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Moment problems
and polynomial approximation

CHRISTIAN BERG(1)

Annales de la Faculté des Sciences de Toulouse n° spécial Stieltjes, 1996

1. Historical introduction

In Stieltjes famous 1894-memoir [38, n° 24] he writes:

Nous appellerons problème des moments le problème suivant :
trouver une distribution de masse positive sur une droite (0,oo), les
moments d’ordre k (k = 0. 1, ...) étant donnés.

If {ck} denote these numbers, the problem consists in finding a positive
measure p on [0, ~[ such that

and for Stieltjes, a positive measure is given by an increasing function,
(cf. [38, n° 37]):

Le problème des moments que nous avons posé au n° 24 nous
conduira à considérer une distribution de masse quelconque sur une
droite Ox. Une telle distribution sera parfaitement déterminée si l’on
sait calculer la masse totale répandue sur le segment Ox. Ce sera

évidemment une fonction croissante de x, et reciproquement, étant
donnée une fonction croissante de x, on pourra toujours imaginer
qu’elle représente, de la manière indiquée, une distribution de masse.

(1) Matematisk Institut, Universitetsparken 5, DIi-2100 Copenhagen (Denmark)
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Then he defines the integral of a continuous function with respect to an
increasing function2013the Stieltjes integral.

In present day terminology Stieltjes gave the following characterization
of moment sequences.

THEOREM 1.1.2013 A real sequence {ck} has the form

for a positive measure p with infinite support if and only if

He came to the problem via a study of continued fractions of the

form (1.1) below, as we can see in the letter 325 of the Hermite-Stieltjes
correspondence, cf. [3] :

325.-STIELTJES A HERMITE

Toulouse, 30 janvier 1892.

CHER WONSIEL1R,

Je suis [...]. Mais justement, ces jours-ci, j’ai fait sur cette
théorie des fractions continues une remarque extrêmement simple
et dont j’ose vous entretenir. Soit

une fraction continue où

sont des nombres réels et positifs
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Si x est réel et positif, il est clair que les réduites d’ordre pair

tendent, pour n = oo, vers une limite déterminée F(x). De même les
réduites d’ordre impair

tendent, pour n = ~, vers une limite déterminée F1(x) et

[Du reste, d’après un théorème de Stern, on a F1(x) - F(x) &#x3E; 0

lorsque la série

est convergente ; mais, si cette série est divergente, on a

Le théorème général est celui-ci :

Supposons que x ait une valeur réelle ou imaginaire quelconque,
en exceptant seulement les valeurs réelles et négatives, en sorte que

la partie négative de l’axe des x est considérée comme une coupure.
Alors on aura toujours

et F(x), F1(x) sont des fonctions analytiques, uniformes et sans points
singuliers dans le domaine considéré.

Je possède depuis longtemps la démonstration de ce théorème, mais
elle est très difficile ; [...] 
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In the same letter he realizes that a moment problem can have severa
solutions (if F and F, above are different). He says:

L’existence de ces fonctions ~(u) qui, sans être nulles, sont telles
que 

me paraît très remarquable.

Nine months later, in the letters 349 and 351 separated by five days, he
gives more details about the convergence of the continued fraction in the
two cases: The indeterminate or determinate case depending on whether
§£ an is convergent or divergent:

351.-STIELTJES A HERMITE

Toulouse, 25 octobre 1892.

CHER MONSIEUR,

[...] Je me suis proposé d’élucider complètement la nature de
cette fraction continue (1.1) dans le cas où les ai sont des nombres
réels positifs.

Deux cas sont à distinguer, selon que la série £ an est conver-
gente ou divergente. Le premier cas est de beaucoup le plus facile
à traiter et, dans ma lettre [(349)], j’ai donné déjà le résultat es-
sentiel ; il y a deux limites

où les p, q, pi, q1 sont des fonctions holomorphes

Dans le second cas, où la série 03A3 an est divergente, le résultat est aussi
simple, mais, pour l’énoncer dans toute sa simplicité, il faut d’abord
quelques préliminaires, il est nécessaire d’élargir un peu la notion de
l’intégrale définie. En me réservant d’y revenir dans une autre lettre, je
me contenterai de dire que la fraction continue est convergente (il n’y
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a pas lieu de distinguer les réduites d’ordre pair et impair) dans tout le
plan, excepté la partie négative de l’axe réel. C’est là, en général, une
ligne singulière, et il est impossible de continuer la fonction analytique
en franchissant cette ligne. Mais ce qui est surtout remarquable c’est
la forme analytique sous forme d’intégrale définie qu’on peut donner
à cette fonction et dont je parlerai plus loin. [...]

ive see here the birth of the Stieltjes integral. Three days earlier Hermite
had answered the letter 349 full of admiration:

350.-HERMITE A STIELTJES

Paris, 22 octobre 1892.

MON CHER AMI,

Vous êtes un merveilleux géomètre, les recherches nouvelles

sur les fractions continues algébriques que vous me communiquez
sont un modèle d’invention et d’élégance; ni Gauss, ni Jacobi

ne m’ont jamais causé plus de plaisir, et je vous envoie mes
vives félicitations, en vous demandant si je dois publier, dans les
Comptes rendus, la partie mathématique de votre lettre. [...]

All these results were fully developped in the final memoir [38], where
Stieltjes gave several examples of indeterminate measures including the
following:

Since

all densities d03BB(t) on [0 , ~ [ given by

have the same moments

Once the moment problem for 0 , ~[ was formulated and solved by
Stieltjes, it was natural to look for a generalization to the whole real line.
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The breakthrough came in a long paper [24] from 1920-21 by Hamburger,
who proved:

THEOREM 1.2. - Given {ck}, then there exists a positive measure J-l on

R with infinite support such that

if and only if

In [33], M. Riesz proved the same result using a technique which
eventually was called Hahn-Banach’s Theorem. He points out that (1.2)
implies that the functional

on the polynomials is positive in the following sense:

Riesz makes an extension of L to a positive linear functional L defined on a
space containing the indicator functions for half-lines ]-~, 03BE], and in this
way he constructs the distribution function of the measure p to be found.

Riesz says in a footnote to [33]:

J’ai indiqué cette démonstration dans une conférence faite à la

Société Mathématique de Stockholm en avril 1918.

The method of Riesz concerning extensions of positive linear functionals
on the space of polynomials was taken up by Choquet [22] in an abstract
setting called adapted spaces. The method was succesfully applied to the
k-dimensional moment problem in work of Cassier [19] and Schmüdgen [36].

R. Nevanlinna [31] gave in 1922 another proof of Theorem 1.2 using
function theory.

For further details about the historical development of the moment
problem see Kjeldsen [28].
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2. The Nevanlinna parametrization

Let M*(R) denote the set of positive measures on R with moments of any
order and infinite support. For p e M*(R) let (Pn) be the corresponding
orthonormal polynomials determined by

In [24] Hamburger proved:

(a) If p is determinate, meaning that y is the only measure in M*(R’
with the same moments as M, then 03A3~n=0|Pn(z)|2 = oo for al.
z ~ C B R and all z e R except the at most countably many points z
where 03BC({z}) &#x3E; 0, in the case of which

(b) If 03BC is indeterminate, meaning that there are several measures in
M*(R) with the same moments as Il, then 03A3~n=0|Pn(z)|2  ~ for
all z E CC.

If 03BC is indeterminate we let V = V03BC denote the set of all v E M*(R) such
that

Clearly V is a convex set, and it can be proved to be compact in the weak
Io p ology, characterized by J-ln -+ J1 weakly if and only if f d03BCn ~ f dJ-l
for all functions f E C0(R), the continuous functions ,f : R - C vanishing
at infinity.

The set V was parametrized by Nevanlinna in [31]. The parameter space
is the one-point compactification P U {~} of the set P of Pick functions,
i.e. the set of holomorphic functions : CC B R - C satisfying
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Using the polynomials (Qn) of the second kind

it is known in the indeterminate case that the series 03A3|Pn(z)|2 and

03A3|Qn(z)|2 converge uniformly on compact subsets of C. Therefore the

séries

détermine entire functions, and they satisfy

The JvT evanlinna parametrization is the homeomorphism ~ ~ Vc.p of

P ~ {~} onto V given by

The special solutions vt, t e R~{00} corresponding to ~ ~ P~(~) being
a real constant (or oo) are called Nevanlinna extremal (short: N-extrerrtal).
The N-extremal solutions form a closed curve in 1,’. Since the right-hand
side of (2.1) is meromorphic in this case, they are discrete measures of the
form

(withAoo = Iz e C 1 B(z) = 0}).
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The N-extremal solutions were characterized by M. Riesz in 1923.

THEOREM 2.1 ([34]). - Let J-l E M*(R).

(a) If J-l is indeterminate and v E V03BC, then C[t] is dense in L2(v) if and
only if v is N-extremal.

(b) If J-l is determinate, then C[t] is dense in L2(03BC).

If )0 E P U {~} is a rational function of degree n, then 03BD~ is called

canonical of order n or n-canonical. If ~ = p/q, where p, q are polynomials
without common zeros, then

is again meromorphic, showing that 1/r.p is discrete with masspoints at the
zeros of Bp - Dq, the masses being given by the corresponding residues.
The 0-canonical solutions together with 03BD~ are the same as the N-extremal
solutions.

It is well-known that 1/ E V is n-canonical if and only if the measure

(1 + x2)-n d03BD(x) is N-extremal, cf. [1, p. 121]. Another characterization

of n-canonical measures is given in the following result of Cassier, which
generalizes the Theorem of Riesz.

THEOREM 2.2 ([18], [17]). A solution 1/ E V to an indeterminate

moment problem is n-canonical if and only if the closurt C[t] of the
polynomials in L2(03BD) is of co-dimension n.

Theorem 2.1 is the earliest result in the class of problems we shall discuss:

Let 03BC E M*(R) and 1 ~ 03B1  ~. Characterize the 03BC and 03B1 for which

C[t] is dense in L03B1(03BC).
This can equally well be studied in Rk.

3. Polynomial approximation

In Rk we consider the set M*(Rk) of positive measures 03BC on Rk for which

where C[x] = C[x1, ..., zk denotes the set of polynomials in k variables.
Let y E M*(Rk) and 1 ~ a  oo be given. Our main concern is if C[x] is

dense in L03B1(03BC).
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By HBlder’s inequality

so there exists a critical exponent p = 03C1(03BC) ~ [1, ~] such that

As in section 2 we consider the set 11tL of measures v E M*(Rk) such that

We say that J-l is determinate if V03BC = tpl, otherwise J-l is indeterminate, in
the case of which Vtt is a weakly compact convex set of measures.

We recall the following result of Naimark from 1947:

THEOREM 3.1 ([30])

(i) If J-l is determinate, then C[x] is dense in L1(03BC).
(ii) If J-l is indeterminate and v E V03BC, then C[x] is dense in L1 (v) if and

only if v is an extreme point of 1/tt.

Proof . (Gelfand) If C[x] is not dense in L1(03BC) there exists f E L~(03BC)
such that f 1:- 0 and

vVe may assume ,f real-valued and -1 ~ f ~ 1. Then

with 03BC+ ~ p-. This shows that p is not an extreme point of V03BC.

Conversely, if p = (1/2) (J-l1 + p2) with 03BC1, 03BC2 ~ V03BC being different, then
since 03BCj ~ 2p we have 03BCj = 2fj(x) dp(x) with 0  fj ~ 1, and hence

This shows that C[x] is not dense in LI (p). 0



- 19-

THEOREM 3.2.- If J-l E M*(Rk) is indeterminate, then the critical

exponent 03C1(03BC) ~ 2.

Theorem 3.2 was proved in [8] for k = 1 using the reproducing kernel
03A3Pn(x)Pn(y) for an indeterminate moment problem. The proof in [23] is
for any k and uses the theory of operators in Hilbert space.

THEOREM 3.3. For J-l E M*(Rk) let

If 03A3 1/ 2B1 À2n = oo, then p(J1) = oo.

For k = 1 the infinite series condition is the Carleman condition which
is sufficient for determinacy. For a proof in this case see [9].

Theorem 3.3 can be deduced from the case k = 1 using results relating
moment problems in one and several dimensions.

Let 7rj : : mk - R denote the projection 03C0j(x1, ..., xk) = Xj, and for
03BC ~ M*(Rk) let 03C0j(03BC) denote the j’th marginal distribution of p given by
xj(p)(B) = 03BC(03C0-1j(B)) for Borel sets B ~ R.
THEOREM 3.4 ([32]).2013 Let 03BC E M*(Rk).

(i) If C[t] is dense in L03B1(03C0j(03BC)), j = 1, ..., k for som e cx &#x3E; 1, th en

C[x] is dense in L03B2(03BC) for 1  03B2  a.

(ii) If 03C01(03BC), ..., 03C0k(03BC) are determinate. then J-l is determinate.

Remarks

(a) It is easy to establish (ii) once (i) has been proved. The idea is to prove
that any v ~ V03BC is an extreme point of l- . If this is so then necessarily
V03BC = {03BC}. For v E Vt1 it is clear that 7r j (J-l) and xj(v) have the same
moments so by the assumption in (ii) we have xj(p) = 03C0j(v). By the
Theorem 2.1 of Riesz C[t] is dense in L2(03C0j(v)) for j = 1, ..., k and hence
03C1(v) ~ 2 by (i). By Theorem 3.1 we get that v is an extreme point of V03BC.
(b) There exist determinate n1easures J-l E M*(Rk) for which 03C01(03BC), ...,

xk( p) are indeterminate, cf. [32]. One can even obtain this for rotation

invariant measures y, cf. [7].

If p E M*(R) is determinate we have 03C1(03BC) ~ 2 by the Theorem 2.1 of
Riesz.
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THEOREM 3.5.2013 There exist determinate measures as well as indeter-

minate measures 03BC E M*(R) with 03C1(03BC) = 2.

For the proof of this result we need

LEMMA 3.6. 2013 Let 03BC E M*(R) and xi  ...  zn, 03B11 &#x3E; 0, ..., an &#x3E; 0

be given and define

Then p(u) = p(p).

Proof. - Since 03C3 ~ J1 we have 03C1(03BC) &#x3E; p(u).

Suppose next that C(x) is non-dense in L’(o-) for some a &#x3E; 1. ’iVe shov

that C[x] is non-dense in L03B1’(03BC) for all 03B1’ &#x3E; a and therefore 03C1(03BC) ~ p( u).
If 1/03B1 + 1/03B2 = 1 there exists f E L03B2(03C3) B {0} such that

Let po(x) = 03A0ni=1 (x - Xi) and put g(x) = f (x)po (x). For any 1  03B2’  ,C
we have 9 E L(3’ (p) by Hblders inequality because

1’ urthermore

showing that C[x] is non-dense in LÙ’(J-l), where 1/03B1’ + 1/03B2’ = 1, i. e. for

any 03B1’ &#x3E; 03B1. ~
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Let us start with an indeterminate and lV-extremal measure p and let us

remove k ~ 1 point masses from p to get

where A C supp(p) has k points. Then T is determinate (and of index of
determinacy k - 1, cf. sect. 5). If we instead add k new masses to ii, we get

where al, ..., ak are different points of RBsupp(03BC). Then o- is indeterminate
and k-canonical, cf. [18], [17].

By the Lemma 3.6

since 03C1() ~ 2 by Theorem 2.1 and 03C1(03C3) ~ 2 by Theorem 3.2.
The denseness of C[t] in L"(p) is governed by a function AI, introduced

in connection with the Bernstein problem of weighted approximation, cf.

[29]. This function is called the Hall-Mergelyan majorant.

LEMMA 3.7. - Let p E À4*(ùÉ) and 1 ~ a  oo and define

Then te[t] is dense in L03B1(03BC) if and only if there exists zo ~ C B supp(p)
such that M03B1(z0) = oc. In the affirmative case M,,,(z) = oc for all

z ~ C B supp(p).

Proof. - Assume first that M03B1(z0)  oc for some zo ~ C B supp (p) - If

we define the new measure

and let Il . Il. denote the norm in L03B1(03BC03B1), we havI
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so by the Hahn-Banach Theorem there exists g E L03B2(03BC03B1), where a and fi
are dual exponents, such that

If this is applied to polynomials vanishing at zo, we find for p e C[t]

and since g(t)(t - z0)/(1 + |t|)03B1 ~ L03B2(03BC), we see that C[t] is not dense in

L03B1(03BC).
Assume next that C[t] is not dense in L03B1(03BC). Again by the Hahn-Banach

Theorem there exists g ~ L03B2(03BC) B {0} such that

lue Gauchy transtorm

is holomorphic in C B supp (03BC) and not identically zero. For zo E C B supp (03BC)
and p e C[t] we get by (3.1)

so if ~(z0) ~ 0 we find

i.e.

with

Note that E is continuous in {z E C B supp(p) |~(z) ~ 0}.
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If cp(zo) = 0 we choose 0  r  dist (z0, supp(p» so that )O(z) =1 0 for
|z - zol | = r, and by the maximum principle we get

with 7B = max|z-z0|=r I«z). The equations (3.2), (3.3) show that

M03B1(z0)  ~. ~

Using the Lemma 3.7 Sodin [37] proved the following

THEOREM 3.8. - Let s &#x3E; 1 and define

Then 03C1(03BC) = s.

Remark. 2013 By the above result any number A E ] 1 , ~ [ is the critical
exponent of some nieasure p e M*(R). If p is indeterminate and not

an extreme point of V,, then p(p) = 1, and if the Carleman condition is
fulfilled then p(p) = oo. Thus any À ~ [1, oo is the critical exponent of
some p e M*(R). This result was established in [9] for 03BB ~ 2 and left open
for À &#x3E; 2, cf. [4].

4. Rotation invariant measures

The natural question whether Theorem 2.1 of Riesz extends to dimension
k &#x3E; 1 was open for a number of years, cf. [23], [25, p. 529], until it was
answered in the negative by Berg and Thill in [13]. In [25] the problem is
ascribed to the physicist J. Challifour (1978).

THEOREM 4.1 ([13]).- For k &#x3E; 1 there exist determinate measures

03BC ~ M*(Rk) for which C[x] is not dense in L 2 (p).
In his survey paper [23] about the multidimensional moment problem

Fuglede introduced two new notions of determinacy. The two notions were
formulated as certain conditions of self-adjointness of the multiplication
operators Xjp = x.,p(x) with domain C[X1, xkl in the Hilbert space H
equal to the closure of C[x] in L2(03BC).
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Fuglede characterized these notions in terms of approximation properties:

(i) p is ultradeterminate if and only if C[x] is dense in

L2 ((1 + Ilx112) d03BC(x)).
(ii) p is strongly determinate if and only if C[x] is dense in

L2((1 + x2j)d03BC) for j = 1, ..., k.
(iii) If p is strongly determinate, then p is determinate and C[x] is dense

in L2(03BC).

The condition of ultradeterminacy clearly implies strong determinacy.
Schmüdgen [35] found an example of a strongly determinate measure which
is not ultradeterminate and an example of a determinate measure which is
not strongly determinate.

The latter also follows from Theorem 4.1, which is based on a study of
rotation invariant measures in Rk.

There is a bijection between rotation invariant measures M on Rk and
measures o- on 0 , oo [ established as u = u5(p), the image measure of p
under e Rk ~ [0, oo[ defined by e(x) = ~x~2, i.e.

If j : [0, ~ [ x Sk-1 ~ ntk is given by j(t, 03BE) = t03BE, then J-l = j(03C3 ~ 03C9),
where w is normalized surface measure on the unit sphere Sk-1. ThE

moments of y determine the moments of o- and vice versa:

which is zero unless all n j are even.

For cr E M*([0, ~[) (i.e. o- E M*(R) is supported by [0, ~[) there
are two notions of determinacy to be distinguished: Determinacy in the
sense of Stieltjes (det(S)) meaning that there is only one measure on [0, oo[
with the same moments as 03C3, and (ordinary) determinacy (or determinacy
in the sense of Hamburger, det(H)), meaning that there is only one measure
on R with the same moments as u.

It should be emphasized that there exist measures a e M*([0, ~[)
which are det(S) but indet(H), i.e. in the infinite convex set V03C3 the measure
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u is the only one supported by 0 , 00 [. This measure o- is necessarily
03C3 = v0, the N-extremal measure corresponding to the parameter ~ 0 in
the Nevanlinna parametrization, cf. [14], [21].

The paper [13] contains two key results relating p E M*rot(Rk) and the
corresponding 03C3 ~ M*([0, ~[) such that (4.1) holds.

THEOREM 4.2. Given p ~ M*rot(Rk), k ~ 1. Th e n is determinate
if and only if u is det(S).

THEOREM 4.3.2013 Given J.l ~ M*rot(Rk), k &#x3E; 1. Then C[x1, Xkl is
dense in L2(03BC) if and only if c[t] is dense in L2(tp d03C3(t)) for p = 0, 1, ...

Remarks

(i) Theorem 4.3 requires k &#x3E; 1. For k = 1 the corresponding assertion is
(relating a symmetric measure M and u = 03C8(03BC) where 03C8(x) = x2) : C[x] is

dense in L2(03BC) if and only if C[t] is dense in L2(03C3) and in L2(t do-(t» .
(ii) Theorem 4.3 is part of the following general result [13] about M E
M*(Rk) not neccessarily rotation invariant and o- 03C8(03BC): Let 1 ~ a  oo.

If C[t] is dense in L03B1(t(1/2)d03B1 d03C3(t)) for d = 0, 1, ..., then C[x] is dense in

L03B1(03BC). As a consequence of this result we get the following relation between
the critical exponents of p and cr.

COROLLARY 4.4.2013 Let ~ M*(Rk) and u = 03C8(03BC). If 1  03C1(03C3) then

03C1(03C3) ~ 03C1(03BC).

Proof. - Assume that C[t] is dense in L03B1(03C3), where 1  03B1  00. It

suffices to prove that C[t] is dense in L03B1’(t(1/2)d03B1’d03C3(t)) for d = 0, 1, ...
and 1  a’  a. For p e C[t] and f E Cc([0, ~[) we find by H61der’s
inequality

where s is the dual exponent of 03B1/03B1’. The first factor can be made as small
as we please by assumption. 0

Combining Theorems 4.2 and 4.3 we get the following result.
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THEOREM 4.5. Let 03BC E M*rot(Rk), k &#x3E; 1 with corresponding u E
M*([0, ~[). Then 03BC is determinate and C[x] is not dense in L2(03BC) if
and only if u is det(S) and there exists p ~ N such that C[t] is not dense in
L2 (tP du(t)).

fihe measures a in the theorem above are necessarily obtained from some
N -extren1al measure r E M*([0 , ~[) by removing a finite number of its
masses (cf. sect. 5). In particular 03BC has the form

where wr is the normalized uniform distribution on the sphere /1 x Il = r.
COROLLARY 4.6.2013 If J1 E M*rot(Rk) is determinate and absolutely

continuous, then C[x] is dense in L2(03BC).

Example. - Let vo be indet(S) and the N-extremal solution correspond-
ing to the parameter value )0 == 0. The measure cr = vo - v0({0}) bo has
the properties (cf. [13]): 03C3 is det(H), and C[t] is dense in L2(tp du(t)) for
p = 0, 1, 2 but not for p ~ 3. The corresponding rotation invariant measure

has the following properties (cf. [13], [7]):

(i) p is determinate.

(ii) C[x] is dense in L03B1(03BC) for 1 ~ cx  2 but not for a = 2.

(iii) dim (L 2 ~ C[x]) = oo.
(iv) The marginal distributions are indeterminate.

An explicit example of a measure Po as above is given in section 6.

5. Measures of finite index

Inspired by Theorem 4.5 the following (Stieltjes) index of determinacy
was introduced in [13] for measures cr e M* ([ 0, ~[) which are det(S):

and the following result was obtained.
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THEOREM 5.1. 2013 For u E M* ([0, 00 [) which is det(S) the following
conditions are equivalent :

(i) i(03C3) = 0,

(ii) (j = VO - v0({0}) 80, where vo is the N-extremal solution with

parameter value 0 corresponding to a Stieltjes moment problem which
is indet(S).

Furthermore, the measure o- has finite index j ~ 1 if and only if
(j = a 80 + t-3 d(t), where 7 E M*([0, oo [) has index zero and

a ~ 0.

Motivated by the above and polynomials orthogonal with respect to a
matrix of measures, Berg and Duran [10] introduced the following index of
determinacy for determinate measures J-l E M*(R) and z ~ C

and the following result was proved:

THEOREM 5.2

(i) if 7 = ZACA aA 6A is indeterminate and N-extremal, and if 0 C A
has k + 1 points, then for J-l = 03A303BB~B0 a03BB 6A we have

(ii) If 03BC is determinate and indz(03BC)  oc for some z E C, then p is

derived from an N -extremal measure T as above and indz(03BC) is given
by (5.3).

Let m e M*(R) be determinate. We define ind(p) = k if (5.3) holds;
otherwise indz (p) = oo for all z e C and we put ind(03BC) = oo.

if 0- E M*([0 , ~[) is det(H) and a fortiori det(S), the following relation
holds between the two indices of determinacy:

where [x] is the integral part of x in case x  oo and [00] = oo.
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A determinate measure 03BC E M*(R) of finite index is discrete and can be
written as 

where an &#x3E; 0 and 0 ~ |03BB1| ~ |03BB2| ~ .... The canonical product
7B.T

(with 1 - z/03BB1 replaced by z if 03BB1 = 0) converges uniformly on compact
subsets of C to an entire function of minimal exponential type vanishing at
A = {03BBn} = supp(03BC), cf. [10].

Let (Pn ) be the corresponding orthonormal polynomials. The result of
Hamburger in section 2 can be stated that (Pn(z)) E f,2 if and only if

F03BC(z) = 0. In [10] we considered the question whether (P(m)n(z))n C £2,
and it turned out that for ind(03BC) &#x3E; 0, m ~ 1 this is never the case,

but for ind(03BC) = 0 it was established that (P(m)n(z))n ~ ~2 if and only
if F(m)03BC(z) = 0, and this holds for countably many points.

In [11] we considered general discrete differential operators of the form

where k~ ~ 0, aÊ,, e C, and z1, ..., zN are different complex numbers. ive
are interested in the question whether (T(Pn)) e ~2, which is of interest
because this condition is equivalent to the assertion that

has a continuous linear extension from C[t] to L2(03BC).
THEOREM 5.3. - Suppose ind(J1)  00 and let F03BC be as above. Then

(T(Pn))n ~ ~2 if and only if T(zkF03BC(z)) = 0 for k = 0, 1, ..., ind(03BC).
If Zl, ..., ZN E rc B supp(J1) and k1, ..., kN ~ 0 are fixed but a~,j ~ C

variable then



-29-

This result can be used to realize L2 (p) as a Hilbert space of entire

functions in the sense of de Branges [16] in case ind(03BC)  oo. For details

see [12].
Determinate measures of finite index are in a certain sense indeterminate

measures which are canonical of negative order. This is to be understood
in the following sense: If p is indeterminate and canonical of order n ~ 0,
and if 0 ~ k masses are removed, then the modified measure P is canonical
of order n - k if k ~ n. However if k &#x3E; n, then the modified measure fi is

determinate and ind() = k - n - 1.
The analogy can be pursued further in the direction of Theorem 2.2.

It turns out that for determinate measures M of finite index k, not only
the polynomials are dense in L2(03BC), but also a certain polynomial ideal of
co-dimension k + 1 in C[x] is dense in L2(03BC):

THEOREM 5.4 ([11]).2013 Assume that ind(03BC) = k and let R E C[x] be a

polynomial of degree k + 1 such that R(z) e 0 for z E supp(p). Then the

ideal RC[x] is dense in L2(03BC).

6. Examples

Let 0  q  1 be fixed. We define

and shall also use the short notation

Let

where

is the Gauss binomial coefficient.
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Al-Salam and Carlitz [2] noticed that

is a Stieltjes moment sequence for 0  a and found a measure with these

moments

These measures were considered further by Chihara ([20], [21]), who
proved that the moment problem is indeterminate as a Hamburger moment
problem for q  a  1/q and otherwise determinate. Furthermore m(a) is

the N-extrenial measure corresponding to the parameter value i = 0 when
q  a  1/q. Ismail [26] found the right normalization of the measures m (a)
and 0’( a). For a self-contained treatment of this moment problem we refer to
the paper [15] by Berg and Valent. It also contains an explicit determination
of the functions A, B, C, D in the indeterminate case. In addition it is

shown that Carleman’s series 03A3 1/ 2n s2n(a) converges for 0  a, 0  q  1.

(This is a concrete example demonstrating that Carleman’s condition is not
necessary for determinacy.)

For further examples of N-extremal measures see [15] and [27].
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