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On the structure of certain Weingarten surfaces
with boundary a circle(*)

FABIANO GUSTAVO BRAGA BRITO(1)
and

RICARDO SA EARP(2)

Nous donnons une caractérisation d’un type particulier de
surfaces de Weingarten parametrees par un disque, en supposant celles-ci
bordées par un cercle rond. Dans ce travail, nous generalisons plusieurs
résultats établits par W. Meeks, H. Rosenberg et les auteurs concernant
les surfaces de courbure moyenne constante.

ABSTRACT. - A characterization of a special type of Weingarten disk-
type surfaces is provided when they have a round circle as boundary.
The results in this paper extend previous ones established by W. Meeks,
H. Rosenberg and authors where the considered surfaces were assumed to
have constant mean curvature.

1. Introduction

We study in this paper a certain class of surfaces M in R3 satisfying a
Weingarten relation of the form

H=f{H2-~1~) (1)

where H is the mean curvature, ~i is the Gaussian curvature and f is a real
smooth function defined on a interval [20146;, oo), 6; > 0.

Furthermore, we require that f satisfies the inequality

4t( f(t)) 
2 
 1 . (2)

(*) Reçu le 3 février 1995
{l Mathematics Department, Universidade de Sao Paulo, 01498 - Sao Paulo (Brasil)
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We call such a function f, elliptic, when it satisfies (2). The reason for
this denomination is that equation (1) and inequality (2) give rise to a fully
nonlinear elliptic equation. We call M a special surface when M satisfies
H = - for f elliptic. They have been studied by Hopf [8], Hartman
and Wintner [7], Chern [5] and Bryant [3]. Here, we extend some results
for constant mean curvature surfaces obtained in [2] and [6], when M is
topologically a disk. Precisely we prove the following theorems.

THEOREM 1.2014 Let M be a disk type special surface immersed in R3.
Assume 8M is a circle S‘1 of radius 1. . Suppose f is analytic with f (0) > 0.
Then:

a) f (0)  1,

b) if f (0) = 1, M is a halfsphere.

THEOREM 2.2014 Let M be a disk type special surface embedded in R3
Assume 8M is a circle of radius 1 contained in the horizontal plane
?l = {z = 0}. Suppose f > 0, f (0) > 0 and M cuts transversely ?-~ along
8M. Then M is a spherical cap.

We remark that the ellipticity condition (2) on M allow us to apply
maximum principle (for special surfaces) and Alexandrov reflection principle
techniques as it was applied in [6] and [10], for constant mean curvature
surfaces (see Hopf’s book [8] for further details). Futhermore, we notice that
R. Bryant constructed a global quadratic form Q on a surface M satisfying
(1) such that the zeros of Q are the umbilical points of M (see [3]). These
facts emphasize the analogy between special surfaces and constant mean
curvature surfaces. Now we state and prove the maximum principle for
special Weingarten surfaces in I~3 satisfying (1) and (2) in the form we
shall need: if M2 are tangent at p, Mi, on one side of M2 near p, both

Mi, M2 satisfying (1) and (2) with respect to the same normal N at p then
Mi = M2 near p. By a standard argument Mi = M2 everywhere.

1.1 Interior maximum principle

Suppose Mi, M2 are C2 surfaces in R~ which are given as graphs of C2
functions u, v Q C JR 2 2014~ R.

Suppose the tangent planes of both Mi, M2 agree at a point (~, y, z) ; ;
i.e. = for z = y) = v(x, y), (~, y) E SZ.



Let and H(N2) be the mean curvature functions of u and v with
respect to unit normals A~i and N2 that agree at {x, y, z) . Let be the

Gaussian curvature of Mi , i = 1, 2.

Suppose Mi satisfy

, i = 1, 2 ,

for f satisfying (2).
If u :5 v near (x, y) then M2 near (x, y, z), i.e. u = v in a

neighbourhood of (.c, y). .

1.2 Boundary maximum principle

Suppose Mi, M2 as in the statement of the interior maximum principle
with C2 boundaries Bi, , B2 given by restrictions of u and v to part of the
boundary 8~.

Suppose = and = for z =

u(x,y) = v(x,y), with (x,y,z) in the interior of both Bi and B2. .

Suppose Mi M2 satisfy (1) and (2) with respect the same normal N at

If u :5 v near (x, y) then M1 = M2 near (x, y, z), i.e. u = v in a

neighbourhood of (.r, y) . .

2. Proof of the interior and boundary maximum principle

Clearly, by applying a rigid motion of R3 which does not change the
geometry of the statements, we may suppose the tangent planes of both
Mi M2 at (x,y,z) are the horizontal xy plane P = {z = 0~, and the unit
normals N1, N2 at (x, y, z) are equal to N = (0,0,1).

First, we fix some notations. We denote

P1 = ~u ~x, q1 = ~u ~y

_ 

8v 8v
P2 = 

~x 
’ Q’2 = 

~y

~2u ~2u ~2u
8y2 ’ 

~=~. ’ ’ s2 " 
(~x ~y 

.



With this convention the normals ~Vi and ~2 are given by

~~~-~’~ ’=~’
The mean curvature ~ and the Gaussian curvature ~, are given by

2Hi = 1 (1+p2i+q2i)3/2 ((1 + p2i)i - wpiqisi + (1 + q2i)ri)
Ki = 1 (1+p2i+q2i)2(rii-s2i)

fort =1,2.

We may write equation (1) for Mi and M2 in the following way

for i = 1, 2, where F is a C1 function in the p, g, r, s, r variables. We fix

(:c,!/) ~ 03A9 and we define for t 6 [0, 1 ]:

= F + (1 - )p2 , ~l + (1 - ~)?2 , ~l + (1 - ~2 , ~.
~1 + 1(1-)S2,7-1+(1-~)7-2). 

Let u; = u 2014 ~.

By applying the mean value theorem, using equation (3) and differenti-

ating equation (4) we are led to the linearized operator on H denned by

Lw := ~F ~r(03BE)~2w ~x2 + ~F ~s(03BE)~2w ~x~y + ~F ~r(03BE)~2w ~y2++ ~F ~p(03BE)~w ~x + ~F ~q (03BE)~w ~y = 0 (5)

where

~=(p~r~r)

p = cpi + (1 - c)p2 ~ 9 = ~i + (1 - c)~2

r = cri + (1 - c)r2 , .5 == cs1 + (1 - c)s2 , r = c1 + (1 - c)?-2



for 0  c{x, y)  1. Notice that the principal part of L is given by the
symmetric matrix

- ~F 1 aF

A = A(p, q, r, s, )= [1 2~F ~x ~F ~]2 8s ÔT

Computations show that if p = q = 0 then trace A = 1 and

det~=~(l-4(/~))’) ,
where

t = 
[(1+p2)-2pqs+(1+q2)r 2(1+p2+q2)3/2]2 

- 1 (1+p2+q2)2 (r-s2). (6)

Now, consider in formula (6)

r = cri + (1 - c)r2 , 

where qui r i, Si and i are varying in a neighbourhood of (x, y) and c is
varying in the interval [0 , 1]. We see easily that the non negative quantity
t = t(p, q, r, s, T) is bounded from above. Hence 1 - 4t ( f’{t)) 2 > ~c > 0 in
this neighbourhood (c is varying between 0 and 1), for some positive real
number As Pi = qi = 0 at (x, y), i = 1, 2, by continuity we have that in a
neighbourhood V of (x, y) the matrix is positive definite. Furthermore,
there is a positive real number Ao such that

~F ~r(03BE)~21 + ~F ~s(03BE)~1~2+ ~F ~(03BE)~22 ~ 03BB0(~21 + ~21)

for any (x, y) in V and any real numbers ~2. Consequently, L is a

linear second order uniformly elliptic operator with bounded coefficients in
a neighbourhood of (x, y). The same conclusion holds if (x, y) is a boundary
point as in the hypothesis of the boundary maximum principle statement.

Finally we have in a neighbourhood of (x, y)

Lw=0, ~ ~ 0 , u;(.r, y) = 0 .



If (x, y) is an interior point then w = u - v = 0 in a neighbourhood of

{x, y), by applying the interior maximum principle of Hopf.
If (x, y) is a boundary point lying in the interior of a C2 portion

contained in Q, then w attains again a local maximum at {~, y) with

{aw/w) (~, y) = 0, where v is the exterior unit normal to S2 at (x, y) . This
implies by using the boundary maximum principle of Hopf that w = 0 in a

neighbourhood of (.c, y), as desired. We conclude the proof of the maximum
principle for special Weingarten surfaces in 

We remark that the maximum principle above leads to an Alexandrov
theorem for special Weingarten surfaces. . That is, a closed embedded special
Weingarten surface M given by equation (1) with respect to a unit global
normal N, for f elliptic, is a sphere. Hence, f (o) ~ 0 and M is a sphere of
radius R = 1/ I f (4) ( . .

3. Proof of Theorem 1

We consider M an immersed smooth special surface in R3 and N an unit
normal vector field. We denote by (’, ’) the inner product in R3 and by V
the standard covariant derivative in The mean curvature vector ~ of
M at p is given by

- 
a1 (p) + 2 ~2 (p) 

where Ai(p), ~2(p) are the principal curvatures of M at p (respecting to N) .

3.1 Proof of assertion a)

Suppose first that there is an umbilical boundary point p E Denote

by v a unit tangent field along 8M = Then,

.f{~) = = ~~p ~ 1 ~ {3’1)

Suppose now there are no umbilical points on the boundary. Notice that
the set U of umbilical points of M is finite. Otherwise M is a spherical cap
and f (0)  1. This follows from the proof of theorem 3.2 of H. Hopf’s book

[8, p. 142], and from the fact that M is compact.
Let a1, a2 the principal curvature functions with Ai  ~2

on M B U. . Let us prove first that ellipticity condition yields

A2 > f {0) on M B U . (3.2)



Indeed,
A2 = F + - f{~2-~’)-E- H2 - Ii

and the ellipticity condition

4t ( f ~{t)) 2  1

assures

g(t) = I(t) + ~

is a monotonic increasing function for t > 0.

Denote by .~’2 the principal line distribution on M B U associated to the
principal curvature A2 . Clearly, there is a point p E 8M where ~’2 is tangent
to 8M at p, i.e. Tp 8M = ~"2 (p). If not we would obtain a line foliation

of M transverse to 8M and finite number (possibly none) of singularities
of negative indices (see [8]); this is impossible since M has disk topological
type. Choose then p E 8M such that Tp 9M = ~’2{p).

Clearly
~2 ( p) =  1 (3.3)

by inequalities (3.1), (3.2), (3.3)

f(0)  1.

This proves assertion a). 0

3.2 Proof of assertion b)

Notice first that there is an extension for M beyond 8M satisfying
H = f {~I2 - ~~ ), f elliptic and analytic. This is so, because of the boundary
regularity for the underlying analytic elliptic partial differential equation
([4], [11]). If f(0) = 1 we will show that there are infinitely many umbilical
points in 8M . The resulting non-discreteness of U will so imply M is totally
umbilical [8].

Suppose by absurd 8M has finitely many umbilical points. Observe that
the foliation ~’2 defined on M B U is transverse to 8M B U. . To prove this,
suppose p E 8M B U is such that ~’2(p) is tangent to 8M B U. By equations
(3.2) and (3.3), we derive a contradiction because f(0)  ~2 (p)  1.

Suppose now, there are no umbilical points on the boundary 8M. This
means (by what we have just proved) that ~’2 is transverse to 8M. In this



case ~’2 may be seen as a foliation of M with finite number of singularities
with negative index [8]. This is a contradiction since by our hypothesis M
is a topological disk.

For the case where 8M has a non zero finite number of umbilical points,
consider a umbilical point p E 8M, and let M to be an extension of M
beyond the boundary 8M . .

We first see that p is a singularity of ~2 with negative index and finite
number of separatrices, all of them smooth at p. Moreover, there is at least
one separatrix going from p to the interior of M. In other words there is at
least one separatrix such that, its interior tangent vector at p, say u, satisfies

(u, yy) > 0, where ~ is the interior co-normal of M at p. This is a consequence
of a straightforward computation using Bryant holomorphic quadratic form
[3] such that, in a neighbourhood of p, the foliation is diffeomorphically
equivalent to the standard foliation

Imzn(dz)2 = 0
on the complex z-plane.

Observe now that the foliation ~2 on M B U is topologically equivalent
to a foliation with finite number of singularities on M. Some of them are
interior singularities on M. Others are in the boundary Those which

are in the boundary have separatrices (at least one) coming tranversally to
8M (fig. 1). In order to see this situation is topologically impossible, we
just recall M is a topological disk and use double construction to obtain a
foliation of a topological sphere S’2 with finite number of singularities, all
of them with negative index.

This concludes the proof of Theorem 1. D

Fig. 1



4. Proof of Theorem 2

Suppose without loss of generality that M is locally contained in the
upper halfspace H+ = {z 2 0} in a neighbourhood of ~M. We also identify
8M with the unit circle 5’1 centered at the origin 
We first show that boundary roundness determines the behavior of the

mean curvature vector I-~ along the boundary (in fact, only convexity of
8M is required). Precisely we state the follows result.

CLAIM 1. - Let p E Then ~ H (p) , p~  0.

Proof of Claim 1

Suppose first that there is a umbilical point Take a unit vector

field v tangent to Then umbilicity yields

H(N) = 

If N = then the mean curvature H is positive and , N~ =
~H~ > 0. So (-p, , M~ > 0, as desired, for = -p is the acceleration

vector of 

For the case where there is no umbilical points on 8M we recall that
the foliation ~’2, parallel to the line field associated to the bigger principal
curvature A2 defined over M B U, has to be tangent to 8M = in some

point p. Let p E 8M be such that F2(p) is tangent to aM. Clearly

03BB2(p) =~vv
, 

|H|p 
> 0 .

Notice that Claim 1 means the following: the orthogonal projection of the
mean curvature vector H on x points into the interior of the planar domain
D contained in ?-~ bounded by aM. We will denote D by int o~M.

We now define Mi C M to be the connected component of M n ?-~+
which contains 

CLAIM 2. 2014 Mi n x c int (~M.

This follows from Claim 1 and from Alexandrov Reflection Principle
techniques used exactly in the same way it was used in the proof of
Theorem 1 of [6, p. 337].



Let us denote the vertical cylinder on ?-~ over the circle of

radius 1/ f (0) centered at the origin.

CLAIM 3. - There is a point p E 8M such that

H
~N > f (0) for N = . 

.

This means there is a point p E 8M where the surface M has bigger (or
equal) inclination respect to xy plane than the small spherical cap of radius
1/ f (o) bounding 8M.

Proof of Claim 3

Let p E ~M be a point of 8M where ~’2(p) is tangent to ~M at p (proof
of Claim 1 ) . Then, at this point p we have

~-p = = ~12(p) -> .f (0) .

CLAIM 4. - If ext denotes the exterior of the cylinder (i. e.
it is the connected region of not containing the origin of f-~~, if
M n ext = ~, then M is a spherical cap.

Proof of Claim .~
The proof follows by using Claim 3 and the maximum principle (for

special surfaces), comparing M1 with a half sphere of radius 1/ f (0) (see for
instance ~l~).

CLAIM 5. - If M1 n int 8M = ~, then M is a spherical cap.

Proof of Claim 5

First notice, if M1 nint 8M = Ø then, by Claim 2 it follows M1 ~H = 8M
and M is globally contained in x+ . Now, using Alexandrov Reflection
Principle for planes normal to ?~, we conclude M is rotationally symmetric
(see, for instance [10]). Therefore, the round boundary is everywhere
parallel to one of the principal curvature directions for M. Now because
M is a topological closed disk, we conclude, by the same index reasons as
before, that M is totally umbilical. This shows that M is a spherical cap
(of radius 1/ f (o)).
We finish the proof of Theorem 2 supposing, by contradiction, that

Ml n ~ (~ and M~ n int aM ~ ~l .



At this point we may suppose M to be globally transverse to ?C without loss
of generality. Therefore M n ?~ is a finite collection of closed simple curves
of ~l.

Notice first that under the contradiction hypothesis there should be a
curve in y E M n ?-~ B which is homotopically non trivial in 7 B 
This follows directely from the extended Graph Lemma for special surfaces
(Lemma 3, Remark and final Remarks in [2, pp. 12, 14]).

Let y~ E M n x be the outermost homotopically non trivial curve in
?-~ B 8M. . Observe that yL bounds a topological disk DL C M. Moreover,
DL is locally contained in the upper half-space x+ along its boundary yL .
In fact, if the disk DL were locally contained in the lower halfspace ?~- we
would have a connected component, say C, of M B (M n Int~M) such that

contains at least two distinct closed curves both of them homotopically
non trivial in 1i B 8M. . This is a consequence of the fact that Ml is locally
contained in ?~+ along its boundary together with the hypothesis that the
mean curvature vector 7f never vanishes and the maximum principle. This
would lead to a contradiction by applying Alexandrov Reflection Principle
by vertical planes as in [6].

Notice that D L n f~C is the union of ~y~ with null homotopic closed curves
on ?~ B and as a consequence of the Graph Lemma proved in [2, Lemma
3, pp. 12-14, Remark, p. 14] each curve on DL~HB03B3L other than 03B3L bounds
a graph over its Jordan interior. We denote the Jordan interior of yL in
.?~ by int yL . Now a standard orientation argument yields (since 0 on

M): :

So DL U int yL is embedded (non smooth over yL) compact surface without
boundary. Moreover Mi is clearly contained in the closed compact solid S
determined by DL U int yL = ~S (fig. 2).

Let Mi (0), 0  8  2~r, be the 1-parameter family of surfaces obtained
by rotating Mi = Mi(0) around an axis z normal to ~-t and passing by
the center of the round circle S1 bounding M. Clearly n DL = 0,
for every 0 E ~ [0, 2?r]. Otherwise there would be a first parameter 00 > 0
such that M1(03B80) would be tangent to DL B yL, and contained inside S,
contradicting the maximum principle for special surfaces.



Fig. 2

Now, let p E Mi be a point of maximum distance of Mi to the z-axis,
contained in the interior of the solid S. The radius of this circle Ci is bigger
than 1//(0) because of the hypothesis of contradiction. Also D L n Di = 0,
where Di is the horizontal disk bounding Cl. This is again a consequence
of mean curvature orientation and maximum principle.

We now finish the contradiction argument by comparing DL with a sphere
of radius 1//(0) which we can actually introduce through the barrier disk
Di. This proves Theorem 2. 0
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