
ANNALES DE LA FACULTÉ DES SCIENCES DE TOULOUSE

MIKHAIL BOROVOI

BORIS KUNYAVSKII
On the Hasse principle for homogeneous
spaces with finite stabilizers
Annales de la faculté des sciences de Toulouse 6e série, tome 6, no 3
(1997), p. 481-497
<http://www.numdam.org/item?id=AFST_1997_6_6_3_481_0>

© Université Paul Sabatier, 1997, tous droits réservés.

L’accès aux archives de la revue « Annales de la faculté des sciences de
Toulouse » (http://picard.ups-tlse.fr/~annales/) implique l’accord avec les
conditions générales d’utilisation (http://www.numdam.org/conditions).
Toute utilisation commerciale ou impression systématique est constitu-
tive d’une infraction pénale. Toute copie ou impression de ce fichier
doit contenir la présente mention de copyright.

Article numérisé dans le cadre du programme
Numérisation de documents anciens mathématiques

http://www.numdam.org/

http://www.numdam.org/item?id=AFST_1997_6_6_3_481_0
http://picard.ups-tlse.fr/~annales/
http://www.numdam.org/conditions
http://www.numdam.org/
http://www.numdam.org/


- 481 -

On the Hasse Principle for Homogeneous Spaces
with Finite Stabilizers(*)

MIKHAIL BOROVOI(1) and BORIS KUNYAVSKII(2)

Annales de la Faculte des Sciences de Toulouse Vol. VI, n° 3, 1997

Nous construisons un espace homogene X a stabilisateur
fini sous le groupe SLm,k qui est defini sur un corps de nombres k et qui
possede les proprietes suivantes :

(1 ) X(kv) ~ Ø pour tous les complétés kv de k ;
(2) la "premiere obstruction de Brauer-Manin" au principe de Hasse

p our X s’ annule ;

(3) le groupe de Brauer non ramifie de Xk est nul ;
(4) mais X(A:) = 0.

Cela signifie que pour les espaces homogenes a stabilisateurs finis, la
"premiere obstruction de Brauer-Manin" au principe de Hasse n’est pas
la seule.

ABSTRACT. - We construct a homogeneous space X of the group
SLm,k over a number field k, with finite stabilizer, such that X has the
following properties:

(1) ) X (kv ) ~ ~ for any completion kv of k;
(2) the "first Brauer-Manin obstruction" to the Hasse principle for X

is zero;

(3) the unramified Brauer group of Xr- is zero;
(4) but X (k) = ~.

This means that for homogeneous spaces with finite stabilizers, the "first
Brauer-Manin obstruction" to the Hasse principle is not the only one.

~ ~ Recu le 22 janvier 1996
~ Raymond and Beverly Sackler School of Mathematical Sciences, Tel Aviv Univer-

sity, 69978 Tel Aviv (Israel)
E-mail: borovoi@math.tau.ac.il

(2) Kunyavskii: Departement of Mathematics and Computer Science, Bar-Ilan Uni-
versity, 52900 Ramat Gan (Israel)
E-mail: kunyav@bimacs.cs.biu.ac.il
Research of the second named author partially supported by Israel Ministry of
Absorption.



0. Introduction

In this paper we construct a homogeneous space X with a finite stabilizer
for which the Hasse principle fails and this fact cannot be explained in the
same way as for homogeneous spaces with connected stabilizers.

In more detail, let X be an algebraic variety over a number field k. The

variety X is called a counter-example to the Hasse principle, if X has a

kv-point for any completion 1~~, of k, but has no k-points. Manin 

[Man2]) proposed a general method of explaining obstructions to the Hasse
principle with the use of the Brauer group of X. For a k-variety X such
that X(kv) is nonempty for any place v of k, Manin’s method gives an
obstruction for X to have a k-point.

We assume X to be nonsingular. Consider the cohomological Brauer

group Br X = Hit (X, Gm). We have canonical maps X~ -~ X -~ Spec k
where k is an algebraic closure of k. Set

the "algebraic" Brauer group of X. Set

v running over all the places of k.

We refer to [Man2] and [CTS1] for a definition of the Brauer-Manin
obstruction to the Hasse principle for X. For a few classes of smooth

projective rational varieties it was proved that it is the only obstruction to
the Hasse principle. We refer to [CT1], [CT2] and [MatTs] for a discussion
and relevant bibliography.

Sansuc [San] introduced the Brauer-Manin obstruction related to 
("the first obstruction", in the terminology of [CTSl]). This obstruction

m(X) lives in the group ~{X )’~ dual to ~(X ). For a class C of k-varieties
a natural question arises whether the obstruction m{X ) related to ~(X ) is
the only one, i.e., is it true that if X E C, X {I~v) ~ ~ for any place v of k,
and m{X ) = 0, then X must have a k-point.



Let G be k-group. A (right) homogeneous space X of G is a k-variety X
together with an action X x G --~ X of G on X defined over k , such that G(k)
acts on X(k) transitively, where l~ is an algebraic closure of h. Concerning
homogeneous spaces, the obstruction m(X) was proved to be the only
obstruction to the Hasse principle for principal homogeneous spaces of tori
(Voskresenskii [Vos2]) and more general for principal homogeneous
spaces of connected (affine) k-groups (Sansuc [San]). Moreover, the similar
assertion was proved for homogeneous spaces of connected k-groups with
connected stabilizers [Bor].
We are interested here in homogeneous spaces of simply connected

groups. Let X be a homogeneous space of a semisimple simply connected
group G defined over a number field k. Let x be a 5-point of X, , and
~ = Stab(x) its stabilizer in Gk. Assume that X (hv) ~ ~ for every place v
of k and that m(X) = 0. If H is connected, then X must have a k-point . Let
us now consider the case when H is nonconnected, say, finite. If .~ is abelian,
then again X must have a k-point (cf. [Bor]). However if H is nonabelian, it
turns out that vanishing of m(X) does not imply the existence of a k-point
in X. . Moreover, it may happen that the unramified Brauer group Brnr X~
also vanishes. Therefore we have a phenomenon different from Harari’s
counter-example [Har]. In his examples Bra X vanishes, hence m(X) = 0,
but there exists a "geometric" obstruction related to the unramified Brauer
group Brnr 

Our main result is the following theorem.

THEOREM 0.1.2014 There exists a homogeneous spaces X of SLm for some
m, with finite stabilizer F, with the following properties:

Theorem 0.1 means that for homogeneous spaces with finite stabilizers
the Brauer-Manin obstruction related to ~(X) is not the only obstruction
to the Hasse principle, and this fact cannot be always explained with the
help of a "geometric" obstruction related to Brnr X~ .

It would be interesting to say something about a smooth compactification
X~ ofX; namely, we do not know whether X~ has a k-point. Of course, the



major problem is to compute the unramified Brauer group Brnr X = Br X ~
and to decide whether the Brauer-Manin obstruction on X~ vanishes.

Let us briefly describe the idea of proof of Theorem 0.1. We construct F
as a nilpotent group of class 2, as in Bogomolov’s version [Bog] of Saltman’s
counter-example to Noether’s problem [Sal] . Let L / k be a Galois extension
of degree n, , and let g = Gal(Llk) be the Galois group. To construct a

desired example we need several ingredients:

(1) a finite k-group F trivialized by L, nilpotent of class 2, given as an
extension

with abelian k-groups Z and F/Z;

(2) a nonzero cohomology class ~ E H2 (g, Z), locally trivial and not
coming from FIZ);

(3) an embedding of Z into an abelian k-group A, killing r~.

Having these data at our disposal, we define N = (FxA)IZ and embed N
into SLm for some m. The group AI Z acts on Let c E A/Z)
be a cocycle whose image in H2 (g, Z) is We define X as a twisted form

c(F B SLm ). Since r~ does not come from F/Z), we have X(k) = ~
(Prop. 3.1). Since 1] is locally trivial, we have for all v (Prop. 3.2).
In our example ~ {X ) = 0 and 0.

Notation and conventions

k is a field of characteristic 0. We denote by a finite Galois

extension with Galois group g. When k is a number field, we write kv
for the completion of k at a place v and denote by gv = a

decomposition group, where w is a place of L lying over v.

By a k-group we mean an affine algebraic group defined over k, usually
finite. For a k-group C we write X(C) for the character group of C, i.e.,
X(C) = Hom(C, x). Usually we assume that both C and X(C) are
trivialized by L, i.e., all the elements and characters of C are defined over
L. By RL/kC we denote the k-group obtained from CL by Weil’s restriction
of the ground field. When C is abelian, we set,



where v runs over all the places of k, and

where ~ runs over all the cyclic subgroups of g.
For any finite abelian group A, let .4~ denote the dual group, A’~ =

Hom(A, Q/ Z) .
For any group F denote by Z(.F) its center and by [ F, F the derived

group.

Denote by n the group of n-th roots of unity, and set Z/n = Z/nZ.

1. Cocycle

Let k be a field of characteristic 0, and let

be an exact sequence of finite k-groups. Suppose Z = Z(F). Denote by
L the field of definition of all the points of F. Set g = Let

r~ E I~2(g, Z) be a cohomology class represented by a cocycle d = 

Our aim is to associate to these data a 1-cocycle which can be used to
construct a desired homogeneous space.

Choose an embedding j : : Z ~ A where A is finite abelian k-group
trivialized by L, such that = 0 (e.g. one may take A = RL/kZ). Let
x : : Z ~ F denote the inclusion. We have an embedding Z 2014~ F x A defined

(x(~), , j(z)-1). Set N = (F x A)IZ. We have embeddings F ~ N,
~4 ’2014~ N, so we may and will regard A and F as subgroups of N. Note that
A is central in N, and F is normal in N.

Since = 0 in H2 (g, A), we have

for some cochain c : g --~ A. Set c~ = c~ (mod E Then

c03C3 = c03C3 . 03C3c, so c is a cocycle, c E AIZ). Note that the cohomology
class of ë can be obtained from 7J using the exact sequence



2. Homogeneous space

Now we use the cocycle c obtained in Section 1 to construct a homoge-
neous space with stabilizer F.

We start by choosing an embedding N ~ for some m. The group
A acts on the left on F B SL~ by a. Fg = Fag where a E A, g E SLm. This
action commutes with the natural right action of SLm and is defined over

k; indeed

Moreover Z = F n A, and therefore Z acts trivially, so we obtain an action

of AjZ on 
We use the cocycle c E A/Z) to define a twisted form

of F B SLm (see [Ser2, Chap. I, 5.3], for the definition of a twisted form).

3. k-points

Let k be a field of characteristic 0. Let A : F/Z) -~ H2(g, Z) be
the connecting map associated to (1.1), and let X be as in Section 2.

PROPOSITION 3.1.2014 X has a k-point if and only if ~ E im 0394.

Proof. - Assume that X has a k-points Xo = Fg. Then for any u E g
we have = xo, i.e.,

(it follows from the definition of a twisted form). Hence ~g = g for
some fQ E F, or

We have

whence



Since Cq E A and A is central in N, we see that

Since

we obtain

Let f~ denote the image of f~ in F/Z. Then = i.e.,
1 E F/Z). Let 03BE denote the class of f in F/Z). Then 0394(03BE)
is the cohomology class of d, hence = r~.

Conversely, assume that r~ = for some ~ E F/Z). Then

for some cochain f : g --~ F. . Set c~ = . Then

because Cq e A, A is central in N, Z is central in F. We see that (c~) is a
cocycle, c’ E Z1 (g, N).

Since SLm(L)) = 1 (cf. Chap. X, ~ 1~), there exists

g E SLm(L) such that 

for every 03C3 E g. We set x o = Fg E X(Z). . Then

Thus = ~o, hence .co E X(k). 0

Now let k be a number field. Let v be a place of k, and gv ç 9 a
decomposition group. Let locv : : HZ (g, . ) -~ denote the restriction

map. Again let X be as in Section 2.

PROPOSITION 3.2. - For a place v of k, if locv r~ = 0, then X(kv) ~ 0.



Proof. - Consider Since locv r~ = 0, the class locv r~ is in the image
of : Z). By Proposition 3.1, Xkv has a kv-
point. 0

4. B ilinear map

We construct an extension

and a cohomology class r~ E H2 (g; Z) with the properties

(1) Z(F) = Z and ~ F , F~ = Z;
(2) ?y is locally trivial, i.e., locv ~ = 0 in Z) for all v;

(3) TJ is not in the image of A : H2(g, Z).

Having such a triple (F, Z, r~) we can apply the construction of Sections
1 and 2 to obtain X satisfying (1) and (4) of Theorem 0.1, according to
Section 3.

The idea is the following: we construct an extension (4.1) satisfying (1)
with H1 (g, F/Z) = 0 and Z) ~ 0. Then a nonzero ~ E Z) will
satisfy (2) and (3).

In this section we present a general method for constructing such ex-
tensions. We state some sufficient conditions under which (1) holds. An
explicit construction of (4.1) is postponed to Section 5.

Further on we write the group composition in Z and F/Z as addition.

Let us start with a linear map (homomorphism) ~p : M -~ Z, where
M and Z are abelian groups. It corresponds to a bilinear (bi-additive) map
~p* M x N~ --~ Z. Consider the map

defined by

Then ~(a, b) - ~(a , b + c) + ~(a + b , c) - ~(6, c) = 0, and one may regard
03A6 as a 2-cocycle for the trivial action of M ~ M on Z. We obtain a central
extension



defined by ~. It has a canonical section s : : M Q) 1t~ -~ F, and we write
an element of F as zs(a), where z E Z, a = (x, y) E M ® ~l. Then the
multiplication law in F is given by

where z, z’ E Z, a = (x, y), a’ = (x’, y’) E M. It follows that

Hence for the commutator of s(a) and s(a’) we have

LEMMA 4.3. - If ~p is surjective, then Z = ~ F , F ~.

Proof. - Indeed, s(x, 0) , s(o, y) ~ = Sp*(x, y). Hence Z C ~ F , F ~. But
F/Z is abelian, thus ~ F , F ~ = Z. ~

Let
lker p* = {x E M ~ ~p* (~ y) = ~ ~ d y E ~ }
rker ~ = {~/ e M ~(.c, y) = 0, V :c C M}

denote the left and the right kernels of ~p*, respectively.

LEMMA 4.4. - If lker 03C6* = rker 03C6* = 0, then Z = Z(F).

Proof. - Clearly Z C Z(F). Let zs(a) E Z(F), z E Z, a = (x, y) E
M C M. We have ~ zs(a) , s(a’) ~ = 0 for any a’ = (x’, y’). But

~ zs(a) , s(a’) ~ = ~p* (~, y’) - ~p* (x’, y). . Set ~’ = 0. We get ~o* (~, y’) = 0
for any y’ E M, so x = 0. Quite similarly we ’get y = 0. Thus a = 0 and
zs(a) E Z. D

5. Group extension

In this section we construct a desired extension (4.1) explicitly. Imposing
some conditons on k and L and applying results of Section 4 we check (1)-(3)
of Section 4.



From now on we assume that our ground field k contains the n-th roots
of unity, where n = [L : : ~~ and L denotes the field trivializing F. Denote
g = Gal(L/k). We fix a primitive n-th root of unity and use it to identify
Z/n and ~cn.

Notations 5.1. .- Let us define M and Z. Take M = =

RL/k(Z/n). We have canonical embeddings Zln ~ M and

Set Z = M ® M/ j(Zln) and denote by ~p : M ® ~ --~ Z the projection. We
have an exact sequence of (Z /n)-modules

Note that since j is g-equivariant, one can view (5.1) as a sequence of

The canonical linear map ~p gives rise to a bilinear M x M 2014~ Z

which in turn gives rise to a cocycle + : (M ® M) x (M e M) -~ Z, (see
Sect. 4). Denote by F the extension of Z by M ® M with the help of +.

LEMMA 5.2.2014 The M ~ M is free.

Proof . Consider the module Mg generated over Z/n by ~ s ® 
Then Mg is (Z/n)~g~-free of rank 1, and M0M = Mg is 
of rank n, where n = [L : l~~ is the order of g. ~

Now we want to apply Lemmas 4.3 and 4.4.

LEMMA 5.3.2014 The map ~p is surjective with the property

lker ~* = rker p* = 0

Proof. - The map ~p is surjective by construction. Let us regard all

the terms of (5.1) as Z/n-modules. Denote the canonical free

basis of M, then we can choose {eg 0 as a free basis of M ® M. The

embedding of Z/n into M 0 M is written as



Suppose x E lker ~p*, i.e., = 0 for any y E N~. Then x ® y E im j for
any y. Write x = 03A3g~g ageg. An arbitrary element of M @ M of the form

lies in the image of j if and only if all mg, h are equal, see (5.2). Take y = eh. .
Then x ® y = ageg ® e~, so in (5.3) only n coefficients ag may happen
to be nonzero and the other (n2 - n) coefficients are zero. So ag = 0 for

any g, and x = 0. Thus lker ~p* = 0. Quite similarly rker ~p* = 0. 0

To satisfy (2) and (3) (Sect. 4), some additional assumptions are needed.

LEMMA 5.4.2014 Assume that g = Z/p x Z/p but all the decomposition
groups gv are cyclic. Then Z) ~ 0.

Proof. - Under the hypotheses of the lemma we have Z) =
Z). Let us show that Z) ~ 0. Let n = p~. . From (5.1) we get
Z) ~ Z/p2) because M ~ M is a free module. Multiplication

by p2 gives an exact sequence

and an exact sequence of cohomology groups

Since the first arrow is induced by multiplication by p2 and all the terms are
groups of exponent p, we conclude that this arrow is zero. Thus we obtain
an inclusion

whence an inclusion

But Z/p (cf. [ANT, § VII.ll.4] for p = 2, [Vos2, § 6.46] in
general), so III~(g, 0. This proves the lemma. 0

This lemma allows us to find a needed cocycle and thus to complete
the construction of a desired triple (F, Z, r~).



PROPOSITION 5.5.2014 Let M, Z, F, ~p be as above. Assume that g =

Z/p x Z/p but all the decomposition groups are cyclic. Then there exists

r~ E H2(g, Z) such that r~ E Z) and r~ is not in the image of
0 : H 1 {g, F/Z) --~ H2(g, Z).

Proof. - By Lemma 5.4, Z) ~ 0. Take r~ E H2(g, Z), r~ ~ 0. We
have M) = 0 because 1~1 is hence H1 (g, F/Z) = 0 and

We conclude that the triple (F, Z, r~) satisfies all the conditions (1)-(3)
(Sect. 4).

6. The group ~(X)

Let the extension constructed

in paragraph 5.1. Let r~ E H2 {g, Z) be a nonzero class constructed in
Proposition 5.5. Denote by c E A/Z) the cocycle constructed in

Section 1, and let X = ~{F B be the twisted form constructed in

Section 2.

As ~ does not lie in the image of A, by Proposition 3.1 X has no k-points.
As ~ is locally trivial, by Proposition 3.2 X has kv-points for all v. Since

the obstruction m(X) lies in ~(X )’~ (see Sect. 0), to prove (2) (Sect. 0), it
suffices to prove the following result.

PROPOSITION 6.1. - !B(X) = 0.

We need the following lemma which we prove imitating a construction of

[Mum, Chap. I, Sect. 2].

LEMMA 6.2.- Let Y be a variety over an algebraically closed field k.
Denote = 

X 
. Let r be a finite group acting freely on Y. Set

X = I‘ ~ Y . . If Pic Y = = 0, then Pic X = 

Proof. - Let 7r be the canonical map Y -~ X. . Let ,C E Pic X be a line

bundle. Then is a line bundle on Y. Since Pic Y = 0, is a trivial

line bundle.

Fix an isomorphism K; ~r*~C 2 Ga x Y where Ga is the one-dimensional

vector space over k. The group r acts on ~r*,C, hence on Ga x Y. Write



where y E F, a E k = Ga(k), y E Y, and : Y ~ hX is a function without
zeros. Since U(Y) = 0 we see that ~,y E hence does not depend
on y. Thus y(a, y) = (~ . ~ a yy), where E . We write

whence = 
. We conclude that ~ : : I‘ -~ l~ X is a homomorphism.

If // : ~r*~C ~ Ga x Y is another trivialization, then // = x ~ r~ where x E
kX is a constant, and we obtain the same homomorphism ~. Isomorphic line
bundles define the same homomorphism. Thus we obtain a map Pic X -;

One checks immediately that this map is a homomorphism.
In the other direction, let 03C6 : r - be a homomorphism. Then p

defines an action of f on G a x Y by

We define ,C~ _ I‘ ~ (Ga x Y). Thus we obtain a homomorphism
Hom(I‘, ~ Pic X which is inverse to the constructed map Pic X --~

Thus the Pic X ~ Hom(0393,k ) is an isomorphism. []

Remark. - Let k be a nonclosed field. One can check that the isomor-

phism Hom(r, kX) is Gal(k/k)-equivariant.
The preceding lemma allows us to compute Bra X. Denote by X(F) =

Hom(F, Gm) the group of characters of F. We regard X(F) as a Gal(k/k)-
module.

LEMMA 6.3.2014 Bra X = .

Proof. - By ~San, ~ 6.3{iv)~, we have an exact sequence

where U {X ~ ) = ~[X]~/~. . By Rosenlicht’s theorem [Ros], U(SL ,k -) = 0,
hence U(X~ ) = 0. Thus Bra X = H1 (~, Pic X~ ).
We have Pic SLm,k = 0 (cf. {6.9)J) and by Lemma 6.2



Now A is central in N, hence the left action of A on F ~ SLm, defined
in Section 2, induces a trivial action of F and on Pic(F ~ SLm) = X(F).
We conclude that twisting by the cocycle c with values in A/Z does not
change the Picard group of F ~ SLm . It follows that Pic X~ = X (F). Thus
Bra X = . D

Proof of Proposition 6.1. . - By Lemma ~.3,

By (5.2) we have [F, F] = Z, so

~1 t~~ X(F/Z)) = ~1 t~~ X(M e M)) = ~1 t~~ .

By Shapiro’s lemma, III1 (k, (Z/n)[g] = III1(L, Z/n). But Chebotarev’s

density theorem gives Z/n) = 0 (cf. [San, § 2a]), so = 0. D

7. The group Brnr Xk

Let X be as in Section 6. We compute the unramified Brauer group
Brnr According to [Bog] and [CTS3, 3.~~, this group does not depend
on the embedding F 2014~ SLm but only on F. Denote it by Bo(F). To

compute it, proceed as in [Bog] and [CTS2].

Suppose f : : A 2 r --~ Z is a linear map, where rand Z are abelian

groups, and A 2 denotes the second exterior power. One can view f as a
skew-symmetric bilinear map r x r -~ Z, or as a 2-cocycle. Consider an

extension

defined by this cocycle. If Z = then {,S’ ~ (cf.
[CTS2, § 4d]), where Sbi is the group generated by the elements of the form
ii lying in 5’ with I‘ .



With the notation of 5.1, set r = M C M, then

Set

and embed S into by the map j* = (id, id, j), where id denotes the
identity map and j is as in Notations 5.1. We get an exact sequence

where f = (id, id, ~p) with the notation of 5.1. Thus the extension

defined by the cocycle f, coincides with one constructed in Section 5.

PROPOSITION 7.1.2014 Bo(F) = 0.

Proof. - By (5.2), for any m E Z/n we have

Take y = 03A3g~g eg E M, set 71 = (03B3,0), ’Y2 = (0,03B3) E M iii M, then

is an element of Sbi generating j (Z/n) . The elements of the form (a, 0) n
(b, 0) and (o, a) n (o, b), where a, b E M, also belong to Sbi and generate

® 0) and n2 (0 ® M), respectively. Thus S/ Sbi ~= 0 and Bo (F) = 0. ~
Proposition 7.1 concludes the proof of Theorem 0.1, modulo the assump-

tions of Proposition 5.5 concerning the choice of k and L.



8. Field extension

It remains to note that according to [Lan, Chap. 5, § 4], one can construct
infinitely many unramified extensions L/k with a given Galois group g.
Thus all the decomposition groups gv will be cyclic, and the hypotheses of

Proposition 5.5 will be satisfied if g = Z/p x g/p and k contains the p2-th
roots of unity.

Let us give an explicit numerical example. Take n = 4, k = Q(~/~T),
L = VT7). Then g = Gal(L/k) = Z/2 x Z/2, but all the

decomposition groups gv are cyclic. Indeed, we have to check it for v lying
over p = 2, 13, 17. But for p = 2 it is clear, and for p = 13, 17 it follows from
the fact that the corresponding decomposition groups of 17) /(a
are cyclic (cf. [ANT, Ex. 5]).

Note that the order of the resulting group F equals nn2+2n-l = ~4s.

Thus the assumptions of Proposition 5.5 are satisfied. Theorem 0.1 is

completely proved. 0
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