote the zero hitting time of the process (Ic,t - rt). Then

for any z > 0, £(T) is non-defective if c > c. Applying (3.4) to (4.2) shows
that the density of T is

where y = cr - i(c). From graphical considerations and (3.2), we can invert
this relation as c = where 7 > ~~ = re. Note that y = 0, if e = 0,
 0 otherwise. Hence

and

These laws comprise a NEF of non-defective laws for y > y. This
construction induces families of inverse pairs of laws ~;~(I~?1), ~C(T) } . See
Letac and Mora [24, sect. 5] (they use "reciprocal" for "inverse" ). We can
allow y  0 when c > 0; in fact Pz(T > t) = in this case. Later we
obtain an exact estimate of the upper tail of hitting time laws.

If (It) is a gamma process then so is (Ic,t) and hence the general form of
(4.1) is preserved under the NEF transformation.



Example 2.- If (It) is a stable(a) subordinator, with cf (A/a)9a,
0  a  1, then has a Hougaard [17] law H(cx, At, c). This law is

well-defined for a = 1 when c > 0 and then is a gamma process.

Apart from one other special case (see below) the density k( . , . ; c) does
not have an elementary closed form. Hougaard [17, p. 389] gives a series
representation which induces a complicated series expression for g( t ~ z). In
the general case we have

The case a = 1/2 yields closed expressions. It is known, Seshadri [33],
when c > 0 that Ic,t has an inverse-Gaussian law. For convenience we set

Then ~ = a = 2014y and

Explicit computation of the cf of T yields the representation

where

and cr) has the inverse Gaussian density

The same approach can be applied to the Bessel function densities described

by Feller [11, pp. 437-8].
We will now establish some limit theorems related to the upper tail of

~(T~. Expressed in general terms, the first of these can be extracted from
results of Bingham [1]. But here we give more specific results which, for the
subordinator case, will parallel results for Lagrange laws obtained by Pakes
and Speed [28]. Of course, some of these results are known, but seem not
easily accessible.

Suppose that n2 = / x2n( dx)  oo. Then in the general case



and when condition (S) holds we have, as above, m = ni - r, where
nl = Jooo When m  0 some computation from t1.2) yields

The central limit theorem yields

For comparison, see Theorem 4 of Pakes and Speed [28].
Suppose now that m = 0 and

where 1  b  2 and L( -) is positive and slowly varying at infinity (SV).
This is equivalent to oo) being SV. If second order moments are
finite then L(.c) 2014~f-t-~2’ .

For the subordinator case, if F(x) = x), we have 1 - 
n(x, oo), see Bingham, Goldie and Teugels [4, p. 341]. When 8  2, (4.4) is
equivalent to 

- 

and when b = 2 this truncated second moment is SV.

It follows immediately (Feller [11, p. 574]) that ((It - rt)/at) converges
weakly to a spectrally positive stable(6) law. More specifically, choose at > 0
so

Then

where M is SV, and

If ps(x) denotes the density of 58, then



The following result is analagous to Theorem 5 of Pakes and Speed [28].

THEOREM 4.1.2014 Let r = nl and (4.4) hold, and bz = -1/~(1/z). As
z -~ oo,

the positive stable law whose cf is 

Proof. - From (1.2) and (4.4) we have = s -~ 0, where
M is SV. Hence the cf of T /bz is

Next, we obtain some local limit theorems for the hitting density under
the following conditions. The first of these is related to the above NEF

transformation of k L . 
’

Condition (M). - There is a unique 8 E I~8 such that

In most cases 6 is the unique solution = 0, and such a 0 > 0 exists
when m > 0, and 03B8 = 0 when m = 0. Nothing in general can be said when
m  0, apart from 8  0.

Condition (B). - For some t > 0 the density h~( ~ , t) exists and is

bounded.

This condition is satisfied by the gamma and stable processes and, under
mild regularity conditions, by any density which is a generalized gamma
convolution ; see Bondesson [5, p. 50].
A ratio limit theorem holds under conditions (M) and (B): For any x,

See Stone [36, p. 88]. The following result is an immediate inference from
(1.5).



THEOREM 4.2. - If conditions (B) and (M) hold then for r, ~, z > 0,

This can be compared with the ratio limit theorem for basic Lagrange
laws given by Pakes and Speed [28, Theorem 1].
We now transform to the NEF (or conjugate or associated) law whose

density is

To go further we assume ( cf. (4.4)) a new condition.

Condition (R). - ~~(8) = 0 and for some 1  b  2,

where L is SV.

This says that the law defined by (4.7) with t = 1 is attracted to the

above spectrally positive stable(8) law. Let ni i = 1 , 2.
condition (R) entails n1  oo and + n1 = 0. If also n2  oo then
8 = 2 and L(oo) = v8 + n2.

If at is chosen so (4.5) is satisfied for 03C8, Lt/at ~ Ss, and a local limit
theorem for densities, Ibragimov and Linnik [18, p. 126], takes the form

Choosing y = -z/at, (4.8) yields the foreshadowed result about the upper
tail of ,~ (T) .



THEOREM 4.3. - If conditions (M), (B) and (R) hold, then as t --~ o0

and ps(0) is given by ~1~.6~. If n2  oo then

where V = v0 + n2.

Contrast this with Theorem 2 of Pakes and Speed ~28J . The finite variance
case is analagous to the much older result of Otter [26] for basic Lagrange
laws.

Example 1 again. - Here 9 = r-1 - a, 03C8(03B8) = ar - 1 - log(ar) and
n2 = r2. When r = 1,

This result is derived directly from (4.1) by Prabhu [29, p. 83], and it is

strikingly similar to a corresponding result for the Borel-Tanner law; see
Pakes and Speed [28, p. 748]. .

Example 2 again. - Here we take (It) as the Hougaard subordinator, so

Then

Condition (B) is satisfied as the Hougaard law is a NEF transformation of
a positive stable law, and the latter has a bounded density. Hence Theorem
4.3 applies in this case.

Fix x > 0 and let y = x-s in (4.9). Choosing z = x-I/8at in (4.8) yields
the following local limit result for the hitting laws.



THEOREM 4.4. - Assume conditions (M), (B) and (R ) hold, and that t,
z ~ oo in such. a way that --~ x > 0. Then

The corresponding result for basic Lagrange laws appears as Theorem 3
of Pakes and Speed [28]. When n2  oo our result becomes

Pakes and Speed [28] give some limit results for general Lagrange laws.
In our context these amount to allowing Lo to have a positive law which is
parameterized by f = E(Lo)  oo and which satisfies Lo -p oo as f --~ oo.
If ~( ~ ) is the cf of Lo then the cf of T is ~ ~r~(s)) . By considering the
conditional characteristic function (CF), of (T - given Lo,
it is straightforward to prove the following result.

THEOREM 4.5. - Let m  0, n2  oo, and w2 = var(Lo)  oo and

define

the mean and variance ofT. If

as .~ -~ oo, then

Limit results for Lagrange laws, whose proofs rest on limit theorems
for random sums, are given by Pakes and Speed [28]. They correct and
generalize an earlier result of Consul and Shenton [8]. The basis of these
results transfers in a simple manner to give the following limit results.



THEOREM 4.6. - If m.  0, n2  oo and

L ~ 
converges weakly to a law whose DF is H( . ) , , (4.10)

then (T - converges weakly to a. law whose characteristic function
(CF) is ~0 exp (-xt2/2)H(dx).

This limit law is a variance mixture of normal laws, the structural

properties of which are discussed by Rosinski [32]. A similar result in terms
of a scale mixture of stable laws holds when m = 0.

THEOREM 4.7.- If m = 0 and ~1~.,~) and (.~.~0~ hold, then T/b~
converges weakly to a positive law whose LST is ~0

Example 3.- Let a > 0, b ~ R and suppose Lo has the density
= If b  1 then .~ --~ oo as a ~ 0, indeed

When b  0 further calculation shows that Lo/.~ converges weakly to the

gamma law whose LST is (l+(l-6)"~)B . Then Theorems 4.5 and 4.6 are
applicable provided their other hypotheses are satisfied. When m  0 the

CF of the limit law is ~1-~-t2/2(1- 6)) , defining a symmetric Linnik law of
index 2. This law can be represented in the obvious way as the difference
of independent gamma variates with shape parameter -b. When m = 0
the limit law is a positive Linnik law. See Devroye [9] for references on this
attribution.

Now suppose b = 0 and let À(8) be the LST of Lo. Computation
shows for 0  .r  1 and 8 > 0 that ~ (8a~ ) -~ x as a -~ 0. The limit

is the LST of the measure xbo. Consequently 1) --~ x, or

U[ 0 , 1 ], the uniform law on [0, 1]. So when m  0,
we infer that ~[0, 1]. Similarly, when m = 0 and (4.4)
holds, we have

Finally, if b > 0 then hoe x) is a Pareto density. Hence as a ~ 0, £(T)
converges weakly to a Pareto scale mixture of the limiting normal and stable
laws of Theorems 4.5 and 4.6, respectively.



The result which follows is a continuous analogue of the "Second Consul
and Shenton theorem", as it is discussed by Pakes and Speed [28], giving
an approximation for .C(:T) when Lo is large and m ~ 0. Its proof, which
is based on (1.2), is similar in strategy to that of Theorem 7 in Pakes and
Speed [28], but simpler in detail.

As above we assume £(Lo) is parametrized by £ and satisfies (4.10). We
shall regard the law of (Lt) as being parametrized by m E (-oo, 0) through
its cf. For such m let 1/;m denote the cf and suppose the resulting family of
cf’s satisfies:

and

using obvious notation, the family of measures

If Vm = (0), which is finite, then

Under assumption (4.11) we have Rr,.,, {8) -~ 0 as m, 8 -~ 0.
Let be the cf of T induced by Then working from (4.12) and

(1.2) it is easily seen that -ms, and hence that

Consequently

where

The next theorem follows easily. Let be the LST of the DF H( . ) in
(4.10).



THEOREM 4.8. - Suppose (4.10) and (4.11) are satisfied. If l ~ oo and
m -~ 0- in such a way that --~ ~, > 0, then mZT converges in law to a
limit whose LST is h (~r~*(s)~ .

If H( . ) is degenerate, Lo/.~ ~ const. > 0, then the limit law is inverse-
Gaussian. This result supplements the limit-theorem derivations of this law
discussed by Seshadri [33].
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