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Interpolation by holomorphic functions
in the unit ball with polynomial growth(*)

XAVIER MASSANEDA(1)

RÉSUMÉ. 2014 Nous nous occupons de deux problemes concernant l’espace
A"°° des fonctions holomorphes à croissance polynomiale dans la boule
unite de en. . D’un cote, nous donnons une condition sufhsante pour
qu’une suite dans la boule soit d’interpolation pour A-°° et prouvons

qu’une separation faible est necessaire pour ces suites. D’un autre cote,
nous donnons des conditions sur une variété analytique X de dimension
complexe n 2014 1 pour que toute fonction de A-°° (X) puisse etre prolongée
en une fonction de A-°° dans la boule.

ABSTRACT. - We deal with two related problems for the space A"°°
of holomorphic functions with polynomial growth in the unit ball of .

On the one hand we give a sufficient condition for a sequence in the ball
to be A -°° -interpolating and prove that a weak separation in necessary
for such sequences. On the other hand we give conditions on an analytic
variety X of complex dimension n - 1 so that every A-°° {X function
can be extended to a j4"°~ function in the ball.

0. Introduction

In this paper we want to study for the space of holomorphic functions
with polynomial growth in E en :  1 ~ two classical problems:
the interpolation on sequences of points and the extension of functions from

(n - 1) dimensional complex analytic varieties..

( *) Reçu le 4 septembre 1995
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Via de les Corts Catalane, 585, E-08071-Barcelona (Spain)
Partially supported by DGICYT grant PB92-0804-C02-02 and CIRIT grant 1996
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The space of holomorphic functions with polynomial growth, defined as

A-~= 

{f
e H(Bn ) : sup log e z 

 +m ,

is the smallest algebra of holomorphic functions that contains the class H°°
of bounded functions and is closed by differentiation. A-°° can be viewed
as the union of the spaces

sup +~}, p > 0,

as well as the union of the Bergman spaces

dm(z)  -~°° ~ p > 0 .

A sequence of different points C Bn is called A-~-interpolating
when every A-°° function on can be extended to a A-°° function

in all Bn . More precisely, }j. is A-~-interpolating if for any sequence

~ 3 in some space

-  ~--oo , p > 0,t, JEN J
there exists m > 0 and f E such that I(aj) = bj for all j. . It is

important to remark that the values p and m such that {bj} E f-P and
f E need not be the same. The sequences for which m is required to
coincide with p are called A-p-interpolating, and will not be considered in
this paper. A characterization of A-P-interpolating sequences in case n = 1
can be found in [14] (see also [11] for some partial results for n > 1).

In dimension n = 1, the space was deeply studied by Korenblum

[10]. Using Korenblum’s characterization of the zero sets, Bruna

and Pascuas gave a complete description of A -00 -interpolating sequences.
In order to state this result denote by ~a the automorphism of the disc

commuting a and 0. A finite set F on the boundary of the unit disc is a
Carleson set if

x{F) := 203C00 log ,F)) 
d9  +~,>



where d denotes the Euclidian distance on ~B1 normalized so that the
distance between two diametrally opposite points is 1.

THEOREM [6, p. 455].- Given a C (0,1), a necessary and sufficient
condition for a sequence {aj}j 

. to be A-~-interpolating is

~c>0: log1 |03C6aj(ak)| ~ c (X(F) + log (e 1-|ak| ) ) ~ k ~ N ,

and for all Carleson sets F, where = {0} U {z E 1 - (z) >
a , F) ~.

This condition implies some separation between points of in terms
of the Gleason distance

dG(a, b) = sup {)/(&#x26;)) : v f E ~ ~) ~ II oo ~ 1 ’ .~(a) _ ~ ~ - 
(1)

since by the properties of the automorphisms of the ball

1 - - 
~1 _ lal2~ ~1 ~ ~ (~)~ ’ ~ 

The first part of the paper deals with the study of A -00 -interpolating
sequences in case n > 1. We provide first a sufficient condition for a sequence
to be A -00 -interpolating, which is formally the same that characterizes the
radial A -00 -interpolating sequences in the unit disc [6, p. 458]. .

THEOREM 1.2014 Let a sequence in . If there exist p > 0 and
c > 0 such that

]~ - fl {1 - ~ d k C N >

then { a j ~ j . is A-°° -interpolating.

In [11, theorem 4] it is proved that every separated sequence {aj}j (that
> 0 with dG(aj, ak) > b for every a j # ak) is A-~-interpolating.

The separation and the condition provided by this theorem are clearly of
different nature.



Using (2) one can rewrite the condition above as

(1-(1-|aj|2) |1-ajak|2) ~ c2(1-|aj|2p, ~ k ~ N ,
which obviously implies, for some constant C > 0 :

1- |03C6aj(ak)| 2 = (1-|aj|2)(1-|ak|2) |1-ajak|2 ~ Clog (1 - 1-|ak| ). (3)

Theorem 1 and its proof are modelled after a result of Berndtsson on
H~-interpolating sequences [4], and can be generalized to give sufficient
conditions for the interpolation by holomorphic functions with certain

controlled growth (see the end of section 1). Related problems for Bergman
and Hardy spaces have been studied in [1] and [15].
We also prove the following necessary weak separation condition.

THEOREM 2.2014 Let A-~-interpolating. There exist constants

c, m > 0 such that

cmax(l- 

A simple example shows that, in contrast to the A-p-situation, one
cannot expect any stronger separation. In view of this result, the following
is natural.

THEOREM 3.2014 Let . and 
k 

be A-~-interpolating sequences
such that for some m, c > 0:

dG(aj, b~) > cmax(l - , 1- > Bif .

Then is also A-°° -interpolating.

The second part of the paper deals with another possible generalization to
n > 1 of the interpolation problem for sequences in the unit disc, namely the
extension of holomorphic functions defined on analytic varieties of complex
dimension n - 1. Let X be an analytic variety of complex dimension n - 1
in Bn . Define

= f E H(X) : sup (1 - ~~~2~~~f~~)~  ’E’°o~ (EX J



and

= U .

p>0

THEOREM 4. - Let u be a function such that > 
for some c, s > 0, and let X = {z E Bn : u(z) = 0} . Then, for any p > 0
there exist q > 0 and a linear operator E from to such

that f for every f E The value q depends only on s, p, n
and the k for which u E .

With a stronger assumption on the smoothness of X at the boundary of
the extension can be performed within .

THEOREM 5. - Let u E n and consider X = { z E I~ :
u(z) = 0~ . If 8u ~ 0 in X n in then there exists a linear operator E from

to such that f. .

The proof of this last result is based on the extension scheme of Amar,
which was used to prove an analogous extension result for bounded functions
~2~ . It must be pointed out that the conditions in theorem 5 allow to extend
from to independently of the transversality of X .

The paper is organized as follows. In section 1, we give the proof of
theorem 1. Section 2 is devoted to prove theorems 2 and 3. The last section

of the paper gives the proof of theorems 4 and 5.

1. . Proof of theorem 1

Given a sequence ~ bj } . in some (~a j ~) , it will be enough to construct
a family of holomorphic functions F~ such that :

(a) Fk(aj ) = 03B4jk;

00

(  M , ’d z ,

k=1



since from (a) it follows immediately that the function F(z) := ~ 
has value bk in ak, and (b) implies that F G 

00 00

!~)! ~ E l
k=1 k=1

°

To prove (a) and (b) define

F~ = . ~i(~w~) n ,.,, ,,2 ~~’ ~ ~’~ ~’~ 

where ~) and ~) are weights holomorphic in z and with value 1
on the diagonal. Note that with this definition (a) is immediatelly satisfied.
The hypothesis of the theorem yields, for any k e N , the estimate

(4)

for some C > 0. The crucial point of the construction is this choice of the

weights 1~1 and ~2 so that Fk has the suitable growth. wi will be chosen
later. As ~2 we take the weight used in [4] :

w2(03B6,z) = exp{-(1+amz) 1-amz- 1+am03B6 1-am03B6) (1-|am|2(1-|03B6|2 1-|am03B6|2},
which by (3) satisfies (see [4, p. 4]):

~(~~) ~ (1-!~-!) "exp - 
To make the notation more comfortable we assume that the sequence is

enumerated so that increases. In [4, lemma 6], it also shown that if

then

1+!~~ ~ 1 
2’"s 

From this and the estimate above we easily get an analog of the lemma 7
in [4].



LEMMA 1.1.2014 Zef = defined for t > 0. Then

(1-|ak|2 |1-akz|)2 |w2(ak,z)| ~ c2(1-|aj|)-2cph((1-|am|2 |1-amz|)2).

From the lemma and (4) it follows now that:

|Fk(z)| ~ C(1- |aj|-2p|w1(ak,z)| (1-|ak|2 |1-akz|)2 x
x c2(1-|aj|)-2cph((1-|am|2 |1-amz|)2),

thus multiplying both sides by (l - ~)~(l - !o~)*’’ and denning (/ =
2p(c + 1) + r it follows that:

(i - |z|)s(1 - |aj|)-r|Fk(z)| ~ c(i - |z|s(1 - |aj|)-c’|w1(ak,z)| x

 (1-|ak|2 |1akz| )2 h ( (1-|am|2 |1-amz| )2)
(5)

Let us now define t;i((, ~r). Given a convex function ~ the weight

~(, .) =: exp(-2(~(() ,(-.))= exp (2~ ~ (()(~ - (,)~B ~=~ ~ /
is holomorphic in z and satisnes the estimate

|w(03B6,z)| = |exp(2 ~03C6 ~03B6j (03B6)(zj- 03B6j))| ~ e03C6(z) e-03C6(03B6).B .=1 ~ /
We consider the convex function = ~)) and the asso-

ciated weight tt;i((,~) according to this construction. Then 
(l - ~) ~ (l - !~~ , and taking = c~ we deduce from (5) that:

(1 - !~)%! )~)t ~ /, ~ ~ f~~~ .B!~-~!/ ~~-~/;



LEMMA 1.2 [4, p. 6].2014 Let h(t) be a function defined in (0,oo) not
increasing and positive, and let {ck}k be a sequence of positive terms such
that 03A3k ck  +~. Then

ckh{03A3cm) ~ ~h(t)dt.~ ~ / ~

The function h(t) = is not increasing and positive. On the
other hand, denoting

~ = 

we have 

ck ~ 1 (1-|z|)2(1-|ak|2)2,
and by (3) this sum is clearly finite. Finally, an application of lemma 1.2
yields (b), and the proof of the theorem is finished. D

Theorem 1 can be easily generalized to show that the conditon 3 p, c > 0 :

> >

j :j#k

is sufficient for a sequence to be ~4 -interpolating, where A : [0 , 1) 2014~

is a positive increasing convex function and

A03BB = {f ~ H(Bn) : sup 
log|f(z)| 03BB(|z|) 

 +~}.
This is immediate after choosing the weight wi associated to the convex
function = c~A(~~) and following the corresponding steps in the proof
above.

2. Proofs of theorems 2 and 3

First we state the following lemma, which is a direct consequence of the
open mapping theorem for (LF) spaces.



LEMMA 2.1 [12]. - If (aj ) J . is an -interpolating sequence, then for

every p > 0 there exist m 
= m(p, (aj)) > p and C = C(p, (aj)) such 1ha1

for any ( bj ) > . e l-p (p, (aj)) there is f e satisfying f( aj) = bj for all

j ~ 

One can also prove the invariance under automorphisms of the

A-~-interpolating sequences. Although the image under any qlz of an

A-~-interpolating sequence is again A-~-interpolating, the associated

constants of lemma 2. I are not, in general, preserved ([6] , [12]) .

The proof of theorem 2 is an immediate consequence of the following

lemma.

LEMMA 2.2. - Lel (ak) k be a sequence in Bn. If there exist numbers

m, c > 0 and functions fj e such that fj(ak) = 6jk and ~fj~A-m ~ c

then 

dG(/lj > /lk) > max(1-|aj|, 1-|ak|)m 2m+2c for any j ~ k .

Proof.- For ]([  1/2 one has fj(())  c(1 -|03B6|)-m ~ 2mc, and by

the Cauchy inequalities, also ]8 fj (() )  2"~+~ c for ]( ]  1 /4.

Assume first aj = 0 and take ak with dG(aj,ak) 
= ]ak[  r, for some

r  1 /4. Then I = ) fj (aj ) - fj(ak)| )  so |ak| can only be strictly

smaller than r when r > 1 /2"~+~c.
Let now aj be an arbitrary point. Consider then the function 03C8j =

fj o§§I and the sequence b k = §a j (ak). Immediately 03C8j(bk) 
= fj(ak) = sj k

and

))wj )) A-m " SUP )fj (4z/Z» ) " ~~P )fjZ>)
z~Bn 

= 

(1-|z|2)m(1-|aj|2)m |1-zaj|2m |fj(z)| ~

~~fj~A-m (1-|aj|2)m ~ c(1- |aj|2-m .

Using the estimate for the case aj = 0 and the invariance 
under automor-

ph isms of dG, it follows finally

dG(aj,ak) = dG (03C6aj(aj), 03C6aj (ak)) = |bk| ~ (1-|aj|2)m 2m+2c .

The same inequality is true interchanging a j and ak . a



Proof of theorem 2

For any j E N consider the {~}~’ . Applying
lemma 2.1 we obtain the conditions required in lemma 2.2, and the proof is
finished. D

Remark. 2014 An example given by Bruna and Pascuas for n - 1 shows

that the weak separation condition of theorem 2 is optimal. A sequence

{aj}j is said to be 03B4-uniformly separated when

dG(aj,ak) ~ 03B4.

LEMMA [6, p. 460].2014 Let be a 03B4-uniformly separated sequence.

(a~ Any sequence such that b/4 for any j E N is

03B4/4-uniformly separated.

(b~ , .

~

Consider a fixed value m > 0 and a 6-uniformly separated sequence

~ a~ ~ ~ . Pick another sequence such that

0  dG{a~, aa)  - 1 b~ and .

From the lemma one deduces that the union {a j} U satisfies the suffi-

cient condition given by theorem 1, and therefore it is ~’"’~-interpolating.
On the other hand, by construction ^-r { 1 - ~ This has to

be contrasted with the situation, where the interpolating sequences are
separated ([14], [11]).

In the proof of theorem 2 we have seen that when is interpolating
there exists m > 0 such that for any j E N there is f~ E with

== b3~ and c. The converse is also true and will be

used later on in the proof of theorem 3.

LEMMA 2.3.2014 A sequence A-~-interpolating if and only if
there exist p, rn, c > 0 such that for 1 there is fj E with

and 



Proof. 2014 The direct implication is immediate. To prove the reverse one
notice first that the hypothesis can be self-improved, in the following sense:
for any value ~ ~ 0 there exist m’ > 0 and functions ~ in .4"~ such
that = ~ and c(l - This is easily proven by
considering the functions

gj(z) = 1-|aj|2 1-ajz)p+p’ fj(z).

Thus taking p’ = 0 and applying lemma 2.2, we see that there exists q > 0
with c(l 2014 where c is a constant which depends on q.
This means that the hyperbolic balls j9y = B(aj , are disjoint,
and therefore the sum of their volumes is finite, that is

B 
00 00

m U Bj  +cxJ . (6)/ J=l J=l

In order to show that {c~}. is ~"~-interpolating take now C

~"~({~A:})’ As observed, there exist m’ > 0 and functions gj e with

and Thus the series 03A3jbjgj
converges normally in ~4’~, and by (6) :

00 00

E E(i - +00.
J=l ~’=1

Hence ~ = ~ is for the convergence in the 
implies the punctual convergence, and it trivially verifies g( a j) = bj for any
~ l. a

Before the proof of theorem 3 we need another lemma.

LEMMA 2.4. - Ze {aj}j be A-~-interpolating, and let b e Bn such that
> 0, for some 03B4 > 0 and for any j EN. Then there exist p > 0

and / e A-p such that /(6) = 1, = 0 and 

Proof. - Suppose first that 6=0. By hypothesis $, so there
exists a poly disc with radius c~~ which does not contain any aj. Separate



the sequence in n subsequences {c~}_,~=l,...,~, such that the
coordinate is bounded below by cn03B4, i.e. Since

~’ > >

’~

there exist p > 0 and fl C with = Without loss of

generality we can assume that the value p is the same for every coordinate I.

Besides, by the open mapping theorem there is a constant c such that

Hence ~ = belongs to and satisfies

~(0) = 1 , = 1 - = 1 - = 0. .

~’~

Define the product ~ = ~i" gn. Trivially = 1 and g(aj) = 0 for any
j. Also ~ C and 

Let now b be arbitrary. By the invariance under automorphisms of the
Gleason distance aj) = = ~(0, ~ > 0.

Therefore, there exist p > 0 and / ~ such that

> 
and 

Defining 9 == / o we have = 1 = 0, and

sup (i-~(.))~ I
z~Bn z~Bn

= (1-|z|2)p(1-|b|2)p |1-zb|2p |f(z)| ~ c 03B4n(1-|b|2)p. []

Proof of theorem 3

According to the hypothesis and lemma 2.4 for every bk there exists /~
in with = 1, = 0 and 

Since is ~"~-interpolating there exist functions gk with 

~ c and gk(bj) = Then, the product function ~~ is zero on 

and bj for any j # k, and it is 1 on ~:

(A~)(~)=i~ > (A’~)(~)=o, > 

(/~~)(~)=o, > °



Furthermore

" fk 9k " A-(P+P’ ) ~ ~fk~A-p~gk~A-p’~ ~ C(1-|bk|-(m+p).

In the same way we can construct functions fk. §k such that

(fk ° 9k)(ak) " I > (fk ° 9k)(bj) " 0 > V j C N

(fk ° 9k)(~lj ) " 0 > V j # k >

and 
,

)) fk 9k )) A-(p+p’)  C(1 ~ )ak )) ~~~~ ~ . .

Denoting by m’ the maximumofm+p and m+p’ we get 

C(I - and the corresponding estimate for fk§k. Thus, by
lemma 2.3, ( aj ) . J U is A-~-interpolating. o

3. Extension results.

Proof of theorems 4 and 5

The proof of theorem 4 relies on the following extension result due to
Berndtsson.

THEOREM 3.1 ([3, p. 405]). - lel X be an analytic variety in lhe unil
ball defined ôy a function u. If f e H(X) n ihen

F(z) = Cn,p X f(03B6) (1-|03B6|2 1-03B6z)N+n-1[~~log ( i 1-1|03B6|2) ]n-1 A v
defines a holomorphic function such that F f.

As it is mentioned in Berndtsson’s paper, the latter expression provides
an extension of f whenever the integral converges. The measure v is given
by

v = g A 8 ( ~ ) = ~ ~ ~§ dr(I) ,II = 9 A ô ~ 
= dJl((),

where dp is the surface measure on X and the form g = £j gj d(j has
coefficients

i s~gj (I > ~) " / § (i + ~(~ ~ i)) d~ °



Assuming u e A-k, it follows from the Cauchy inequalities that supz~Bn ( I -
]  +cxJ . Hence

lgj « , z> I  / £ « + tz - » | dt 
~ j~ dt 

~~ ~ 
o (i - ]( + t(z - () ) ) ~’~~ ~

~ ~ ~~~ ( i ~ ~ l 1 ~ 

i ~ 

~ 

l~ l ) k+1 ~
i - ii>k+i + i - izi>k+1

~ 

(i ~ li l) ~’~~ (i ~ ~’~~ ~

which implies

|g039B~u| ~~u~2 ~ ~g~ ~~u~ ~ (1-|03B6|)k+1+(1-|z|)k+1 (1-|03B6|)k+s+1(1-|z|)k+1.
Take the extension given by theorem 3.I, with a constant N that will be
fixed later. From the estimate above and the equality

~~log( 1 1-|03B6|2 ) = 03B4jk(1-|03B6|2)+03B6j03B6k (1-|03B6|2)2 d03B6k039B d03B6j,

it follows that:

)F(z) ) 

~ cX |f(03B6) | (1-|03B6|2 |1-03B6z| ) N+n-1 (1-|03B6|)k+1+(1-|z|)k+1 (1-|03B6|)2n+k+s-1(1-|z|)k+1 d (03B6) ~

~ ~ ] i - 
(i _ j , j)N-n-P-k-S+ X(1-|03B6| | 1-03B6z|N+n-1

d (03B6)+.

With N so big enough and q = 2n + p + s + E - I, for some E > 0, we get
finally

/ X (1 - [( [) ~~~ dp(() .



For any variety defined by a A-°° function this last integral is finite (see
[8] or [7]), so the proof is finished. 0

The proof of theorem 5, modelled after the result of Amar on extension
of bounded holomorphic functions, is more technical.

LEMMA 3.2 [2, p. 28~. . - Let X = ~z : u(z) = 0~ be as in theorem 5,
f E H(X) and let H be a distribution in Bn such that 8H = f~(1/u). Then
S = u . H is a holomorphic extension of f in Bn .

In order to solve the 8-equation with datum f ~(1/u) we consider the
weighted solutions given by Berndtsson and Andersson ~5~, whose construc-
tion we now briefly recall.

Let s = (s1, ... , sn ) : x in ~ CCn be the Cauchy-Leray section
s(~, z) = ~(1- ~ ~ z) - z (1 - (~~2) . Define Q(() = ~/ (~~~2 - 1) and consider
the I-forms associated to Q and s:

Q _ dZj) and S = dZj). .
j j

THEOREM 3.3 [5, p. 103]. - Define

~N 
- 

1 - ~~~2 N n 1 - (~~2 ~ s /1 (dQ)k /1 ~ - - c~, ~ 1 - ~z k-1 ~ 1 - ~z Cs ~ z _ ~l 
’

w~ere cn and y~ are certain positive constants depending respectively on n
and k. Denote the component of KN with degrees (p, q) in z and
(n - p , n - q - 1) in (. Given q > 1 and a a-closed (p, q)-form f with C2
coefficients, a solution of the equation ~u = f is given by

u = cp,q,n 
r f A .u =cp,q,n Bnf 039B K

p,q.

Take H = c Bn f~(1/u) I1 as solution of 8H = f~(1/u). Observe
that in Berndtsson and Andersson’s theorem the forms are required to have
C2 coefficients. This small difficulty is overcome just by taking the usual
regularization.



The kernel ~~ has the decomposition = .8~ + C~ A 9/?, where

~~ (~~)~ ((~-d(+~-d()A(~)~)
~ ~ (~~)’ ~- A (~. d( A (. d())

and p, b and c! are defined by

~)=j~-l, 6(~.)=1-~, d((~)=tl-~j’-(l-~’)(l-H’).
We use the decomposition of to separate the extending function ?

in two terms having the required growth. Define

~(.~)A/(()~~)(0
and 

S2(Z) = u(z) L CP(z, () 1B ðp(() 1B f(() ð( 1 u).
In order to carry out the estimates for 5i and 62, we use the non-isotropic
pseudo-distance (03B6, z) = |03B6. (( - z)| + |z. (( - z)| + )( - z|2, which verifies
the well-known estimates

)(- ~ ~ p«, ~) ~!(- ~!, , !i - ~! ~ i - H + ~, -~)

~,.) ~ ~((,.)+(!- K!) t - ~ ~ (~, ~) + (i - H)~!: - ~j)’.
We also have the obvious equivalences

~d 

Denote by the Lebesgue measure on X. Since 9(l/u) =
d~ and 9u ~ 0 on in n X then A ~~ x ~u A ~~

and ~(1/M)) So:

~|u(z)| X(1-|03B6|2)p(1-|z|2)p |1-03B6z|p|1-03B6z|n-1dn(03B6,z) 

~|u(z)|X|1-03B6z|n-1 dn(03B6,z) ((1-|z|)|03B6-z|+(03B6,z))d (03B6).



In the same way

K - A ~P~C)~ 

We only prove that these two terms are uniformly bounded in case n = 2.
The general case can be carried out without essential changes. First, from
the estimates above it follows that

~ |u(z)| X(1-|z|+(03B6,z))((1-|z|)|03B6-z|+(03B6,z)) ((03B6,z)+(1-|z|)1/2|03B6-z)4d (03B6)

~ |u(z)|{ Xd (03B6) 2(03B6,z) + (1-|z|) X d (03B6) ((03B6,z)+(1-|z|)1/2|03B6-z|)3 } .

and defining m(() = )8p(() A also

~|u(z)|{X m(03B6)d (03B6) 5/2(03B6,z) + (1-|z|)X|03B6-z|m(03B6)d (03B6) ((03B6,z)+(1-|z|)1/2|03B6-z|)4 }.

Fix z in and define T((, ~) = (03B6, ~) + (1 - |z|)1/2|03B6 - ~|. T is a

pseudo-distance, since it is a linear combination of two pseudo-distances.
Consider also a point (o E X such that g(z, X) = g(z,(o) =: d. Since

m(() = m(~p) + 0~~~ - ~o~~ we get, respectively:

(1 - Izl~pl’~1‘z~l ~ I~~z~l lJX e ~C~)~ + ~1 14IJ ~X T3~~~)~ ~
and .

~ i Uz> {Xm(03B6) 5/2(03B6, z) 
+ (1-|z|) X|03B6-z|m(03B6) r(03B6,z)d (03B6)}

« iUz>i lJX d>«> +

+(1-|z|)1/2 max ((1- |z|)1/2, m(03B60)) X d (03B6) 3(03B6,z)} .



LEMMA 3.3 [2, p. 33].2014 Let z e X and B(03B60,t) be the non

isotropic ball o/ center (o and radius t. Then

t~)t~~(o)+!~-(o!!~((o)A~(:o)t.

LEMMA 3.4.2014 Ze d == ~~~ ~o = ~(~~o) ~~~

~~~)~~~,,j’’’(~));(a) X2(03B6,z) :j m(03B60)2 B 1, log a //
(b) X m(03B6)5/2(03B6,z)d (03B6)  ~ 1 max(d,d1/2m(03B60) ;

(c) /- - 
1 

.

" A ~((~) ’ m((o)’) ’

These two lemmas yield

+ d(1-|z|) 0 max(1-|z|, m(03B60)2) + |z-03B60|m(03B60)(1-|z|) 0max(1-|z|, m(03B60)2).
It is clear that the first two summands are uniformly bounded, since

~((o) > c, for some c > 0. From cf  7-0 we see that the third one is also

bounded. To estimate the last term it is enough to notice that by definition
of 7-((, ~) one has ~o - ~! (l -  ~0.

In the same way, from the lemmas, we get (l 2014 1. D

It remains only to prove lemma 3.3.

Proof o/ lemma 3.3. 2014 (a) and (b) are proved in [2, p. 36]. To prove
(c) denote a = and write (03B6,z) in non-isotropic real orthonormal
coordinates ~ == centered at (o? where ~i, ~2 indicate the two



directions in the complex normal and t’ the 2n-2 directions in the complex
tangent. Then r(~(o) ~ !~l! + ~2! + ~’~ + V~!~!, and for the points in
{( C (03B6,03B60)  r} the estimates

|t1|  B r, r a, r m(03B60)2), |t2|  min r, r a)

|t’|  min (r, r a)
hold (see [2, p. 31]). Hence

{03B6~Bn : (03B6,03B60)  r} ~ min (r, r a)2n-4 min(r,r a, r m(03B60)2)2.

Define the dyadic balls Bk = 2k0), which for some positive constant
c satisfy the inclusions ~ = [2, p. 30]. Then, from this
estimate above and the equivalence (03B6,z) ~ 7-((, (o) + 0, it follows that

Xd (03B6) 3(03B6,z) ~ (B’k)(2k0)3 ~ 1 (2k0)3 min (2k0, 2k0 a, 2k0 m(03B60) )2.

A straightforward calculation, after considering the cases m(03B60)2 > a and
~((o)~  a yields finally the stated estimate. D
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