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A closure operation on
complex analytic cones and torsion(*

REYNIR AXELssoN(1) and Jé6N MacNUsson(?)

RESUME. — Nous étudions ’opération qui consiste & fermer (analytique-
ment) la partie localement libre d'un espace linéaire complexe. Plus
généralement nous démontrons : soit un cdne analytique 7 : X — S défini
par une Og-algébre graduée A et soit A un sous-ensemble analytique de
S. Alors la fermeture du sous-céne ouvert X \7~2(A4) dans X est un céne
analytique sur la fermeture de S \ A dans S et il est défini par l'algébre
graduée A/H?Q.A. Dans le cas oit S est réduit, A est d’intérieur vide dans
S et A est sans torsion sur S\ A; on a A/HOA = A/T(A) ot T(A)
désigne l'idéal gradué des éléments de torsion dans .A. Nous établissons
des relations entre les éléments de torsion et les éléments nilpotents d'une
algébre symétrique d’un faisceau analytique cohérent. En appliquant nos
résultats aux espaces tangents globaux de Zariski, nous obtenons, pour
S réduit et localement intersection compléte, une condition nécessaire et
suffisante en termes de dimensions pour que le céne de Whitney Cy(S)
soit la réduction de 'espace tangent global de Zariski, et deux critéres de
régularité pour des courbes analytiques. Finalement, il y a des applica-
tions aux notions de positivité (amplitude).

ABSTRACT.— We study the operation of taking the (analytic) closure
of the locally free part of a linear space in a more general setting: For a
cone 7 : X — S defined by a graded O g-algebra sheaf A and a closed
analyticsubset A the closure in X of the opensubcone X \7~1(A4) is a cone
over the closure in S of S\ A defined by the graded algebra sheaf A/ 'HglA.
In the case that S is reduced, A is analytically rare in S and A is torsion
free on S\ A this can also be described as the algebra .A/7(A), where T(A)
is the graded ideal of torsion elements in .A. We prove a relation between
the torsion ideal and the ideal of nilpotent elements in the symmetric
algebra of a coherent analytic sheaf. Among applications to linear spaces,
in particular tangent spaces, are a necessary and sufficient condition
involving dimensions for the Whitney cone C4(S) to be the reduction
of the global Zariski tangent space, valid for a reduced complex analytic
space S that is locally a complete intersection; two regularity criteria
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for complex analytic curves and some applications involving notions of
positivity.

Introduction

Certain natural operations that can be performed on linear spaces over a
complex analytic space — the natural generalization of holomorphic vector
bundles — produce not linear spaces, but complez analytic cones. In [2],
where we studied complex analytic cones in general, we gave an important
example of such an operation, namely the blowing-down of the zero section
of a linear space. In this paper we study another operation of this kind:
Taking the closure in a linear space of its locally free part. More generally,
we study the operation of closing (analytically) the restriction of a complex
analytic cone to a Zariski-open subset of the base space and describe it in
terms of the connected graded sheaf of algebras defining the cone.

This operation has been studied earlier in special cases: In [23] Whitney
defined several tangent cones to a reduced analytic space S. One of them,
the tangent cone that Whitney denoted by Cy4(S), may be defined as the
closure of the locally free part of the global Zariski tangent space of S. The
operation was defined for general linear spaces by Rabinowitz in [17] (see
also [16]), who used it to define a notion of primary weakly positive sheaves.
Let S be a reduced compact complex analytic space and let F be a coherent
Og-module. Denote by V(F) the linear space associated with F (see [10])
and let A be the analytic subset of S over which F is not locally free.
Rabinowitz defines the primary component of V(F) as the closure V(F)y
in V(F)red of V(F)rea|S\ 4, and calls F primary weakly positive if the zero
section of V(F)y is exceptional; here V(F)req denotes the reduction of the
space V(F). The space V(F)y is, in general, not a linear space over S. It
is a complex analytic cone over S.

Since the definition of the “primary component” involves the reduction
of a linear space, we also examine more generally the operation of reducing
a complex analytic cone, another operation which, when performed on a
linear space, produces in general not a linear space, but a complex analytic
cone. When considering the duality between coherent analytic sheaves on
a complex space S and linear spaces over S it is essential that the linear
spaces are allowed to be non-reduced, also when the base space S is reduced.
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A closure operation on complex analytic cones and torsion

It turns out that some very natural linear spaces associated with a complex
space, such as its global tangent space, are in general non-reduced, even if
the original space is reduced. Thus, if we want to work with linear spaces,
we are forced to allow them to be non-reduced. There are however notions,
similar to that of linear spaces, defined in the category of reduced spaces.
Thus Grauert defined in [8] a class of reduced spaces that he called linear
spaces over a (reduced) complex space; in this paper we shall call them
Grauert-linear spaces. The reduction of a linear space is a Grauert-linear
space, but not a linear space in general, and there are Grauert-linear spaces
that are not obtained by reducing linear spaces. In the paper we clear
up the relationship between Grauert-linear spaces and linear spaces and
characterize the former as a certain type of complex analytic cones.

In Sections 1 and 2 of this paper, we consider the algebraic analogues
of taking the reduction of a cone and the closure of an open subcone. We
show (the non-surprising fact) that the reduction of a cone corresponds to
the reduction of its algebra (Theorem 1.2). For a cone 7 : X — S defined
by the graded Og-algebra A and a closed analytic subset A of S we show
that the closure in X of the open subcone X \ 771(A) is a cone defined
by the algebra A/H%A (Theorem 2.2). In the case that S is reduced, 4
is analytically rare in S and A is torsion free on S\ A this can also be
described as the algebra Ay := A/T(A), where T (A) is the graded ideal of
torsion elements in .A. We also prove a certain proposition concerning the
fibre dimension of the closure (Prop. 2.8).

In Section 3, we consider these operations on linear spaces. In Proposition
3.4, we characterize Grauert-linear spaces. We prove a relation between the
torsion ideal and the ideal of nilpotent elements in the symmetric algebra
of a coherent analytic sheaf (Prop. 3.6) and draw some corollaries. We
also show that the primary component (in the sense of Rabinowitz) of a
coherent sheaf F is given by V(F)y = Specan(S(F)y), where S(F) is the
symmetric algebra of F (Theorem 3.10). In Proposition 3.11, we consider
a dimension condition necessary for the equation V(F)y = V(F)req, Where
F is a coherent analytic sheaf over a reduced pure dimensional complex
space, and prove that it is also sufficient in the case that F is everywhere
of projective dimension < 1. Finally, we give some examples; in particular
we show that the reduction of a linear space need not be a linear space.

In Section 4, we apply the foregoing to tangent cones, in particular the
tangent cone Cy4(S) of Whitney. In Proposition 4.6, we give a necessary
and sufficient condition involving dimensions for C4(.S) to be the reduction
of the global Zariski tangent space, valid for a reduced complex analytic
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space S that is locally a complete intersection. Among other results of the
section we point out two regularity criteria for complex analytic curves: We
show that a reduced complex analytic curve S is regular if the symmetric
algebra S(Q}) is torsion free (Prop. 4.3); a stronger unproved conjecture
by Berger (see [4]) states that a reduced complex analytic curve is regular
if the sheaf Q}g is torsion free. We also prove that a reduced complex curve
S is regular at the point s if it is locally irreducible and its tangent cone
C4(S, s) is reduced (Prop. 4.9).

In Section 5, we introduce the notion of cohomological positivity for
a connected graded algebra A, locally of finite presentation. We prove
that a complex analytic cone is weakly negative if and only if its algebra
is cohomologically positive (Theorem 5.2). We give a characterization of
primary weak positivity (Theorem 5.4) and prove that a reduced compact
complex analytic space is MoiSezon if and only if it carries a primary weakly
positive coherent sheaf (Theorem 5.5); in the case of normal irreducible
spaces this result was proved by Rabinowitz in [17]. Finally, we give
an example of a coherent analytic sheaf that is torsion free and primary
weakly positive but not weakly positive; thus answering a question of
Rabinowitz [17].

1. Reduction of complex analytic cones

1.1 Complex analytic cones

We recall that a complez analytic cone over a complex analytic base
space S is a complex analytic space 7 : X — S over S together with an
S-morphism p : Cx X — X, called multiplication, and a section v : § — X
of 7, called the vertez of the cone, satisfying the axioms:

(i) mo(uC xidx)=po (idg xu),

(i) po(lx,idx)=1idx,

(iii) po (0x,idx) =vorm,
where € : Cx C — C is the usual multiplicationin Cand 1x,0x : X — C
are the constant mappings with values 1, 0 respectively.

By Theorem 1.4 in [2], every complex analytic cone X over S can be
obtained as X = Specan A, where A = @,,59Am is a (commutative)
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graded Og-algebra, locally of finite presentation, such that Ag = Og; we
call such algebras connected graded Og-algebras of finite presentation. The
algebra A can be obtained as a subalgebra of the direct image 7.Qx: for
an open set U in S the m-th component A, (U) consists of the holomorphic
functions f : #71(U) — C that are homogeneous of degree m with respect
to the multiplication 4, i.e. satisfy fopu = pCo (2™ x f) on C x =~ 1(U),
where 2™ : C—C, t —t™.

Let # : X — S be a complex analytic cone over S with multiplication
#p:Cx X — X and vertex v : S — X. Then clearly the reduction
Tred : Xved — Sred 1S @ complex analytic cone over Sp.q with multiplication
tred : C X Xpeg = (C X X)req — Xreq and vertex vreq : Sred — Xred-

Let A be a connected graded Og-algebra of finite presentation. We
denote by N(A) the graded ideal of nilpotent elements in 4. Clearly,
N(A)o = Ns = the ideal of nilpotent elements in Og. Thus we may
consider Areq := A/N(A) as a connected graded Og,_, -algebra.

THEOREM 1.2.— Let X be a cone over the complexr analytic space S
corresponding to the connected graded Og-algebra A. Then X .q is the cone
over Sreq corresponding to the algebra Apeq. In particular, the algebra Apeq
is a connected O, -algebra of finite presentation, and the A-ideal N'(A) is
locally finitely generated.

Proof. — We identify S (resp. Sreq) With a subspace of X (resp. Xyeq)
via the vertex mapping and write X;eq = Specan B, where B is a connected
graded Og, ,-algebra of finite presentation. The natural embedding Xyeq —
X is in an obvious sense a morphism of cones over the natural embedding
Sred — S and thus induced by a graded algebra homomorphism ¢ : A — B.
We put K := Ker ¢ and obtain a commutative diagram

K A d

L

0 —— Nx|S —— 0xlS —— 04

0

red IS - 0

of sheaves over S, where the vertical arrows are inclusions and 7 is the
natural projection. We have KX = AN (Nx|S) = N(A). It remains to
show that the homomorphism % is surjective. Let s € S and b € B,. Write
b= Z%:O bm with by, € Bpy,s. Then there is an element a € O X,s such that
7(a) = b. By [2, Lemma 1.9], @ can be written uniquely as a = Y oo_qam
in the natural topology of O x ; with ay, € A s. By the continuity of 7 we
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have 7(a) = > _, 7(am) and thus 7(am) = bm for m =0, ..., M by the
uniqueness of the representation. But then

M M
Zam € A; and ¢(Z am) =b.0

m=0 m=0

COROLLARY 1.3.— Let X be a cone over the complex analytic space S
corresponding to the graded Og-algebra A. The space X is reduced if and
only if the algebra A is reduced; and then necessarily the space S is reduced.

Remark 1.4.— Let X be a complex analytic cone over a complex space
S such that the fibre X is reduced for every point s in S, and let A be the
corresponding graded algebra. Then for every open set U in S and every
m > 1 we have

N(A)m(U) == {f € Am(U) : (f)s € MgAm,s for every sin U} .

In fact, Ay (U ) consists of the holomorphic functions f in Ox (7~ 1(U))
that are homogeneous of degree m, where 7 : X — S is the projection,
and N(A)m (U) is the subset of Ap, (U) consisting of those functions f that
are nilpotent, locally with respect to S, i.e. for every s in S there is an
open neighbourhood V of s such that flz~1(V) is nilpotent. Because of
the homogeneity, this just means that f is nilpotent, locally with respect to
X, which again means that f induces the zero function on 7= (U)seq. This
is equivalent to saying that f induces the zero function on each (reduced)
fibre.

2. Closure of open subcones

2.1 Zariski closure

We recall some basic facts about the closure of Zariski-open subspaces
of a complex analytic space. (We refer, of course, to the analytic Zariski-

topology.)
Let S be a complex analytic space, F be an Og-module and A be a closed
analytic subset of S. Denote by 'Ho F the subsheaf of F defined by

(HYF)V) = Hynp(U, F) = {f € F(U) : flU\ A =0}
for every open set U of S.
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Let T be a coherent Og-ideal such that A = supp(Og/Z), let s be a
point in S and f € F,. If F is Og-coherent, then a necessary and sufficient
condition for f to be in (HYF), is that I} - f = {0} for some natural
number n; it follows that ’H%f is a coherent Og- submodule of F (for the
details see [7], [21]).

In particular, ’H%Os is a coherent (Og-ideal, and it is easily seen that
supp(Og/'H%Og) = S\ A. The closure of S\ A in S is by definition the
closed subspace of S defined by 'H%OS, i.e., the subspace

ds(S\4) = (S\ 4, (0s/H%05)IS\ 4).

If 7 is a coherent Og-ideal such that Z|S\ A = 0, then clearly Z C 7{?4(95.
This means that clg(S \ A) is the smallest closed subspace of S containing
S\ A as an open subspace. If F is an Og-module, then .7-'/’}{%.7-' has a
natural Og/H%Og-module structure.

We recall that the closed analytic subset A of S is said to be analytically
rare in S if clg(S\ 4A) = S, ie., if ’H%Os = 0. This is equivalent to the
condition that Z 4 ; contains a regular element (i.e., an element that is not
a zero divisor) for every s in S, where Z 4 is the full sheaf of ideals defining
A (see [7, Prop. 0.43]). For a reduced space S this condition simply means
that A is nowhere dense in S.

Now let A = @,,50Am be a connected graded Og-algebra of finite
presentation. Then
HyA= P HGAn
m2>0

is a graded A-ideal, and the algebra .A/ ’H%A is locally of finite presentation.
This follows from our next theorem, but may also be derived directly from
(2, Prop. 1.17].

THEOREM 2.2.— Let # : X — S be a cone over the complez analytic
space S, X = Specan. A, where A is a connected graded Og-algebra of
finite presentation, and let A be a closed analytic subset of S. Then
cx(X \ 771(A)) is the closed subcone of the analytic restriction of X
to clg(S \ A) corresponding to the graded algebra (A/HGA)S\A. In
particular, if A is analytically rare in S, then clx (X \ 771(A)) is a cone
over S.
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Proof.— PutY :=clx (X \7n"1(A)), T :=clg(S\A4) andlet i : Y — X,
j: T — S be the canonical embeddings. Since clearly 7~} (H%0g) - Ox C
'H?r_l(A)OX, we obtain a projection ¥ : Y — T such that jo7 = mo4. Since
the multiplication p : C x X — X is an S-morphism, we have

#_I(Hg—l(A)OX) "Ocxx C prgl(H?,-l(A)Ox) Ocxx
and thus obtain a holomorphic mapping 7 : C x Y — Y such that iopg =
po (id x¢). Finally, since 7o v = idg, we have v‘l('H?T_l(A)Ox) C 'HOAOS,
and we obtain a holomorphic mapping 7: T — Y such that iocT =voj. It

is now easily verified that & is a T-morphism, that ¥ is a section of 7, and
that Y satisfies the cone axioms.

We have an exact sequence

0

H?,—l (A)OX Ox —— &0y —— 0
of Ox-modules. We obviously have W*H?r_l( A)O X = ’H%W*O x. Because
R'7.F = 0 for every coherent @x-module F by [2, Lemma 4.1] and
JjoT=moi, we get an exact sequence

0

j*f* OY —>0 .

)
’HOAW*OX — mOx

Since Y is a cone over T', we can write Y = Specan B, where B = @,,,50 Bm
is a connected graded Op-algebra of finite presentation. We can identify
By (resp. Ap,) with the subsheaf of 7Oy (resp. 7.Ox) consisting of the
holomorphic functions that are homogeneous of degree m with respect to the
cone multiplication. The homomorphism ¢ : 7,O0x — jxTxOy clearly maps
A to j«B. We will now show that ¥ induces an isomorphism .A/'H?‘t.A — JB.
Let s € S, b € (j«B)s and write b = Z%:o b, where by, € (j*Bm)s. Then
b = ¢(a) for some a € (W*(’)X)s, and a is the germ at s of some section
f € (mO0x)(U) = Ox (7~1(U)), where U is an open neighbourhood of s in
S. By [2, Lemma 3.1] we may uniquely write f = Yoo _o fm in the canonical
Fréchet topology of Ox (7~ 1(U)) with fm € Am(U). By continuity of the
restriction homomorphism we have
oo
b=1v(a)= Y v((fm)s)
m=0

with 1/)(( fm)s) € (j*Bm)s. By the uniqueness statement we have
Y((fm)s) = bm for m =0, ..., M and thus b = 9(a’), where

M
a = Z (fm)s €EAs.

m=0
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Thus ¢ induces a surjective algebra homomorphism ¥ : A — j.B, and we
have

Keryp = ANHYT.0x =HYA. D

2.3 Torsion of a graded algebra

Let S be a reduced complex analytic space and F be an Os-module.
Recall that we can define the torsion submodule T (F) of F by the condition

T(F), = {f € Fs : there is a regular element a in Og; such that a - f = 0}.

If F is coherent, then 7 (F) is the kernel of the canonical homomorphism
of F to its bidual and thus coherent. It is well known (e.g. [9, Chap. 4,
Sect. 4.2]) that the subset A of S where F is not locally free is an analytically
rare closed analytic subset of S. We clearly have 7(F)|S\ A = 0.

For a family (F;);es of Og-modules one clearly has

T (@fi) = @T(.ﬁ) .
i€l i€l

We put
Fy:=F|T(F).

If A= @,,>9Am is a connected graded Og-algebra of finite presentation,
then 7 (A) is a graded A-ideal, and Ay = A/T(A) is a connected graded
algebra of finite presentation, by [2, Prop. 1.17].

LEMMA 2.4.— Let S be a reduced complezx analytic space and let A be an
analytically rare closed analytic subset of S. Let F be a coherent Og-module
that is torsion free on S\ A. Then T(F)=H4F.

Proof.— Since F is torsion free on S\ A we have 7(F)|S\ A =0 and
thus 7(F) C HYF. Let s € S, f € ('H%.’F)s. Then for some natural
number n we have I% - F; = {0}, where T, is the full sheaf of ideals
defining A. Since A is analytically rare, 74 , contains a regular element;
hence f € T(F),, and we conclude that 4 F = 7(F). O

As an immediate consequence we get the following proposition.
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PROPOSITION 2.5.— Let #: X — S be a complex analytic cone over a
reduced complez analytic space S, X = Specan A, where A is a connected
graded Og-algebra of finite presentation, and let A be an analytically rare
closed analytic subset of S such that A is torsion free on S\ A. Then

clx (X \ 771 (A)) = Specan(Ay) .

LEMMA 2.6.— Let X be a complez analytic cone over the complex
analytic space S and let k be a positive integer. Then the set

Ti(X) :={s € S : dimX, > k}

s an analytic subset of S.

Proof. — Let A be the graded algebra corresponding to X, put Z :=
Projan(.A) and let @ : Z — S be the canonical projection. The set Lx(X)
is the image of the set By, := {z € Z : dim;(Zg(;)) > k — 1} under the
projection w. But w is proper, and it is a well known result of Cartan and
Remmert that the set By, is analytic (e.g. [7, Prop. 3.6]). O

LEMMA 2.7.— Let X be a complez analytic cone over the complex
analytic space S of dimension n such that dim X, = r for every point s
in S. ThendimX =n+r.

Proof.— This is a simple consequence of the fact that for every point s
in S there is an open neighbourhood U of S and an embedding over U of
X|U onto a subcone of U x CN for some CN with weighted multiplication
[2, Corollary 1.13]. O

PROPOSITION 2.8.— Let X be a complez analytic cone over the complex
analytic space S and let A be a nowhere dense analytic subset of S. We
suppose that S is of pure dimension n and that for every point s in S\ A
we have dim Xs = r. Put Y := clx (X \ 771(A)). Then, using the notation
of Lemma 2.6, we have dimX, x(Y) < n —k for every k > 1.

Proof.— Obviously Y|A is a nowhere dense subspace of Y. By
Lemma 2.7, dim(Y|S' \ 4) = n + r and thus dimY = n 4+ r, since closure
does not increase the dimension. Hence dim(Y|4) < n+r and consequently
dim(Y|2r+k(Y)) < n+r for every k > 1. But Lemma 2.7 also implies that

dim(Y |Zp4k(Y)) > dmE 15 (V) +r+k i x(Y)#0;

hence the result. O
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3. Linear spaces and related notions

3.1 Linear spaces

Let F be a coherent Og-module. Recall that the linear space associated
to F is given by
V(F) := Specan S(F),

where S(F) is the symmetric algebra of F. By a theorem conjectured by
Fischer [6] and proved by Prill [15] every linear space over S arises in this
manner. (We recall that a linear space over S is by definition a module over
the ring object V(Og) = C x S in the category of complex spaces over the
complex space S.)

In [2], we gave a new proof of this theorem along the following lines: The
scalar multiplication of a linear space L over a complex analytic space S
clearly defines L as a cone over S. Thus we have L = Specan(.A), where
A =@,,>0 Am is a connected graded Og-algebra of finite presentation. We
showed that for a linear space L, the canonical morphism L — V(A;) of
cones is an isomorphism of linear spaces over S. In addition to the theorem
of Fischer-Prill this implies that the linear space structure of L is already
determined by the cone structure: For a compler analytic cone X over S
there is at most one structure on X as a linear space over S compatible
with the given cone structure. This interesting fact holds in the category of
complex spaces over a complex base space, but not in an arbitrary category;
see however [3]. (We see, for instance, that there is only one holomorphic
addition on C* making it into a linear space over C together with the usual
multiplication; but for n > 2 it is easy to find different non-holomorphic
additions with the same property.)

It therefore makes sense to ask whether a given cone X = Specan(A) is a
linear space; this means that the canonical morphism X — V(A;) of cones
over S is an isomorphism.

3.2 Reduction of a linear space

Now let L = V(F) be a linear space over S. Then L,oq is a cone over
Sred- In view of paragraph 3.1 it is natural to ask (see Fischer [7, § 1.6])
whether L,.q is a linear space over S,eq. Theorem 1.2 implies that L eq
is a linear space if and only if the canonical O g-algebra homomorphism
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S(F/N1) — S(F)/N is an isomorphism, where N := N(S(F)) is the
graded ideal of nilpotent elements in S(F), or equivalently if A is generated
as an S(F)-ideal by N7. This is not always the case, as will be shown in
Proposition 3.11(3).

We remark that as a consequence of paragraph 1.4, we have
Non(U) = {f € Sm(F)U) : (), € MmeSm (F), for every s in U} :
in particular

M) = {fEF(U) 1 (f), € msFs for every s in U}.

3.3 Grauert-linear spaces

In [8] Grauert introduced a notion of quasilinear and linear spaces in
the category of reduced complex spaces as follows: Let S be a reduced
complex space. A quasilinear space over S is a reduced complex space L
over S together with holomorphic mappings o : (L xg L)red — L and
p:Cx L — L over S such that for every point s in S the induced mappings

(as)red : (Ls)red X (Ls)red - (Ls)red’
(/’Ls)red 1Cx (Ls)red - (Ls)red

define the structure of a vector space on the reduced fibre (Ls)__ -

A morphism ¢ : Ly — Lo of quasilinear spaces over S is a holomorphic
mapping over S such that for every point s in S the induced mapping
(65) 1eq (L1,5) req — (L2,s),eq Of the reduced fibres is linear.

Let L be a quasilinear space over S. A quasilinear subspace of L is a
reduced closed analytic subspace L’ of L such that for every point s in S
the reduced fibre (L}) , is a linear subspace of (Ls), 4. The restriction
of the “ quasiaddition ” of L then induces a quasiaddition on L’ making
L' a quasilinear space, and the inclusion L’ — L a morphism of quasilinear
spaces.

For a quasilinear space L over S we get a mapping (of sets) v: S — L,
called the zero section of L, by putting v(s) := 0, where 0; is the zero
element of (Ls)re a
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The concept of a quasilinear space is very weak, as the following example
shows: Let S be a non-discrete complex space, e.g. S = C, and put
L := S% x C", where S¢ is the set S with discrete topology, considered
as a zero-dimensional reduced complex space. Clearly the projection
L — 8% < § is holomorphic, and the vector space structure on C* induces
the structure of a quasilinear space over S on L. In this example, the zero
section of L is not continuous.

A Grauert-linear space over S is a quasilinear space L over S such that
for every point s in S there is an open neighbourhood U of s in S such that
the restriction L|U is isomorphic to a quasilinear subspace of U x C* for
some natural number n.

The reduction of a linear space over S is a clearly Grauert-linear space
over S. More generally a Grauert-linear space over S is the same as a
quasi-linear subspace of the reduction of a linear space over S. Clearly
the zero section of a Grauert-linear space is holomorphic. It follows that a
Grauert-linear space is a cone whose vertex is the zero section.

PROPOSITION 3.4.— Let S be a reduced complex space.

(1) A reduced cone over S is a Grauert-linear space if and only if the
reduction of each fibre is a linear space.

(2) A quasilinear space over S is a Grauert-linear space if and only if its
zero section is holomorphic.

(3) A Grauert-linear space over S is the reduction of a linear space if
and only if each fibre is reduced.

For the proof we need a simple lemma. A complex analytic cone
X = Specan(.A) over S is a subcone of a linear space over S if and only if the
algebra A is generated by A;. We call such cones straight. This property
is clearly local with respect to the base space.

LEMMA 3.5.— Let X be a reduced cone over the reduced complex space
S. Suppose that for every s in S the reduction (X;) 4 of the fibre is a
straight cone (over the reduced point). Then X is a straight cone.

Proof. — Let X = SpecanA and let s € S. There is an open
neighbourhood U of s in S such that .4 is generated over U by homogeneous
elements ai, ..., an, @p41, ..., Gntm, Where ay, ..., ap have degree 1 and
@p41, ..., Gntm have degree greater than 1. These elements define a cone
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embedding over U of X|U into U x C* x C™, where the multiplication in the
first factor C™ is the usual vector space multiplication, but the multiplication
in each coordinate of the second factor C™ is weighted of degree greater than
1. The condition that the reduction of each fibre is straight means that the
embedding maps (X;) 4 into {s} x C* x {0}. This means that X|U gets
mapped set-theoretically into U x C* x {0}. Since X is reduced, we obtain
an embedding of X|U into U x C*. O

Proof of Proposition 3.4

(1) Let L be a reduced cone over S such that the reduction of each fibre
of L is a linear space. By Lemma 3.5, L is a straight cone, hence a subcone
of a linear space L;. Since the linear space structure of each reduced fibre
is uniquely determined by the cone structure, L is a quasilinear subspace of
the reduction of Ly and thus a Grauert-linear space.

(2) Let L be a quasilinear space over S with holomorphic zero section.
Then L is a cone over S whose reduced fibres are linear spaces, hence a
Grauert-linear space by (1).

(3) Let L be a Grauert-linear space over S, L = SpecanA, and put
Ly := Specan S(A;). For s € S the fibre L; is the cone over the reduced
point given by the algebra As/msA;, where m, is the maximal ideal of
Os,s. Since the fibre is a reduced linear space, As/msAs is a symmetric
algebra, and then necessarily the symmetric algebra of A; s/msA; 5. Hence
Ls = Ly for every s in S. Thus L and L; have the same underlying
topological space. Since L is reduced, L is the reduction of L. O

PROPOSITION 3.6.— Let S be a reduced complex analytic space, let A
be an analytically rare closed analytic subset of S and T4 be the full sheaf
of ideals defining A. Let F be a coherent Og-module that is locally free on
S\ A and put N := N(S(F)) and T := T (S(F)). Then

Iy TC(Zy-S(F)NTCNCT.

In particular, if the linear space V(F) is reduced, then the sheaf T4 - S(F)
1s torsion free, and T4 -T = 0.

Proof . — The first inclusion is obvious. Since F is locally free on S\ 4,
S(F) is torsion free on S \ A, and we have 7 = H4S(F). Hence for every
f € T; there is an n such that I7 ;- f = 0;if also f € (Za -S(.’F))s, then
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e (T3 f) - 8(F), = 0 and thus f € N;. Finally, let g € N(U),
where U is an open set in S, and suppose that g" = 0. Since F is locally
free on U \ A, we have supp g C U N A and hence

g eHYS(F)(U)=T(U).O

In the case that the Og-module F is locally free outside of a discrete
set, one of the inclusions in Proposition 3.6 is an equation: Let us more
generally suppose, in addition to the hypotheses in Proposition 3.6, that
the restriction V(F) x g A of the linear space V(F) to the reduced subspace
A is reduced. This means that the symmetric algebra of the Og/Z 4-module
F/I4F isreduced. Then N is asubsheaf of Z 4-S(F). Hence Proposition 3.6
implies that ' = (Z4 - S(¥F)) N 7. We have proved the following corollary.

COROLLARY 3.7.— With the same hypotheses and notations as in Propo-
sition 3.6, let us suppose in addition that the restriction V(F) xg A of the
linear space V(F) to A is reduced; this is in particular the case when A is
discrete. Then

N=(I4 8(F)NT.
In particular we have T = N if and only if T C T4 - S(F).

As another corollary of Proposition 3.6, we get the following result.

COROLLARY 3.8.— Let S be a reduced complex analytic space, let F
be a coherent Og-module that is locally free outside a discrete set. If the
corresponding linear space V(F) is reduced, then the torsion T (S(F)) is a
direct summand of S(F) as a graded Og-module.

Proof. — Let A be a discrete set such that F is locally free outside A
and retain the notations of Proposition 3.6. We have a short exact sequence
0 = ZoS(F) —» S(F) — S(F)/Z4S8(F) — 0. The hypothesis that V(F)
is reduced means that A" = 0 and hence that (Z4 - S(¥)) N7 = 0. This
implies that 7 is mapped injectively into S(F)/Z4S(F). Since the latter
sheaf is supported on a discrete set, the image of 7 has a direct complement
as a graded C-vector space at every point, and this is in a natural way a
direct complement of the image of T as a graded O g-module. Its preimage
in S(F) is then a direct complement of 7 as a graded O g-module. O
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3.9 The primary component

Let S be a reduced complex analytic space and let F be a coherent Og-
module. Let V(F) := Specan S(F) be the linear space associated with F
and let A be the (nowhere dense) closed subset of S where F is not locally
free. We put

V(F)y = clv(F)e (V (F)rea\ 7r_1(1‘1)) ;

where 7 : V(F) — S is the projection. This is what Rabinowitz [17] calls
the primary component of V(F). Clearly V(.7-')tj is a reduced space.

THEOREM 3.10.— Let S be a reduced complez analytic space and let F
be a coherent Og-module. Then V(f')tI is the cone over S defined by the

graded Og-algebra S(.’F')u.
Proof.— By Proposition 2.5, we have
Specan (S(}')n)= cvr (V(F)\ 7 1(4).
We have to show that
V(F)y = vz (V(F) \ 771 (4))

or, equivalently, that cly(r)(V(¥) \ 771(4)) is a reduced space. This
follows from Corollary 1.3 and the fact that N (S(F)) C HYS(F) =
T(S(F)). o

Let F be a coherent Og-module over a reduced complex space S. We
say that F has free rank r if it is free of rank r outside a nowhere dense
analytic subset of S.

PROPOSITION 3.11.— Let S be a reduced complex space of pure dimen-
sion n and let F be a coherent Og-module of free rank r. Put

Sk(F) = Sk(V(F) = {s € 5 : dimV(F), > k}
and consider the conditions:

(l) V(f)u = V(‘r)red"
(i) dimE, 1, (F) < n —k for every k > 1.
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Then condition (i) implies condition (ii). If F is everywhere of projective
dimension < 1, then the conditions (i) and (ii) are equivalent.

Proof.— That (i) implies (ii) is a special case of (2.8). Now suppose that
F is everywhere of projective dimension < 1. The conditions being local in
S, we may assume that we have an exact sequence 0 — (’)g — O% —F —0
of sheaves or, equivalently, an exact sequence

0O —— L —— SxC? — SxCrP

of linear spaces, where L := V(F) and ¢ is an epimorphism in the
categorical sense; this means in our context that the linear mapping ds
of fibres is surjective outside a nowhere dense set in S. Since F has free
rank » we have dimLs = r outside a nowhere dense set A in S. Hence
g=p+r. Wehave L = f~1(0), where f = pry 06 : S x CPt" — CP,
Hence L is defined by p equations in a space of pure dimension n + p + r,
and thus every irreducible component of L,.q has dimension at least n + r.
If Ly # Lyeq, then there must be an irreducible component of Ly.q lying
over the nowhere dense set 4 in S. But condition (ii) guarantees that every
component of L x g A has dimension less than n + . O

Ezamples 3.12

(1) Let S be a reduced complex space, let Z be a coherent sheaf of ideals
of Og and A be the set of points where Z is not locally free. The canonical
homomorphism of algebras

ST - PIm
m2>0

of S(Z) to the Rees-algebra @,,~oZ™ of the ideal 7 is an isomorphism out-
side of A. Since the Rees-algebra is torsion free it induces an isomorphism

Specan @Im - V().
m>0

(2) Let S be a complex space and Z be a subspace of S defined by an
Og-ideal Z. The normal cone of Z in S is by definition the cone

Cz/s = Specan ((@ I'm/l'm"'l) |Z) .

m2>0

It is a subcone of the normal space Nz, 5 := Specan (S(Z/1%)|Z) of Z in S.
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Now suppose that the space S is reduced. Since the algebra

@ Im/l—m+1

m>0

is the analytic restriction to Z of the Rees-algebra of Z, our first example
shows that
CZ/S = V(I)ﬁ Xs Z.

(3) Letz=(z1,..., zn) be the coordinates in C*, n > 2, and let C(z) be
the algebra of convergent power series in z. For a holomorphic function g
defined in a neighbourhood of the origin in C* we denote the order of its
Taylor series at the origin by ord(g).

Let f be a non-zero holomorphic function in an open neighbourhood U
of the origin in C" defining a reduced hypersurface S of U, and suppose
that ord(f) > 3. Let Z be the full Og-ideal sheaf defining the origin. We
shall show that the reduction of the linear space V(Z) over S is not a linear
space.

Looking at the germs at the origin, we consider Ogq = C(2)/(f) and
m := I as C(z)-modules. Let Z = (Z1, ..., Zn) be indeterminates. We
obtain a graded algebra homomorphism « : C(z)[Z] — S(m) determined by
a(Zy) =z fork=1,...,n. Let :

B:8(m) — @mm

m2>0

be the canonical homomorphism, and put % := S o a. Then

J=P Jm :=Kery
m2>0

is the graded ideal of C(z)[Z] consisting of all elements P = P(z,Z) such
that Py, (z,2) is in the C(z)-ideal generated by f for every homogenoeus
component Py, of P. Also Ker « is the graded ideal generated by Jo + Ji.

Put £ := ord(f). One can choose an element F = F(z, Z) in C(z)[Z] such
that F(z,Z) is a homogeneous polynomial of degree £in Z and F(z,2) =
f(z); this can be done by replacing £ of the z;’s with corresponding Zj’s
in each term of the power series of f at the origin. Clearly F € J, and
thus a(F) € Ker 8. By example (1), a(F) is a torsion element of S(m).
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By Proposition 3.6, (21 F) is a nilpotent element of S(m). Since S(m) has
no torsion elements and hence no nilpotent elements in degree 1, it suffices
to show that a(z1F) # 0, for then we have shown that N'(S(Z)) is not
generated by N1 (S(Z)). Let Ly(2,2), ..., L+(2,Z) be generators of J;.
Suppose that z1 F were in Ker ¢, then we could write a relation

21F(2,Z2) = R(2,2)f(z) + Z Qr(z,2)Li(2,2),
k=1

where R and @y, ..., @ are homogeneous of degree £ and £ — 1 in Z
respectively. Replacing Z by z, we obtain a relation

z1f(2) = uF(z,2) = g(2) f(2),
with ord(g) > £ — 1; a contradiction, since £ > 3.

(4) Let X be the cone over C defined by the graded algebra O¢c[ X, Y']/Z,
where 7 is the ideal generated by the elements zY — 22X and Y2 — 22X?
and z is the coordinate function of C. Clearly X is reduced, the fibre X,
is a reduced line for z # 0, and the fibre Xy is a double line. Thus the
reduction of each fibre is a linear space, but one fibre is not reduced. This
shows that X is a Grauert-linear space that is not the reduction of a linear
space. For other examples, see Paragraph 4.1.

4. Tangent cones

4.1 Whitney’s tangent cones

In [23] Whitney defined several gotions of tangent cones to an analytic
subset of some C". In fact, for every analytic subset S of C* and every
point s of S he defined six subcones Ci(S,s) of C* for k = 1, ..., 6. For
k = 4,5, 6 the cone C(S, s) is the fibre of a globally defined cone Ci(S)
over S (or rather the reduction of the fibre, since Whitney only defines his
cones as analytic subsets of C™). This is not the case for k = 1, 2, 3, as
Whitney showed in [23].
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For k = 3, 4, 5, 6, the Whitney cones can be defined in a natural way for
(not necessarily embedded) complex spaces S, though S must be reduced
in the case k = 4. These natural definitions, which we shall now describe
briefly, yield in general non-reduced cones; to obtain Whitney’s original
definition one has to form the reduction of these cones and their fibres.

It is well known that C3(S, s) is the normal cone of the reduced one-point
subspace {s} of S and thus only lives naturally over the space {s}.

The globally defined cones Ci(S) for k = 4, 5, 6 have the following
definitions.

e The cone Cg(S) is just the global Zariski tangent space Ts := V(Q}),
where Q}g is the sheaf of holomorphic 1-forms on S. This can also be
interpreted as the analytic restriction V(Z) X gx g S of the linear space
V(Z) on S x S to the diagonal, where 7 is the ideal of the diagonal of
S x S and S has been naturally identified with the diagonal.

o The cone C5(9S) is the so-called tangent star cone of the space S, defined
as the normal cone of S embedded as the diagonal of S x S, i.e.,

Specan (@ Im/Im"'l) ,

m>0

where 7 is the ideal sheaf of the diagonal in S x S (see e.g., [11], [12]).
For a reduced space S this can by Example 3.12(2) in be interpreted as
V(Z)y xsxs S, i.e., the analytic restriction of the cone V(Z); on Sx S
to the diagonal.

e Finally, the cone C4(S), which according to Whitney is the closure of
the part of the global tangent space lying over the regular points of S,
can now for a reduced base space S easily be interpreted as the cone
(Ts)ﬁ. If we again consider S embedded as the diagonal of S x S with

ideal Z, then Cy4(S) = (V(I) XSx S S)ﬁ'
From Theorem 3.10 we get an algebraic description of Cy4(S) as
C4(S) = Specan (S(2}), )= Specan (S(2})/7S(2})) -

We emphasize that the cone C4(S) is only defined for a reduced base space
S, and it is necessarily a reduced space. However we note that the fibres
C4(S, s) = C4(S), of C4(S) often carry a natural non-reduced structure.
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Thus it is easily seen that for the cubic parabola S := {(z,w) € C? :
w? = 23} the fibre C4 (S), is a double line. The reduction of the fibre is
a line and in particular a linear space. Thus C4(S) is a natural example
of a Grauert-linear space that is not a linear space. This is more generally
the case for every singular, reduced and locally irreducible complex analytic
curve (see Corollary 4.9). '

From Proposition 2.8 and the description above of the cones C4(S) and
Cs(S), we immediately obtain the following result (see also Stutz [22]):

PROPOSITION 4.2.— Let S be a reduced complex space of pure dimension
n. Then
dimZ,4(C4(S)) <n—k

and
dimZX, (Cs(S)) <n-—-k+1

for every k > 1.

PROPOSITION 4.3.— Let S be a reduced complex analytic curve. If
TS(Q};) = NS(Q%), then S s regular. In particular, S is regular if the
symmetric algebra S(le) is torsion free.

Proof. — By Proposition 4.2, the cone Cy (S)s is 1-dimensional for every
sin S. If T8(QY) = NS(QY), then Cy4(S) = (Ts), 4; hence dim T, = 1
for every s. Hence S is regular. O

Remark 4.4.— In [4], Berger conjectured the much stronger result that
a reduced curve with a torsion free differential module is regular. We note
that an analogous result cannot hold in higher dimensions; see e.g. the
proof of the next proposition.

Applying Proposition 3.11 to the Zariski tangent space we obtain the
following result.

PROPOSITION 4.5. — Let S be a reduced complex space of pure dimension
n and put
Tk = Zk(Ts) = {s € S : emdim; S > k} ;

in particular X4y is the singular locus of the space S. Consider the
conditions:
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(i) Ca(S) = (Ts)eqs
(it) dimE, 1, < n—k for every k > 1.

Then condition (i) implies condition (i1). If S is a locally complete
intersection, then the conditions (i) and (i1) are equivalent.

Proof. — We just have to note that for a locally complete intersection
S the sheaf of differentials Q}g is everywhere of projective dimension < 1:
Embed S locally as a subspace of some CVN defined by a coherent ideal
sheaf Z. It is well known that we have an exact sequence (Z/Z%)|S —
(QéN /IQ%:N)LS’ — Q% — 0 inducing a short exact sequence on the regular
part of S, hence on the whole of S, since the condition that S is locally a
complete intersection implies that the sheaf (Z/Z?)|S is locally free. O

COROLLARY 4.6.— Let S be a reduced subspace of some CN with
singular locus £ and suppose that S is locally a complete intersection
satisfying the condition codimg X > codimen S. Then Cy(S) = (TS)red'
This is in particular the case if S is a hypersurface with singular locus of
codimension > 2.

4.7 Inclusions of tangent cones

In [23], Whitney proved the set-theoretic inclusions C3(S, s) C Cy(S, s) C
Cs(S,s) C Ce(S, s) for the tangent cones. The last two inclusions also hold
when we give the cones their natural, possibly non-reduced, structures. The
question when the first inclusion holds is more complicated; it is intimately
related to the so-called torsion problem of Reiffen and Vetter.

In [18], Reiffen and Vetter discussed four possible definitions of holomor-
phic 1-forms on a reduced complex space S. In addition to the standard
sheaf of holomorphic 1-forms Q%, which they denoted by €,, they consid-
ered the sheaf Q, of holomorphic 1-forms defined by Rossi [19], the sheaf Q,
defined as the dual sheaf of the sheaf of vector fields as defined by Rossi, and
finally the sheaf Q := i*Q%], where U is the regular part of Sand ¢ : U — S
is the inclusion. There are canonical mappings Q, — Q3 — Q5 — Q3, and
in the paper the question of the injectivity of the mapping Q, — Qp was
raised.

Rossi’s definitions in [19] of the sheaves of holomorphic 1-forms and
holomorphic vector fields on a reduced complex space are like the usual
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definitions — holomorphic 1-forms are the linear forms on the tangent space
and vector fields are the sections of the tangent space — ezcept that Rossi
is working in the reduced category, and his tangent space is the reduction
of the Zariski tangent space. This has no effect on the definition of vector
fields (since a section of a linear space over a reduced base space factors
uniquely through the reduction of the linear space), but by the results of
Section 1 the sheaf Qg of 1-forms according to Rossi is the sheaf QL /N QY,
where N Q}g is the submodule of le consisting of the elements that are
nilpotent in the symmetric algebra; this also has the description

NQL(U) = {w € Q5(U) : ws € mgQ} for every s in U}.

It also follows that the dual sheaf of the sections of vector fields is the bidual
of le. The injectivity of the mapping 2, — Qj, is thus equivalent to the
equality Q% = TQ}, or in other words to the inclusion (7 979) s C msQ};’ s
for every s in S. In this form the question was posed by Scheja in [20],
where he proved the inclusion for quasi-homogeneous singularities. In [14],
Platte gave an example showing that the inclusion does not hold in general
in any dimension.

Now let S be a reduced space and 7 := TS(Q ). Then C3(S,s) is
the subcone of the Zariski tangent space Ts, = Specan(S (Ql) ® C)
defined by the graded algebra B, 50 m3* /mm"'l, where m; is the maximal
ideal of Og ;. By the description of C4(S) given in Paragraph 4.1, we see
that C3(S,s) is a subspace of C4(S,s), with their possibly non-reduced
structures, if and only if V

T; C Ker |S(Q%), — P m7*/mP*1 ]|,
m2>0

where §(QY}), — @,,>0 m7*/m7+1 is the natural mapping. In particular
the inclusion (77), C—msQIS’ . 18 a necessary condition for the inclusion.
Hence the examples of Platte show that the inclusion does not hold in
general.

We finally remark, for use in the proof of the next result, that one of
Rossi’s theorems of his paper [19] can be reformulated in terms of the cone
C4(S). It is the following regularity criterion: If S is a reduced complex
space, s € S, dims S = n and there are n holomorphic vector fields defined
on a neighbourhood of s and linearly independent at s, then the space S
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is non-singular at the point s. We note that such vector fields span an n-
dimensional vector bundle that is a subcone of C4(S), and then necessarily
equal to C4(S), over the given neighbourhood of s. Conversely, if C4(S)
is a vector bundle with fibre dimension n in a neighbourhood of s, then
such vector fields clearly exist. The Rossi regularity criterion can thus be
formulated as follows: If S is a reduced complez space, s € S, dimg S = n
and C4(S) is a vector bundle of fibre dimension n in a neighbourhood of s,
then S is non-singular at s.

We use this to prove the following proposition.

PROPOSITION 4.8.— Let S be a pure-dimensional reduced complez space
and let s € S. Suppose that the tangent cone Cy(S,s) is a vector space of
dimension dimg S; in particular Cy4(S, s) is reduced. Then S is regular at s.

Proof.— Put n := dimsS. As is easily seen, a straight cone over a
reduced point is a vector space if and only if it is non-singular, which again
means that its dimension and embedding dimension at the vertex coincide.
Since the embedding dimension of the fibre is upper semicontinuous [7,
Prop. 3.6, p. 137] and S is pure-dimensional, it follows that C4(S,t) is an
n-dimensional vector space for every t in an open neighbourhood U of s in
S. It follows from Proposition 3.4 that the restriction of C4(S) to U is the
reduction of a linear space L over U. The fibres of L are (reduced) vector
spaces and thus identical to the fibres of C4(S) over U. By a theorem of
Fischer [5], L is a vector bundle. A vector bundle over a reduced space is
reduced, hence L is the restriction of C4(S) to U and so Cy(S) is a vector
bundle in a neighbourhood of s. By the theorem of Rossi mentioned above,
S is non-singular at s. O

As a corollary we get.

COROLLARY 4.9.— Let S be a reduced and locally irreducible complex
analytic curve and let s be a point of S such that the cone C4(S, s) is reduced.
Then S is regular at s.

Proof.— Since S is irreducible at s, the reduction of Cy(S, s) is clearly
a complex line. O

We finally note the following corollary of Paragraph 3.8.
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PROPOSITION 4.10.— Let S be a reduced complex analytic space with
isolated singularities. If the tangent space Tg is reduced, then the torsion
ideal of S(Q}) is a direct summand of S(Q%) as a graded Og-module. In
particular the torsion submodule of Q% is a direct summand.

In this connection we recall the conjecture of Scheja ([20, p. 157]; see
also Platte [14]), a weakened version of the Reiffen-Vetter torsion problem:
If the torsion submodule of Q}q is a direct summand, then it is the trivial
submodule.

5. Notions of positivity

5.1 Wealey and cohomologically positive graded algebras

Let S be a compact complex analytic space, and let X be a cone over S
defined by the connected graded Og-algebra .A. We say that the cone X is
weakly negative and that the algebra A is weakly positive if the vertex of X is
exceptional in X (over the reduced point). We say that A is cohomologically
positive if for every coherent Og-module G there is an integer ng such that

HP(X, A, ®G)=0 foralln>ngandallp>1.

A coherent Og-module F is, by definition, weakly positive (resp. coho-
mologically positive) if and only if its symmetric algebra is. As an easy
consequence of our results in [2], we obtain the following theorem.

THEOREM 5.2.— Let S be a compact complex space and A be a connected
graded algebra of finite presentation. Then A is weakly positive if and only
if 1t is cohomologically positive.

Proof.— The fact that weak positivity implies cohomological positivity
is a special case of our [2, Theorem 4.4]. Now suppose that A is coho-
mologically positive and let 7 {s} be the ideal sheaf of the point s in S.
By [2, Theorem 3.2] we have to show that for all s, t in S the canonical
homomorphism

I'(S, Ap) — F(S,AR/I{S}I{t}An)
is surjective for all large enough n. We have an exact sequence

0 —Kn—AnQ® I{s}I{t} — A, L An/I{S}I{t}An —0
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of graded O g-modules. For every n we obtain an exact sequence
HY(S,Kn) — HY(S, An ®I(5Z(sy) — H'(S,Ker pp) — H*(S,Kq).

Since K, is supported on {s,t} we have H'(S,Kn) = H*(S,Kyn) = 0 and
thus
HY (S, An ® I(3T(yy) = H'(S, Ker pn) foralln.

By hypothesis there is an integer ng such that the left side of the equation
is zero for all n > ng. It follows that I'(S, An) — T'(S, An/I{s}I{t}An)
is surjective for all n > ng. O

Remark.— In the special case that 4 is the symmetric algebra of a
coherent @g-module F the previous theorem was proved by Ancona 1,
corollaire 2.11] and earlier, in the case of a reduced space S, by Rabinowitz
[17, Theorem 1].

5.3 Primary weakly positive sheaves

Let S be a reduced compact complex analytic space and let F be a
coherent O g-module. Following Rabinowitz [17] we say that F is primary
weakly positive if the cone V(f')ﬁ is weakly negative. From Theorems 5.2
and 3.10, we immediately get the following result.

THEOREM 5.4.— Let S be a reduced compact complez analytic space. A
coherent Og-module F is primary weakly positive if and only if for every
coherent Og-module G there ezists an integer ng such that

HP (S, 8,(F),©G) =0
for alln > ng and allp > 1.

Remark.— A slightly different cohomological characterization of pri-
mary weak positivity was obtained by Rabinowitz in [17].

From [2, Theorem 2.14 and Corollary 3.4], we immediately obtain the
following result, which was proved by Rabinowitz in the case of normal
irreducible spaces (see [17, Theorem 2}):

THEOREM 5.5.— A reduced compact complex analytic space is Moisezon
if and only if it carries a primary weakly positive coherent sheaf.
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From Theorem 3.10 and [2, Corollary 3.3], we obtain the following
strengthened version of a theorem of Ancona [1, théoréme 5.1]:

THEOREM 5.6.— Let S be a reduced compact complez analytic space
and F be a coherent Og-module. If F is primary weakly positive, then there
exists an integer ng such that S, (.7-")ﬁ is weakly positive for all n > ng.

Ezample 5.7.— We construct an example of a torsion free primary
weakly positive sheaf that is not weakly positive, thus answering a question
of Rabinowitz [17].

Let zp, 21, 22, 23 be homogeneous coordinates of the three-dimensional
projective space P3 of lines in C* and let S be the union of the projective
planes

Hy:={2€P3:20=0} and Ho:={z€P3:23=0}

Let a be the involutory automorphism of C* defined by a(vg, v1, ve, v3) :=
(—vo, v1, v2, v3) and let Eq, Eq be the line bundles on Hy, Hs respectively
defined by

E; = {(z,'v) € HyxCt :vez} and Ey := {(z,v)EngC1 :a(v)ez}.

Let Ly be the trivial extension of Ex to S for k = 1, 2. Then Ly, Ly are
reduced linear subspaces of the trivial bundle S x C*, and their (reduced)
union X := L1 U Ly is a subcone of S x C*. Hence X = Specan A, where
A = @,,50Am is a connected Og-algebra, locally of finite presentation,
and generated by .A;. We show that the coherent ()g-module .4; is torsion
free and primary weakly positive, but not weakly positive:

Let 7 : X — S be the projection. Outside the projective line T := H; N
Hj the cone X is a line bundle, and since X is reduced, clx (X \=~}(7T)) =
X, and thus H%A = 0 by Theorem 2.2. Since T is analytically rare in S
and A is torsion free on S\ T, Lemma 2.4 implies that 7 (A) = H$.(A) = 0.
In particular A4, is torsion free.

The space V(A1) is a linear subspace of S x C* containing X as a subcone
and V(A1)|S\T = X|S\T. Thus V(A1), = X. To show that V(4;) is
primary weakly positive we must prove that the vertex of X is exceptional in
X. But the restriction to X of the projection S x C* — C* maps the vertex
S of X to zero and induces a finite holomorphic mapping X \ S — C*\ {0}.
Hence it induces a finite holomorphic mapping ¥ : X Ilg P — C*, where P
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is the reduced point and X IIg P is the push-out in the category of ringed
spaces; in fact ¢ has at most two points in each fibre. By [13, Korollar 1.3]
the vertex of X is exceptional in X.

In order to show that .41 is not weakly positive we note that V(A7) is a
linear subspace of T x C* containing the restriction of X to T, and for all
points z in T except the points (1:0:0:0) and (0:1:0:0) we have

L1,3+L2,z={z}x{ve(c4:v2=v3=0}%'(C2.

Thus the restriction of V(A1) to T contains the trivial bundle 7' x C? as a
linear subspace; hence it cannot be weakly negative, and a fortiori V(A;)
is not weakly negative.

Remark 5.8.— One can ask whether such an example may be found over
a locally irreducible base space or even a manifold.
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