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Persistence of Homoclinic Tangencies for
Area-Preserving Maps(*)

LEONARDO MORA(1) and NEPTALÍ ROMERO(2)

Annales de la Faculte des Sciences de Toulouse Vol. VI, n° 4, 1997

RÉSUMÉ. - Nous prouvons que dans une variété symplectique bidimen-
sionnelle M, I’ existence de courbes lisses invariantes dans le monde des
applications symplectiques de M est un mécanisme pour créer des ou-
verts contenant un ensemble dense d’applications exhibant des tangences
homocliniques.

ABSTRACT. - In a 2-dimensional symplectic manifold M we show that
the presence of smooth invariant curves in the world of symplectic maps
of M is a mechanism to create open sets containing a dense set of maps
exhibiting homo clinic tangencies.

1. Introduction

In 1970, S. Newhouse [N2] proved the existence of an open set U C
2, where M is a 2-dimensional compact manifold, with the

following property: there exists a dense subset of U such that each g : :
M ~ in this subset exhibits homoclinic tangencies (tangential intersections
between the stable set and unstable set, W8(p) and respectively, of
a hyperbolic periodic point p). We call such a set U C Diffs(M), with the
last property, an open set of "persistence of homo clinic tangencies", from
now on OSPHT.

Later, in 1979 [N3], he proved that a mechanism to create this kind of
sets is the unfolding of a dissipative homoclinic tangency. More precisely, for
every f E with a homoclinic tangency associated to a dissipative
hyperbolic periodic point p ( I det I  l, where n is the minimal period
of p), there exists U an OSPHT such that f E Ll.
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Here we present a mechanism to generate OSPHT’s in the world of sym-
plectic diffeomorphisms ; we show that the presence of a smooth invariant
curve generates, for nearby maps, this kind of open sets. To be more precise,
let M be a 2-dimensional compact manifold with w a symplectic 2-form on
M and denote by Diffw the space of CS diffeomorphisms that preserve w,
then we have the following result.

THEOREM 1. - ~et f E admit a C°° closed invariant curve

y such that the rotation number w = p( f I ,~) is irrational. Then for every
s > 4 there exists U C an OSPHT such tant f E Ll. Moreover,
there is a residual subset V of U such that every f E V has an invariant
smooth curve which is accumulated by elliptic points.

The method to prove Theorem 1 is different from the dissipative case.
The wild hyperbolic sets mechanism used to produce persistence of homo-
clinic tangencies is replaced by the rich structure around a smooth invariant
curve, obtained from KAM theory ~Bo~, combined with the following two
propositions.

PROPOSITION 2.- For f E and y a C°° invariant curve

assume that:

(i~ w satisfies a diophantine condition : there exist ,Q > 0 and C > 0
such that for every p/q E Q then

(ii) f satisfies a twist condition along 03B3 (see S’ect. 2),
(iii) there exist LI C such that for each g E LI there is a

continuation curve 03B3g of 03B3 which is invariant by g and with the
same rotation number 03C9.

Then there exists U C L! an OSPHT and for a residual set in U, the

continuation curve ig is the limit of elliptic periodic orbits.

Remark. - The same conclusion can be obtained in Proposition 2 if we
replace the invariant curve y by a collection of disjoint curves ~ y2 ~ i o such
that f (y2 ) = 03B3i+1 and f (yn_1 ) = yp. Just take fn, apply Proposition 2
and pull back U by the map f - fn. .



PROPOSITION 3. - ~et f E . Then for each s > 1, we have:

(i~ if f exhibits a C°° invariant curve with an irrational rotation number,
then for each ~ > 0 there exists f Cs~-near to f such that f exhibits
homoclinic tangencies;

(ii) if f exhibits a homoclinic tangency associated to a hyperbolic periodic
orbits, then for each E > 0 there exists f Cs~-near to f such that f
has a generic (in the KAM sense ) elliptic periodic point; in particular
f exhibits C°° invariant curves.

The same conclusion of Theorem 1 holds if we replace the assumption
of the presence of an invariant curve by the presence of some homo clinic
tangency associated to a hyperbolic periodic point p.

COROLLARY 4. - Assume that f E s > 4, has a hyperbolic
periodic point p and that f exhibits a homoclinic tangency associated to p,
then there exists U C Difl’w(M) an OSPHT such that f E I,I. Moreover,
there is a residual subset V ofU such that every f E V has an invariant
smooth curve which is accumulated by elliptic points.

A consequence of Corollary 4 is the creation of infinitely many elliptic
islands accumulating KAM curves. However, these elliptic points do not
accumulate at the hyperbolic point which unfolds the homoclinic tangency.
A related question in the unfolding of a homo clinic tangency is whether the
OSPHT’s can be constructed generating elliptic islands which accumulate at
the hyperbolic periodic point. Some partial results concerning the previous
question were obtained in ~D~ . Moreover, it seems possible to answer the
question above by using [MR] and the methods of proof in the dissipative
case.

This paper is organized as follows: In Section 2, Birkhoff’s normal form
and KAM theorem are recalled. The proof of Proposition 3, using some tools
of ~Z~ , is presented in Section 3. Finally, in Section 4 we prove Proposition
2 and Theorem l. .

2. Birkhoff’s normal form theorem and KAM theorem

Let f be an area-preserving C’" diffeomorphism of the annulus ~ _ ~ 1 x I18,
with r > 4k + 4 and k > 0 ; here and in what follows we identify ~ 1 with



Sl x {0}. Assume that ~1 and that the rotation with

angle ~. So we can write

We say that ~ E R satisfies a diophantine condition if there exist /~ > 0
and C > 0 such that for every p/q e Q then - p/ql > C~q2+,~.
Let D(C, /?) be the set of these numbers with C and (3 fixed. We recall
that the set D(/3) = Uc>o D(C, ,0) has total Lebesgue measure, i.e.;

m(D(Q) n [0, 1]) = 1 when - {3 > 0.
The following version of Birkhoff’s normal form theorem says that if w

satisfies a diophantine condition then after an area-preserving change of
coordinates the term ra(0, r) in (1) can be written as a polynomial function
in r plus higher order terms in r. More precisely, letting

we have the following result.

THEOREM 5. - For each n  k there exists hn : A03B4 ~ A a area-

preserving map letting ~1 invariant and such that in = o f o hn has the

following form

Proof. - For a proof in the C°° case see appendices 1 and 2 of [Do] .
The finite-differentiability case follows the same lines as the Coo case but it
is necessary to use lemma 8.1 of ~H~ . ~

Remark. - In the case that f is C°° all the changes of coordinates are
also Coo, and we can choose n as large as we want.

Now consider a Coo symplectic diffeomorphism f E Diff~03C9 with an

invariant C°° curve i. We define the twist condition along i as follows:
we say that f satisfies a twist condition along ~y if there exists a transversal
unit vector field X on I such that w {D f X {p) , X ( f {p)) ) > 0 for all 
When p~ f ( ,~) satisfies a diophantine condition it is well known that after a
symplectic change of coordinates, f restricted to a neighborhood V of i has
the form (1) with 0) = (0,1). In this case a symplectic diffeomorphism
of the annulus f satisfies a twist condition along I if and only if



This number does not depend on the symplectic change of coordinates used
to put f in the form (1) and it is called the first Birkhoff coefficient .
Now we recall the KAM theorem and remark some facts that we will use

in the sequel. Let f : ~ ~ -~ ~ be a Coo map of the annulus. We say that
f has the intersection property if for each curve y in A03B4 non homotopically
trivial we have that 0. If f admits an invariant curve which is non
homotopically trivial and preserves a symplectic form w then it is easy to
see that f has the intersection property. Let s > 4 and t E C°° ((-b, 6) , lIg).
For each (v, Jl) E Cs IIg)2 let : ~~ -~ ~ be the map

THEOREM 6. - Let ro E (-6, 6) and assume:

(a ) t > 0, satisfies a twist condition;

(b~ a = t(ro) E D(c, ,Q), a = t(ro) satisfies a diophantine condition ;
(c) satisfies the intersection property for every (v, ~C) in a neighbor-

hood of (o, 0). .

Let s > 2~3 -f- 3, then there exists a neighborhood W in of
(0, 0) such that, for all (v, ~u) E W, one can find y E CS-2t1+~~(~1, R) and
h E with

(i~ r = ~(8, y(8)) ( 8 E is invariant under ;

(ii) Ir is CS-2(1+~3) conjugated to the rotation = 9 + a(mod)1
by the following conjugation 9 --~ (h(8) , y o h(8)) .

See [Bo] and [SZ] for a proof.

Remarks

. The neighborhood W depends a priori on a = t(ro) (in fact on
but it can be proved that if ro varies in a compact

set K, such that C D(Q) then we can choose W depending just
on Because of has total Lebesgue measure, this is what gives
the rich structure (lots ot other invariant curves) around an invariant
curve.

. We have the following regularity statement: if v, p are C°° then y is
see ~SZ~.



3. Invariant curves and homo clinic tangencies

In this section our goal is to give the proof of Proposition 3, which in
turn is a consequence of the following proposition.

PROPOSITION 7. - Let f : AS --~ ~ be a C°° area-preserving map of the
annulus which leaves invariant some C°° curve

where W : ~1 -~ R, and such that has an irrational rotation number.

Then for s > 1 and each ~ > 0, f can be ~-approximated in the CS-topology
by one F which exhibits homoclinic tangencies and such that for some 6’  6

we have F ( ~b ® ~ - f I ®~ ‘~ ~ ’

Proof of Proposition 3
Item (ii) follows from [N3], see also [MR], so we will only prove item

(i). Because f and y are Coo, we can find a tubular neighborhood U of
I such that there is h : U - As for which h(1) : ~ 1 x ~ 0 ~ and

h* (d9 n dr) = w . So making use of Proposition 7 the result follows. D

To prove Proposition 7 we need first some preliminary results presented
in the following subsection.

3.1 Preliminaries

Let f : : As --+ A be a Coo area-preserving map of the annulus which leaves
S1 invariant, i.e., f(S1) = S1. We assume that f|S1 = with w = p/n
where p, n are relatively prime and

with ai > 0. Since f leaves §~ invariant (see [Do]) we have that locally
around ~1, f (9, r) = (6, R) is described by a generating function h(0, R) in
the following way



It is easy to check that

is the generating function of fn. . From this we get that the generating
function of f has the form R) = hn(8, R) + O(Rn+2).
We follow Moser and Zehnder to make a perturbation of f. Consider the

following two parameter family of generating functions

This family generates, for c and y small enough, the following two parameter
family of diffeomorphisms : ~~~2 -~ ~ with

Observe that by the way we made the perturbation, ~ 1 continues to be
invariant for the family 

PROPOSITION 8. - Assume that a1 ~ 0, then for E and y small enough,
has two n-periodic orbits y) ~ i o , ~’) ~ i ~ , which satisfy :

(a) is a hyperbolic n-periodic orbit with

for -y fixed and ~ -~ 0;

(b) y) ~ i o is an elliptic n-periodic orbit with

for ~y fixed and ~ -~ 0;



(c ) there exist b > 0 and

for which we have

where b does not depend on e when this is small enough;

(d) the angle

The proof of this proposition is contained in [Z], so we only present the
construction of the periodic points and shows how the homoclinic points are
found and refer to [Z] for the rest of the details.

Proof. - We begin by making the following change of coordinates

,~(8, p) = (8, ~p) = (9, r) which allows us to see what happens in a mi-
croscopic neighborhood of S1. In terms of 03B8 and p, f = f-1 o f o l is written
as

We get for the n-th iterate of the following expression



where

The fixed points of are the solutions of the equations

The fact that a1 f:. 0 and the implicit function theorem imply that there
exists a solution of (6) which equals l/a1 when c = 0. Using this
solution in (7) we get 2n solutions with i = 1, ..., n which
equal

respectively when 6: = 0. Since p, n are relative primes, the uniqueness part
of the implicit function theorem gives that

are actually part of a n-periodic orbit. To determine the nature of
these orbits we make another change of coordinates. Let (~ be any of
the points and let ~,.r) = (~ + + ~-~)/~) then
/e,~ = ~"~ o /~ o ~ takes the following form

where

and

with a~ = ~1 depending on the value of q;. From (9) and the fact

h (ê, 0,0) =(0,0) we get



with

and 0  y  y. All of these together imply that we can write

Now from (12) the jacobien matrix at (0, 0) equals to

where

From here it follows that

So we conclude from (13) that we have an elliptic orbit at and a

hyperbolic orbit at i o with eigenvalues given by



The local stable (unstable) manifold (0) of (0, 0) of is described by
the following proposition, whose proof follows immediately from Proposition
1 and 2 of ~Z~.

PROPOSITION 9. - There exist Cl, , C2 and ep such that for 0  e  Eo,
the local stable (unstable) manifolds Wlo~"~(0) are given in  3/4n by

where ~) I   C2E and 0) = 0.

From this proposition if follows that the are the graphs
of functions g1 defined on an interval with center at hi and length
equals To prove part (c) of Proposition 8, Let us show that

0. We argue by contradiction. Observe
that, since ~ 1 is left invariant by the annulus is decomposed in two
regions and the periodic lies in one of these sides (fig. 1).

Fig. 1

Now following [Z], we build a curve Co in the annulus in the following
way: the vertical line (1/2n, x) intersects and in
the points P and Q respectively (fig. l);let Co be the path that goes from
ho until P through (~o (~)) , then follows by the vertical segment from
P until Q and then continues from this point until hi through C~1 (~)~ ~
Define now the curve C as being This curve is a non



homotopically trivial Jordan curve. Let G be the region bounded by ~1
and this curve. It is easy to see, using the properties of the stable and
unstable manifolds described in Proposition 8, that m(G) > 
therefore contradicting the area-preserving property.

By (15) the angle between these manifolds at the intersection point goes
to zero when c goes to zero. D

3.2 Proof of Proposition 7

The proof of the proposition will be made through a sequence of steps
that consist in making some reductions and perturbations. We dedicate one
item to each one.

. We change coordinates with h(8, r) = ~B r - ~(B)~ = (B, r) so that
f (8, r) = h o f o h-1 has h(A) = ~1 as an invariant curve. Observe that
7 is Coo and

so if we prove the proposition for f then. we will also have it proved
for f.

. Thus we assume that f(S1) = S1 and f | S1 is conjugated to R03C9 with
~ an irrational number. Consider f~(9, r) = f {8, r) + (Q, 0) then by [H]
we can find 0 with n ~ oo such that (S1) = S1 and f03B2n |S1
has a rotation number vn = w + /3n satisfying a diophantine condition,
and once more by [H] we know that there exists hn : §~ ~ a Coo
diffeomorphism, conjugating |S1 with R03C9n. Consider Hn(03B8, r) =

(hn (9) , r/hn (8)) , then o o Hn = f satisfies f (~ 1) - ~ 1 and
|S1 = Also these changes of coordinates can be made uniformly
in the sense that there is some constant Mn > 0 such that

So once more, it is enough to prove the proposition for this map.
. We assume there that = S1 and f|S1 = R03C9 with w satisfying a
diophantine condition. By Theorem 5, we can write after a change of
coordinates



we may assume that 0 unless we perturb f in such a way that
the new f has 0, even more we choose ai > 0 (in the case ai  0
we take f -1 ). After this we perturb once again so the rotation number
of becomes rational. We apply now the Proposition 8 to get a
sequence of maps fk -~ f such that fk has a hyperbolic periodic orbit
~ hi (k) }i 1 with E and the angle
at point goes to zero as k -> oo. Moreover, h.i(k) = i/n and

So we can use the following lemma (see [Nl]).

LEMMA. - Let ~ > 0 and s E N. There exists C(s) > 0 such that given
6 and a linear subspace H C ~v = (v1, v2) : there
exists a CS area-preserving diffeomorphism 03C6 : A  such that 03C6(0) = 0,

0} == H and = (9, r) for , (0, 0)) > b andH and p(0, r) = (0,r) for dist((0, r) , (0, 0)) > 6 and

So, we can get perturbations fk of fn with the property that h exhibits
homoclinic tangencies and h -~ f. . If the tangency it not quadratic, with a
new perturbation, we make it quadratic. D

4. Proof of Theorem 1

Proof of Proposition 2 °

Let U be an open neighborhood of f where the continuation of I exists,
i.e., for each g e U there exists an invariant curve 19 such that the rotation
number of g | 03B3g equals that this neighborhood is provided by KAM
theory. Since f and y are Coo we apply Theorem 6 and the remark which
follows to conclude the existence of a subset U of U for which the following
property holds : for each g E U such that g is a Coo map, the invariant
curve 19 prolongation of y is also C°° . Now Proposition 3 allows us to
conclude that this neighborhood is an OSPHT. To see the existence of the
residual set we observe first that, by the remark following Theorem 6, for
each g ~ u there are lots of invariant curves, in particular 19 is the limit
of other invariant curves satisfying the twist condition and whose rotation
numbers satisfy diophantine conditions. We also notice that each Coo map



f with an Coo invariant curve can be approximated by another one having
an elliptic periodic orbit with arbitrary large period. This follows from

the proof of Proposition 3. Now in U consider the subset Um of all g E U
having some elliptic periodic orbit in the 1/m-neighborhood for This set

is obvious open and C Um . . Also each Um+1 is dense in Um , because
of the two previous observations. So the set R = n Um is a residual set

satisfying the conclusion of Proposition 2, so we are done. 0

Proof of Theorem 1

We approximate f by f, , a Coo map having a generic elliptic periodic
orbit; it is a consequence of the proof of Proposition 3. Let U1 be a set

containing f and for which this elliptic periodic point survives. Choose an
invariant Coo curve of f associated to this elliptic periodic point. Observe
that this curve is invariant by f’~ where n is the period of the elliptic periodic
point. By KAM theorem we have a subset U of U1, in which the curve
survives. Now the remark after Proposition 2 allows us to conclude the
proof. 0
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