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Asymptotic expansion of the Bergman kernel
for weakly pseudoconvex tube domains in C2(*)

JOE KAMIMOTO(1)

Annales de la Faculte des Sciences de Toulouse Vol. VII, n° 1, 1998

Dans cet article nous donnons un developpement asymp-
totique du noyau de Bergman pour certains domaines de tube qui sont
faiblement pseudo-convexes et de type fini dans C2 .

Notre formule asymptotique montre que la singularite du noyau de
Bergman a points faiblement pseudo-convexe est essentiellement represen-
tee par deux variables ; de plus, un certain eclatement reel est necessaire
pour comprendre cette singularite.

L’expression du developpement asymptotique par rapport a chaque vari-
able est analogue a celle de C. Fefferman dans le cas strictement pseudo-
convexe.

Nous demontrons aussi un meme resultat pour le noyau de Szego. .

ABSTRACT. - In this paper we give an asymptotic expansion of the
Bergman kernel for certain weakly pseudoconvex tube domains of finite
type in C2. Our asymptotic formula asserts that the singularity of the
Bergman kernel at weakly pseudoconvex points is essentially expressed
by using two variables; moreover certain real blowing-up is necessary to
understand its singularity. The form of the asymptotic expansion with
respect to each variable is similar to that in the strictly pseudoconvex
case due to C. Fefferman. We also give an analogous result in the case of
the Szego kernel.
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1. Introduction

The purpose of this paper is to give an asymptotic expansion of the

Bergman kernel for certain class of weakly pseudoconvex tube domains of
finite type in C2. We also give an analogous result for the Szego kernel for
the same class of tube domains.

Let Q be a domain with smooth boundary in The Bergman space
B(Q) is the subspace of L~(Q) consisting of holomorphic L2-functions on Q.
The Bergman projection is the orthogonal projection IIB : L~(Q) 2014~ B(S2).
We can write 1~ as an integral operator

where 0 x S~ -~ ~ is the Bergman kernel of the domain S~ and dV is the

Lebesgue measure on Q. In this paper we restrict the Bergman kernel on the

diagonal of the domain and study the boundary behavior ~i {z, z).

Although there are many explicit computations for the Bergman kernels
of specific domains ([2], [9], [33], [11], [26], [6], [13], [22], [23], [34], [3]),
it seems difficult to express the Bergman kernel in closed form in general.
Therefore appropriate approximation formulas are necessary to know the

boundary behavior of the Bergman kernel. From this viewpoint the follow-

ing studies have great success in the case of strictly pseudoconvex domains.
Assume Q is a bounded strictly pseudoconvex domain. Hormander [32]
showed that the limit of K(z) d(z - at z~ E ~S2 equals the determi-
nant of the Levi form at zO times nt/4~r’~, where d is the Euclidean distance.
Moreover Diederich ([14], [15]) obtained analogous results for the first and
mixed second derivatives of Fefferman [21] and Boutet de Monvel
and Sjostrand [7] gave the following asymptotic expansion of the Bergman
kernel of Q:

where r E is a defining function ofQ (i.e., Q = {r > 0} and > 0

on aS2) and ~o, ~ E C°°(S2) can be expanded asymptotically with respect
to r.



On the other hand, there are not so strong results in the weakly
pseudoconvex case. Let us recall important studies in this case. Many
estimates of the size of the Bergman kernel have been obtained ([29], [52],
[19], [8], [45], [30], [16], [31], [46], [10], [53], [25], [47]). In particular Catlin [8]
gave a complete estimate from above and below for domains of finite type in
C2. Recently Boas, Straube and Yu [4] computed nontangential boundary
limit in the sense of Hormander for bounded domains which are known

variously as h-extendible [56] and semiregular [17]. This class contains

many kinds of domains of finite type. Diederich and Herbort [18] gave
an alternative proof of the result of [4]. Though the above studies about
estimate and boundary limit are detailed, a clear asymptotic formula like
(1.1) is yet to be obtained. In this paper we give an asymptotic expansion of
the Bergman kernel for certain class of weakly pseudoconvex tube domains
of finite type in C2. Gebelt [24] and Haslinger [28] recently computed certain
asymptotic formulas for the special cases, but the method of our expansion
is different from theirs.

Our main idea to analyse the Bergman kernel is to introduce certain
real blowing-up. Let us briefly indicate how this blowing-up works for the
Bergman kernel at a weakly pseudoconvex point zo. Since the set of strictly
pseudoconvex points are dense on the boundary of the domain of finite
type, it is a serious problem to resolve the difficulty caused by the influence
of strictly pseudoconvex points near This problem can be avoided by
restricting the argument on a non-tangential cone in the domain ([29], [19],
[30], [16], [4] ) . We surmount the difficulty in the case of certain class of tube
domains in the following. By blowing up at the weakly pseudoconvex point

we introduce two new variables. The Bergman kernel can be developped
asymptotically in terms of these variables in the sense of Sibuya [55] (see also
Majima [44]). The expansion, regarded as a function of the first variable,
has the form of Fefferman’s expansion (1.1), and hence it reflects the strict
pseudoconvexity. The characteristic influence of the weak pseudoconvexity
appears in the expansion with respect to second variables. Though the form
of this expansion is similar to (1.1), we must use m-th root of the defining
function, i.e. r1 ~’r’~, as the expansion variable when z~ is the type 2m. We
remark that a similar situation occurs in the case of another class of domains
in [24].

Our method of computation is based on the studies [21], [7], [5] and
[51]. In [21], Fefferman selected the ball { z E en  1 } as a

model domain to approximate strictly pseudoconvex domain. We consider
{(z1, z2) E C2 |z2 > with g > 0, m = 2, 3, ... as a model do-



main. The starting point of our analysis is certain integral representation
in [40], [48], [54] and [27]. After introducing the blowing-up to this rep-
resentation, we compute the asymptotic expansion by using the stationary
phase method. For the above computation, it is necessary to localize the

Bergman kernel near a weakly pseudoconvex point. This localization can be
obtained in a fashion similar to the case of some class of Reinhardt domains

([5], 
This paper is organized as follows. Our main theorem is established in

Section 2. The next three sections prepare the proof of the theorem. First
an integral representation is introduced, which is a clue to our analysis
in Section 3. Second the usefulness of our blowing-up is shown by using
a simple tube E C2 > ~~zl~ 2’n ~ , m = 2, 3, ..., in
Section 4. This domain is considered to be a model domain for more

general case. Third a localization lemma is established in Section 5, which
is necessary to the computation in the proof of our theorem. Our main
theorem is proved in Section 6. After an appropriate localization (§ 6.1) and
the blowing-up at a weakly pseudoconvex point, an easy computation shows
that certain two propositions are sufficient to prove our theorem (§ 6.2). In
order to prove these propositions, we compute the asymptotic expansion of
two functions by using the stationary phase method (§ 6.3, 6.4). The rest
of Section 6 (§ 6.5, 6.6) is devoted to proving two propositions. In Section
7 an analogous theorem about the Szego kernel is established.

2. Statement of main result

Given a function f E satisfying that:

f" > 0 on R and f has the form in some neighborhood of 0:

" . where m = 2, 3, ..., g(O) > 0 and xg’(x) ~ O. 
(2.1)

f (x) = where m = 2, 3, ..., g(0) > 0 and  0. . 
(2.1)

Let w f be a domain defined by w f = {{x, y) | y > f(x)}. Let S2 f C C2
be the tube domain over i.e.,

Let ~r : the projection defined by ~r(z1, z2) _ Set
0 = (0,0). It is easy to check that Hy is a pseudoconvex domain; moreover
zO E with ~r(za) - 0, is a weakly pseudoconvex point of type 2m
(or 2m - 1) in the sense of Kohn or D’Angelo and (~) is strictly
pseudoconvex near z~.



Now we introduce the transformation ~, which plays a key role on our
analysis. Set A = ~ (T, o) ~ 0  r  1 , p > 0 } . The transformation ~:

w f -. 0 is defined by

where the function x E C°° ~( 0 , 1)) satisfies the conditions:

Then 03C3 o 7r is the transformation from S2 to A.

The transformation 03C3 induces an isomorphism of n {x ~ 0} (or
{x ~ 0}) on to A. The boundary of is transfered by 03C3 in the

following:

This indicates that 7 is the real blowing-up of ~03C9 f at O, so we may say
that is the blowing-up at the weakly pseudoconvex point zo. Moreover
cr patches the coordinates (r, o) on w f, which can be considered as the
polar coordinates around O. We call r the angular variable and q the radial
variable, respectively. Note that if z approaches some strictly (resp. weakly)
pseudoconvex points, r(7r(z)) (resp. U(7r(z))) tends to 0 on the coordinates
(T~ P)~

The following theorem asserts that the singularity of the Bergman kernel
of 0 f at z~, with = 0, can be essentially expressed in terms of the
polar coordinates (r, g) .

THEOREM 2.1.- The Bergman kernel of 03A9f has the form in some

neighborhood of z~: :

where 03A6 e C°°((0, 1] x [0,e)) and$ 6 C~([0, 1] ] x [0,e)) with some
e>0.



Moreover ~ is written in the form on the set {T > with some

a > 0: for every nonnegative integer ~p

where

for 03C6 , 03C8  E C~([0, 1]), 03C60 is positive on [0, 1] and R 0 satisfies

for some positive constant .

Let us describe the asymptotic expansion of the Bergman kernel ~i in
more detail. Considering the meaning of the variables T, g, we may say
that each expansion with respect to r or is induced by the strict or
weak pseudoconvexity, respectively. Actually the expansion (2.5) has the
same form as the one of Fefferman (1.1). By (2.4)-(2.5), in order to see the
characteristic influence of the weak pseudoconvexity on the singularity of
the Bergman kernel it is sufficient to argue about !{ on the region

This is because Ua is the widest region where the coefficients are

bounded. We call Ua an admissible approach region of the Bergman kernel
of Qy at The region Ua seems deeply connected with the admissible

approach regions studied in [41], [42], [1], [43], etc. We remark that on the
region Ua , the exchange of the expansion variable for r1/m, where r
is a defining function of Qy (e.g., r(x, y) = y - f (x)), gives no influence on
the form of the expansion on the region .

Now let us compare the asymptotic expansion (2.3) on Ua with Feffer-
man’s expansion (1.1). The essential difference between them only appears
in the expansion variable (i.e., in (2.3) and r in (1.1)). A similar phe-
nomenon occurs in subelliptic estimates for the 8-Neumann problem. As is

well-known, the finite-type condition is equivalent to the condition that a

subelliptic estimate holds, i.e.,



(refer to [39] for the details). Let Eo be the best possible order of subel-
lipticity. In two dimensional case, ep = 1/2 in the strictly pseudoconvex
case and eo = 1/2m in the weakly pseudoconvex case of type 2m. The

difference between these two cases only appears in the value of s. From

this viewpoint, our expansion (2.3) seems to be a natural generalization of
Fefferman’s expansion (1.1) in the strictly pseudoconvex case.

Remarks

1) From the viewpoint of the studies ([4], [17]), let us consider the limit of
This limit on a nontangential cone is

The above integral seems impossible to be changed into simpler form (see
[39]). We remark that if we do not restrict the region for the approach, the
above limit is co(r), which depends on the angular variable r.

2) The idea of the blowing-up a is originally introduced in the study of the
Bergman kernel of the domain ~ z E  1 ~ {m~ mn ~
1) in [34]. Since the above domain has high homogeneity, the asymptotic
expansion with respect to the radial variable does not appear (see also
Sect. 4). Recently the author [37] also gave an analogous result in the
case of the decoupled tube domain ~ z E > ~~ 1 
(mj 1).

3) If we consider the Bergman kernel on the region Ua , then we can remove
the condition .c~(:c) ~ 0 in (2.1). Namely even if the condition xg~(x)  0
is not satisfied, we can still obtain (2.3)-(2.4) in the theorem where c~’s are
bounded on . But, for our method in this paper, the condition xg~{x)  0
is necessary to obtain the asymptotic expansion with respect to r.

4) From the definition of asymptotic expansion of functions of several
variables in [55] and [44], the expansion in the theorem is not complete.
In order to get a complete asymptotic expansion, we must take a further
blowing-up at the point {T, ~o) = (0, 0). The real blowing-up (T, ~o) -
(r, is sufficient for this purpose.

Notation . - In this paper, we use c, c~ or C for various constants without
further comment.



3. Integral representation

In this section we give an integral representation of the Bergman kernel,
which is a clue to our analysis. Koranyi [40], Nagel [48], Saitoh [54] and
Haslinger [27] obtain similar representations of Bergman kernels or Szego
kernels for certain tube domains.

In this section, we assume that f E is a function such that

f(0) = 0 and f"(x) ~ 0. The tube domain 03A9f C C2 is defined as in

Section 2. Let A, A* be the cones defined by

respectively. We call A* the dual cone of 03C9f. Actually A* can be computed
explicitly:

where (R=~) ~ = > 0, respectively. We allow that

= ~. If > 0 with some £ > 0, then = oo,

i.e.,A~={(:i~2)!(2>0}.
The Bergman kernel of Qy is expressed in the following. Set (.c,~/) =

where

The above representation can be obtained by applying the argument of

Koranyi [40] and Saitoh [54] to our case, so we omit the proof.

4. Analysis on a model domain

Let wo U JR 2 be a domain defined by cvo = ~ (x, y~ ~ y > , where

m = 2, 3, ... and g > 0. Set Qo = JR 2 + iwo. F. Haslinger [28] computes



the asymptotic expansion of the Bergman kernel of S2p (not only on the
diagonal but also off the diagonal). In his result Fefferman’s expansion only
appears.

In this paper, we consider S2p as a model domain for the study of
singularity of the Bergman kernel for more general domains. The following
proposition shows the reason why we take Qo as a model domain. Set

(x~ y) _ ~z2)_

PROPOSITION 4.1.- The Bergman kernel Ii of S2p has the form:

where r = x(1 - o = y (see (2.2)) and

with ~p, ~ E C°° ([ 0 1 ~~ and is positive on ~ 0 , 1 ~ .

Proof. - Normalizing the integral representation (3.1) and introducing
the variables t = ~ ~ = we have (4.1) where

It turns out from (4.2) and the definition of r that ~ E C°° {{0 , 1 ~~ .
Now let $ be defined by



If we admit Lemma 6.2 in Paragraph 6.4 below, we have

where (u) ~ 03A3~j=0 cju-2mj as u ~ ~. Substituting (4.4) into (4.3), we
have 

_ _

Since L(T, 03C3) ~ 03A3~j=0 cj()03C3-j as 03C3 -. oo for cj E C°° ([ 0 , , 1]), we have

with §, it E C°° ([ 0 , 1]) and  is positive on [0 , 1].
Finally since the difference between $ and i$ is smooth on [0 , 1 ~, we can

obtain Proposition 4.1. D

5. Localization lemma

In this section, we prepare a lemma, which is necessary for the proof of
Theorem 2.1. This lemma shows that the singularity of the Bergman kernel
for certain class of domains is determined by the local information about
the boundary. The method of the proof is similar to the case of some class
of Reinhardt domains ([5], [51]). Throughout this section, j stands for 1

or 2.

Let fi, f 2 E be functions such that = f~ {o) = 0, f3 > 0
on R and f 1 { x ) = f 2 { x ) on  03B4. Let W j C R2 be a domain defined by
wj = {(x, y) | y > fj{x)}. Set SZj = R2 + i03C9j C (C2. .

LEMMA 5.1.2014 Let be the Bergman kernels of S2~ for j = 1, 2,
respectively. Then we have

where U is some neighborhood of z~.



Proof. - Let A3 be the dual cone of i.e.,

where ~R~~ 1 = respectively (Sect. 3).
Let y) be defined by

where A ~ R2 and Dj(03B61, 03B62) = ~-~ e-03B62fj(03BE)-03B6103B6 d03BE.
Set Ae = {(y, ~2) ~ [ ~~1 ~  e~2 }, where e > 0 is small. Now the following
claims (i), (ii) imply Lemma 5.1. Set 0 = (0, 0);

(i) modulo for any ê > 0,

(ii) modulo for some ep > 0.

In fact if we substitute (x; y) = ~z2), then h’1 = Kl[Ai] = 
K2[Aeo] = K2[A2] = 1~2 modulo 

Let us show the above claims.

(i) Set At- = {(~’1, ~2) ~ ~  e(2  ~~i  R~~2}, respectively. Since
= + it is sufficient to show ~ E

C‘~~{O}~. We only consider the case of Changing the integral
variables, we have

where

It is an important remark that is real analytic on the region where
H; is integrable on ~ (~, ~) ~ ~ > s , r~ > 0}. .



If we take 61 > 0 such that I fj(~)~-1I  (1/2)~ if ~£~  bl, then we have

By (5.1), we have ~~ (~, r~; x, y)  C~ e-{y-x~+~1~2~~1~~n for x~ > 1. This

inequality implies that if x  0 and y > -(1/2)bl~, then H~ is integrable
on ~ (~, r~) ~ ~ > ~ , r~ > 0 ~ . Thus is real analytic on

By regarding x, y as two complex variables, y) is holomorphic
on w~ + i2, so the shape of w~ implies that can be extended

holomorphically to a region containing some neighborhood of f O} + 
Consequently we have E C‘~ ~{O}~ .

(ii) Changing the integral variables, we have

We remark that K1[~]-K2[~] is real analytic on the region where H1-H2
is integrable on { (~, r~)  e , r~ > 0) . . To find a positive number êO
satisfying (ii), let us consider the integrability of

First we give an estimate of I E2(~, ~) - El ((, r~) I . Let El > 0 be defined
by if ~~~ ~ 6. If ~~~ C ei/2. then



Second, we give an estimate of E~(~, ~). By Taylor’s formula, we can
choose e2 > 0 satisfying the following. If I(  E2, then there is a function
a~ (~) = a; = 0) such that = ( and moreover there is a
bounded function R~ (~, ~) on ( -e2 , e2 ~ x ~ -£o , ~o ~, with some ~p > 0,
such that

with F~(aj)  0. Then if ~~~  e2, we have

Now we set min{~1, ~2}. Then by putting (5.2), (5.4) and (5.5)
together, we have

This inequality implies that if y - (1/2)5el > 0, then ~Hl - H2~ is
integrable on ~(~,r~) ~ ~~~  > 0}. Hence is real

analytic on the region ~(x, y) ~ y - (1/2)bel > 0}, which contain
{O}.

This completes the proof of Lemma 5.1. 0

6. Proof of Theorem 2.1

In this section we give a proof of Theorem 2.1. The definitions of f, 
and 03A9f are given as in Section 2.

6.1 Localization

From the previous section, it turns out that the singularity of the
Bergman kernel of S2 f at x° is determined by the local information about
~03A9f near zO. Thus we construct an appropriate domain whose boundary
coincides ~03A9f near zO for the computation below.



We can easily construct a function 9 E such that

and

for some small positive constant 6  1. Note that

Set f {x) = x2mg(x) {(x, y) E R2| y > (x)}. Let C2 be the
tube domain over i.e., S2 ~ = Here we remark that the boundary

ofQ-is strictly pseudoconvex off the = z2 = 0 } . In fact
we can easily check that f "(x) > 0 if x ~ 0 by (6.1) and (6.2).

Let K be the Bergman kernel of Or In order to obtain Theorem 2.1, it
is sufficient to consider the singularity of the Bergman kernel K near by
Lemma 5.1. .

6.2 Two propositions and the proof of Theorem 2.1

A clue to our analysis of the Bergman kernel is the integral representation
in Section 3. Normalizing this representation, the Bergman kernel ~~ of S2 f
can be expressed in the following:

with

where = In order to prove Theorem 2.1, it is

sufficient to consider the following function K instead of K :

In fact the difference between and K is smooth.



By introducing the variables to = g(0~1/2’n’xy-1/2’’’z, ~ = to the

integral representation (6.3), we have

where

We divide the integral in (6.4) into two parts:

where

Since the function X)) 
1 

is smooth function of X on ( 0 , 1 ~, for
any positive integer po

where

Substituting (6.9) into (6.5), we have



where

Moreover substituting (6.11) into (6.7)-(6.8), we have

for j = 1, 2 where

The following two propositions are concerned with the singularities of
the above functions. Their proofs are given in Paragraphs 6.5 and 6.6.

PROPOSITION 6.1

(I) For any nonnegative integer k0, K(1)  is expressed in the form:

t.

where

e c°°([o,i]) satisfies 

(r - 03B103BE)-4- -k0 for some positive constants a.

satisfies I  for some positive
constants and a.



PROPOSITION 6.2

(ii) For any positive integer r, there is a positive integer 0 such that

First by Proposition 6.1, can be expressed in the form:

where are expressed as in (2.5) in Theorem 2.1 and R~ satisfies

!~o!c~(T-~)-~.
Next by Proposition 6.2, J~~) can be expressed in the form: for any

positive integer r,

where 1] x ~0, e)~ and H E C’"~~0, 1~ x ~0, e)~.
Hence putting (6.6), (6.12) and (6.13) together, we can obtain Theo-

rem 2.1. Note that is an even function of ~. ~

6.3 Asymptotic expansion of a~

By a direct computation in (6.10), can be expressed in the following
form: 

_ _ _ _

where



Ca’s are constants depending on a = (ai, ..., E and ~a~ =

a~. Since 
-

for k > 1 where ck; E we have

for k ~ 1 where

Here the following lemma is concerned with the asymptotic expansion of ~
at infinity.

LEMMA 6.1.2014 Set a = [(2m)-~(~-~) - (2m)-~/(~-~] > 0. Then
we have

a s v --~ +00 0. .

The proof of the above lemma will be given soon later.

Lemma 6.1 and (6.15) imply

Moreover, we have



Therefore (6.14), (6.16) and Lemma 6.1 imply

Proof of Lemma 6.1. . - Changing the integral variable, we have

where v = and p(t) = -t. We divide (6.17) into two parts:

with

where $ > 0 is small and a = (2m) -1~~2m-1) . Note that p’{a) = 0.
First we consider the function 7i. By Taylor’s formula, we have

where a = -p(~) = [(2m)-’~-~ - (2m)-~~-~] > 0 and p() =
~(1 - u)p"(ut + a) du. Set s = p()~~ and ~± = p(±~~,
respectively. Then there is a function p ~ C°°([2014~-,~+]) such that
t = p(s) and p~ > 0. Changing the integral variable, we have

where = (p(s) + -p~). Since W ~ C°°([-~- , ~+]), we have

We remark that du = 0 if j E S is odd.



Next we consider the function 12. Let pd be the function defined by
Pd(t) = dlt - al- a where d > 0. We can choose d > 0 such that p(t) > pd(t)
for It - al > 6. Then we have

Finally putting (6.18), (6.19) and (6.20) together, we have the asymptotic
expansion in Lemma 6.1 0

6.4 Asymptotic expansion of L~,

Let A E be an even or odd function (i.e., A(-v) = A(v) or
- A(v)) satisfying

where n E N and the constant a is as in Lemma 6.1. L E be the

function defined by

In this section we give the asymptotic expansion of L at infinity.

LEMMA 6.2. 2014 L(u) - ~-~ . e~" . ~o c~’~~ ~ u -. +00.

Lemmas 6.1 and 6.2 imply that for ~ ~ ~ 0;



Proof. - We only show Lemma 6.2 in the case where A is an even
function. Let A E {0}) be defined by

then ~(a?) ~ ~~°_o as z - o. Substituting (6.23) into (6.21), we
have

Changing the integral variable and setting q(t) = at2’n - we have

Now we divide the integral in (6.24) into two parts:

with

where S = 6 > 0 is small and /? = (2m - l)(2ma) ~. Note that

~(/3) = 0.
First we consider the function Ji. By Taylor’s formula, we have

where = Note that = -1. Set s = g(~)~~
for |t| ~ 6 and 03B4± = (±03B4)1/203B4, respectively. Then there is a function

 ~ C~([-_, 6+ ]) such that t = and ’ > 0. Changing the integral
variable, we have



where

Since Â(x) ~ 03A3~j=0 cjx-j as x ~ ~, we have

where c~ E C°° ([ -6- , , b+~~ . Substituting (6.27) into (6.26), we have

Next we consider the function J2. By a similar argument about the
estimate of 12 (V) in the proof of Lemma 6.1, we can obtain

where e is a positive constant.
. Finally putting (6.25), (6.28) and (6.29) together, we obtain the asymp-

totic expansion in Lemma 6.2. D

6.5 Proof of Proposition 6.1

We can construct the function h E C°° ~~ 0 , such that if Y =

f ~X~1~2~"’, then X = Yh(Y). In fact

Set t = ,f{x)1~2’n~-1. Then we can write to = Note that

= 1 for X, Y > 0 and hence h’(Y) > 0 for Y > 0. Let

us prepare two lemmas for the proof of Propositions 6.1 and 6.2.

LEMMA 6.3. - Assume that the functions a, band c on ( 0 ~) X 0 , 1 ~ ]
satisfy = = one of these functions belongs to
C’°° ([ 0 , ~) x ~ 0 , 1 ~), , then so do the others.

Proof. - This lemma is directly shown by the relation between three
variables to, t and r. 0



LEMMA 6.4. - There is a positive number a such that 1- > T - a~.

We remark that the above constant a is same as that in Proposition 6.2.

Proof. - By definition, we have

Since h(0) = 1 and h~(X ) > 0, we have -1  at~ for some positive
number a. Therefore we have

Proof of Proposition 6.1

(i) Recall the definition of the function 

where

We obtain the Taylor expansion of s) = with respect
to ~:

where



Substituting (6.31) into (6.30), we have

where

First we consider the singularity of at t = 1.

By a direct computation in (6.32), we have

where hp E C°° ([ 0 , 1 )~ (which depends on k). We define the function

Lemma 6.2 implies

where c~ E C°° ~~ 0 , 1]).
Substituting (6.36) into (6.34), we have

Moreover substituting (6.37) into (6.38), we have



Next we obtain the inequality .~’~1~ {T, ~)  C~ [r - a~ -4-~‘-’~° for
some positive constant C~~~o . By a direct computation in (6.33), we have

where hl are bounded functions (depending on ko). Since h’(X) ~ 0, we
can obtain

for s > 1. Substituting (6.39) to (6.35), we obtain

by Lemma 6.4. This completes the proof of Proposition 6.2(i).

(ii) Recall the definition of the function 

where

The following lemma is necessary to obtain the estimate of in (ii).



We remark that the constant a is as in Lemma 6.1. The proof of the
above lemma is given soon later.

Applying Lemma 6.5 to (6.41), we have

The second inequality is given by Lemma 6.2. Moreover substituting (6.43)
into (6.40), we have

by Lemma 6.4. Therefore we obtain the estimate of in Proposition
6 .1 (ii) . . ~

Proof of Lemma 6.5. - We only consider the case where v is positive.
The proof for the case where v is negative is given in the same way.

By a direct computation, we have

where

and Ca’s are constants depending on a = ..., By a

direct computation, the function are expressed in the form:

where v = v2m/ (2m-1 ) X = are constants and



with p(s, X) = g(X s)s2m - s, ,Qk E N and I E N depending on ,~ = ~/~k~k’
In order to apply the stationary phase method to the above integral, we
must know the location of the critical points of the function p( . , X). The
lemma below gives the information about it.

LEMMA 6.6.- There exists a function such that

Proof. - By a direct computation, we have

where 1] = X s. It is easy to obtain the following inequalities by using the
conditions (6.1)-(6.2):

for some positive constant c. Then the inequalities (6.48)-(6.49) imply the
claim in Lemma 6.6 by the implicit function theorem. D

Now we divide the integral in (6.46) into two parts.

where

where 6 > 0 is small.



First we consider the function By Lemma 6.6 and Taylor’s formula,
we have

where a(X) = -p (a(X), X) and

Set s = on [-$, 6] x [0, oo) and b~(X) == 

respectively. Then there is a function p E C°° ~~ -$- (X), , b+(X ) ] x [ 0 , oo))
such that t = and (8/8s)p(s, X ) > 0. Changing the integral
variable, we have

where

Since B11 E C°°~(-b_(X), b+(X)~ x ~0; we have

Note that

Next we consider the function 12. In a similar argument about the
estimate of 12CV) in the proof in Lemma 6.1, we can obtain

where c is a positive constant.



Putting (6.51)-(6.52) together, we have

Now under the condition ~/~~ = k, the number y in (6.46) attains the
maximum value (2m + 1)k when /~ = (1, ... , 1). Therefore (6.45) and
(6.53) imply that 

I

Moreover (6.44) and (6.53) imply that

Now we admit the following lemma.

We remark that the constant a is as in Lemma 6.1. The above lemma

implies

Finally substituting (6.55) into (6.42), we can obtain the estimate of r~o in
Lemma 6.5.

Proof of Lemma 6.7.- The definition of a(X) in (6.47) implies that

Since the condition .c~(.c) ~ 0 in (2.1) implies

a(X) attains the minimum value when X = 0. It is easy to check that

a(0) = a. 0



6.6 Proof of Proposition 6.2

(i) Recall the definition of the function 

where

We remark that L~ extends to an entire function.

By the residue formula, we have

where

for 6 is a small positive integer and hIJ- E C°° ~~ 0 , 1] x [ 0 , e)~ . Here (6.57)
implies that = 0 for 0   ~ 4m+l and h  E C°° ([ 0 , 1 ]) 4m+2.

By Lemma 6.3, we can obtain (i) in Proposition 6.2.

(ii) Changing the integral variable, we have

Note that satisfies the inequality in Lemma 6.5.

Keeping the above integrals in mind, we define the function H by

with

where a, ,Q, ~y (~ 0), 6 are integers and the function r satisfies 

C for some positive constants c, C. Note that H is a function

of (to , £) .



By a direct computation, we have

Since is bounded on [0, 1 ~ , we have

by (6.58). By induction, we have

by (6.60), (6.61) and (6.62).
Now if replace r(v) by rwo (v, Y) in (6.59), then

Therefore if ~a > 4m + 1-I- .~, then

is a continuous function of [ 0 , 1 x [ 0 , c). Therefore we can obtain
(ii) in Proposition 6.2 by Lemma 6.3.

This completes the proof of Proposition 6.2. D.

7. The Szego kernel

Let Hy be a tube domain satisfying the condition in Section 2. Let

f ) be the subspace of f ) consisting of holomorphic functions F
on Qy such that



where da is the measure on ~03A9f given by Lebesgue measure on C x R when
we identify ~03A9f with C x R (by the map (z, t + ~ (z, t)). The

Szego projection is the orthogonal projection § : -~ and

we can write

where § : S2 f x Qy ~ C is the Szegö kernel of the domain S2 f. We are
interested in the restriction of the Szego kernel on the diagonal, so we write

S(z) = S(z, z). °
The Szego kernel of S2 f has an integral representation:

where (x, y) = ~z2) and D(~1, (2) is as in Section 3 (3.2).
We also give an asymptotic expansion of the Szegö kernel of S2 f . The

theorem below can be obtained in a fashion similar to the case of the

Bergman kernel, so we omit the proof.

THEOREM 7.1. - The Szegö kernel of 03A9f has the form in some neigh-
borhood of z~: :

where ~S E , 1 ~ x ~ 0 , e)~ and ~s E , 1 ~ x ~ 0 , E)~ with some
e>0.

Moreover ~s is written in the form on the set {T > aol~2~"’~} with some
a > 0: for every nonnegative integer 

where

for ~p~, ~~ E C°° ~~ 0 , , 1 ~~, ~o is positive on [ 0 , 1 ~ and Ruo satisfies

~’~ ~T - 1.Y~01/2m~ 3 ~~° for some positive constant .
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