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A closure operation on
complex analytic cones and torsion(*)

REYNIR AXELSSON(1) and JÓN MAGNÚSSON(1)

Annales de la Faculte des Sciences de Toulouse Vol. VII, n° 1, 1998

Nous etudions 1’operation qui consiste a fermer (analytique-
ment) la partie localement libre d’un espace lineaire complexe. Plus

generalement nous demontrons : soit un cone analytique : X -> S défini

par une OS-algèbre graduee A et soit A un sous-ensemble analytique de
S. Alors la fermeture du sous-cone ouvert X B ~r-1 (A) dans X est un cone
analytique sur la fermeture de S B A dans S et il est défini par l’algèbre
graduee Dans le cas ou S est reduit, A est d’interieur vide dans
S et A est sans torsion sur S B A; on a = ou T(A)
designe l’idéal gradue des elements de torsion dans A. Nous etablissons
des relations entre les elements de torsion et les elements nilpotents d’une
algèbre symetrique d’un faisceau analytique coherent. En appliquant nos
resultats aux espaces tangents globaux de Zariski, nous obtenons, pour
S reduit et localement intersection complete, une condition necessaire et
suffisante en termes de dimensions pour que le cone de Whitney C4 (S)
soit la reduction de l’espace tangent global de Zariski, et deux criteres de
régularité pour des courbes analytiques. Finalement, il y a des applica-
tions aux notions de positivite (amplitude). .

ABSTRACT. - We study the operation of taking the (analytic) closure
of the locally free part of a linear space in a more general setting: For a
cone : X --~ S defined by a graded 0 s-algebra sheaf A and a closed
analytic subset A the closure in X of the open subcone X B~r-1 (A) is a cone
over the closure in S of S‘ B A defined by the graded algebra sheaf .

In the case that S is reduced, A is analytically rare in S and A is torsion
free on this can also be described as the algebra where )
is the graded ideal of torsion elements in A. We prove a relation between
the torsion ideal and the ideal of nilpotent elements in the symmetric
algebra of a coherent analytic sheaf. Among applications to linear spaces, ,
in particular tangent spaces, are a necessary and sufficient condition
involving dimensions for the Whitney cone C4 {S) to be the reduction
of the global Zariski tangent space, valid for a reduced complex analytic
space S that is locally a complete intersection; two regularity criteria
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for complex analytic curves and some applications involving notions of
positivity.

Introduction

Certain natural operations that can be performed on linear spaces over a

complex analytic space the natural generalization of holomorphic vector
bundles - produce not linear spaces, but complex analytic cones. In [2],
where we studied complex analytic cones in general, we gave an important
example of such an operation, namely the blowing-down of the zero section
of a linear space. In this paper we study another operation of this kind:

Taking the closure in a linear space of its locally free part. More generally,
we study the operation of closing (analytically) the restriction of a complex
analytic cone to a Zariski-open subset of the base space and describe it in
terms of the connected graded sheaf of algebras defining the cone.

This operation has been studied earlier in special cases: In [23] Whitney
defined several tangent cones to a reduced analytic space S. One of them,
the tangent cone that Whitney denoted by C4(S), may be defined as the
closure of the locally free part of the global Zariski tangent space of S. The
operation was defined for general linear spaces by Rabinowitz in [17] (see
also [16]), who used it to define a notion of primary weakly positive sheaves.
Let S be a reduced compact complex analytic space and let 0 be a coherent

Os-module. Denote by V(F) the linear space associated with F (see [10])
and let A be the analytic subset of S over which F is not locally free.
Rabinowitz defines the primary component of as the closure 

in V(F)red of and calls 0 primary weakl y positive if the zero
section of v{~’)# is exceptional; here denotes the reduction of the

space V(F). The space v(~’)# is, in general, not a linear space over S. It

is a complex analytic cone over S.

Since the definition of the "primary component" involves the reduction
of a linear space, we also examine more generally the operation of reducing
a complex analytic cone, another operation which, when performed on a
linear space, produces in general not a linear space, but a complex analytic
cone. When considering the duality between coherent analytic sheaves on
a complex space S and linear spaces over S it is essential that the linear

spaces are allowed to be non-reduced, also when the base space S is reduced.



It turns out that some very natural linear spaces associated with a complex
space, such as its global tangent space, are in general non-reduced, even if
the original space is reduced. Thus, if we want to work with linear spaces,
we are forced to allow them to be non-reduced. There are however notions,
similar to that of linear spaces, defined in the category of reduced spaces.
Thus Grauert defined in [8] a class of reduced spaces that he called linear
spaces over a (reduced) complex space; in this paper we shall call them

Grauert-linear spaces. The reduction of a linear space is a Grauert-linear

space, but not a linear space in general, and there are Grauert-linear spaces
that are not obtained by reducing linear spaces. In the paper we clear

up the relationship between Grauert-linear spaces and linear spaces and
characterize the former as a certain type of complex analytic cones.

In Sections 1 and 2 of this paper, we consider the algebraic analogues
of taking the reduction of a cone and the closure of an open subcone. We
show (the non-surprising fact) that the reduction of a cone corresponds to
the reduction of its algebra (Theorem 1.2). For a cone 7r : X --~ S defined

by the graded Os-algebra A and a closed analytic subset A of S we show
that the closure in X of the open subcone X B ~r-1 (A) is a cone defined

by the algebra (Theorem 2.2). In the case that S is reduced, A
is analytically rare in S and A is torsion free on S B A this can also be
described as the algebra ,A~ := A/T(A), where T(A) is the graded ideal of
torsion elements in A. We also prove a certain proposition concerning the
fibre dimension of the closure (Prop. 2.8).

In Section 3, we consider these operations on linear spaces. In Proposition
3.4, we characterize Grauert-linear spaces. We prove a relation between the
torsion ideal and the ideal of nilpotent elements in the symmetric algebra
of a coherent analytic sheaf (Prop. 3.6) and draw some corollaries. We
also show that the primary component (in the sense of Rabinowitz) of a
coherent sheaf 0 is given by V’(~’)# - Specan(S(0),), where is the

symmetric algebra of :F (Theorem 3.10). In Proposition 3.11, we consider
a dimension condition necessary for the equation V(~")~ = where

~’ is a coherent analytic sheaf over a reduced pure dimensional complex
space, and prove that it is also sufficient in the case that F is everywhere
of projective dimension ~ 1. Finally, we give some examples; in particular
we show that the reduction of a linear space need not be a linear space.

In Section 4, we apply the foregoing to tangent cones, in particular the
tangent cone C4 (,S’) of Whitney. In Proposition 4.6, we give a necessary
and sufficient condition involving dimensions for C4 (,S) to be the reduction
of the global Zariski tangent space, valid for a reduced complex analytic



space S that is locally a complete intersection. Among other results of the
section we point out two regularity criteria for complex analytic curves: We
show that a reduced complex analytic curve S is regular if the symmetric
algebra is torsion free (Prop. 4.3); a stronger unproved conjecture
by Berger (see [4]) states that a reduced complex analytic curve is regular
if the sheaf SZS is torsion free. We also prove that a reduced complex curve
S is regular at the point s if it is locally irreducible and its tangent cone
C4(S, s) is reduced (Prop. 4.9).

In Section 5, we introduce the notion of cohomological positivity for
a connected graded algebra A, locally of finite presentation. We prove
that a complex analytic cone is weakly negative if and only if its algebra
is cohomologically positive (Theorem 5.2). We give a characterization of
primary weak positivity (Theorem 5.4) and prove that a reduced compact
complex analytic space is Moisezon if and only if it carries a primary weakly
positive coherent sheaf (Theorem 5.5); in the case of normal irreducible

spaces this result was proved by Rabinowitz in [17]. Finally, we give
an example of a coherent analytic sheaf that is torsion free and primary
weakly positive but not weakly positive; thus answering a question of
Rabinowitz [17].

1. Reduction of complex analytic cones

1.1 Complex analytic cones

We recall that a complex analytic cone over a complex analytic base

space S is a complex analytic space 7r : : X --~ S over S together with an

S-morphism  : Cx X ~ X, called multiplication, and a section v S ~ X
of ~r, called the vertex of the cone, satisfying the axioms:

(i) 
(ii) = idx ~

(iii) = v o x,

where is the usual multiplication in C and 1x, Ox : X -; C
are the constant mappings with values 1, 0 respectively.

By Theorem 1.4 in [2], every complex analytic cone X over S can be
obtained as X = SpecanA, where A = a (commutative)



graded Os-algebra, locally of finite presentation, such that Ao = Os; we
call such algebras connected graded Os-algebras of finite presentation. The
algebra A can be obtained as a subalgebra of the direct image for
an open set U in S the m-th component Am (U) consists of the holomorphic
functions f : ~r-1 (U) -~ C that are homogeneous of degree m with respect
to the multiplication i.e. satisfy f o (zm x f ) on C x 7r-1(U),
where z’n : ~ --~ ~, t ~ t"’L .

Let x : : X --~ S be a complex analytic cone over S with multiplication
~ : : C x X - X and vertex v : S’ --~ X. . Then clearly the reduction
03C0red : Xred --+ Sred is a complex analytic cone over Sred with multiplication
pred C x Xred = (C x X)red ~ Xred and vertex vred : ’Sred ~

Let A be a connected graded Os-algebra of finite presentation. We
denote by N(A) the graded ideal of nilpotent elements in A. Clearly,
N(A)o = Ns = the ideal of nilpotent elements in Os. . Thus we may
consider Ared :_ as a connected graded -algebra.

THEOREM 1.2. - Let X be a cone over the complex analytic space S
corresponding to the connected graded Os-algebra A. Then Xred is the cone
over Sred corresponding to the algebra Ared. In particular, the algebra Ared
is a connected -algebra of finite presentation, and the A-ideal N(A) is
locally finitely generated.

Proof. - We identify S (resp. Sred) with a subspace of X (resp. Xred)
via the vertex mapping and write Xred = Specan B, where B is a connected
graded OSred -algebra of finite presentation. The natural embedding Xred -
X is in an obvious sense a morphism of cones over the natural embedding
Sred ~ S and thus induced by a graded algebra homomorphism 03C8 : A ~ B.
We put JC := Ker 03C8 and obtain a commutative diagram

of sheaves over S, where the vertical arrows are inclusions and r is the
natural projection. We have JC = A n (N X ~S) = N(A). It remains to
show that the homomorphism 03C8 is surjective. Let s E S’ and b E Ss. Write
b = with bm E Bm,s. . Then there is an element a E Ox,s such that
r(a) = b. By [2, Lemma 1.9], a can be written uniquely as a = am

in the natural topology of Ox,s with am E Am,s. By the continuity of r we



have r(a) = r(am) and thus r(am) = bm for m = 0, ..., M by the
uniqueness of the representation. But then

COROLLARY 1.3. - Let X be a cone over the complex analytic space S
corresponding to the graded Os-algebra A. The space X is reduced if and

only if the algebra A is reduced; and then necessarily the space S is reduced.

Remark 1.4. - Let X be a complex analytic cone over a complex space
S such that the fibre Xs is reduced for every point s in S, and let A be the

corresponding graded algebra. Then for every open set U in S and every
m > 1 we have

In fact, Am(U) consists of the holomorphic functions f in 
that are homogeneous of degree m, where 7r : : X -~ S is the projection,
and N(A)m (U) is the subset of Am (U) consisting of those functions f that
are nilpotent, locally with respect to S, i.e. for every s in S there is an

open neighbourhood V of s such that (V) is nilpotent. Because of

the homogeneity, this just means that f is nilpotent, locally with respect to
X, which again means that f induces the zero function on This

is equivalent to saying that f induces the zero function on each (reduced)
fibre.

2. Closure of open subcones

2.1 Zariski closure

We recall some basic facts about the closure of Zariski-open subspaces
of a complex analytic space. (We refer, of course, to the analytic Zariski-
top ology. )

Let S be a complex analytic space, 0 be an Os-module and A be a closed
analytic subset of S. Denote by H0AF the subsheaf of F defined by

for every open set U of S.



Let I be a coherent Os-ideal such that A = let s be a

point in Sand f E 0s . If .~’ is Os-coherent, then a necessary and sufficient
condition for f to be in ~7-l,~q.~’~ S is that f = {0} for some natural
number n; it follows that 7-LA.~’ is a coherent C’Jg- submodule of .~’ (for the
details see [7], [21]).

In particular, is a coherent Os-ideal, and it is easily seen that
= S ~ A. The closure of S ~ A in S is by definition the

closed subspace of S defined by i.e., the subspace

If Z is a coherent Os-ideal such that ~ A = 0, then clearly I C 
This means that cls(S B A) is the smallest closed subspace of S containing
S B A as an open subspace. If 0 is an Os-module, then .~/?-lA.~’ has a
natural (9~/7~ (~-module structure.
We recall that the closed analytic subset A of S is said to be analytically

rare in S if cls(S B A) = S, i.e., if = 0. This is equivalent to the
condition that I A,s contains a regular element (i.e., an element that is not
a zero divisor) for every s in S, where I A is the full sheaf of ideals defining
A (see [7, Prop. 0.43]). For a reduced space S this condition simply means
that A is nowhere dense in S.

Now let A = Am be a connected graded Os-algebra of finite
presentation. Then

is a graded A-ideal, and the algebra is locally of finite presentation.
This follows from our next theorem, but may also be derived directly from
[2, Prop. 1.17~ .

THEOREM 2.2. - Let : X ~ S be a cone over the complex analytic
space S, X = SpecanA, where A is a connected graded Os-algebra of
finite presentation, and let A be a closed analytic subset of S. Then

clx(X B ~r-1 (A)) is the closed subcone of the analytic restriction of X
to cls(S B A) corresponding to the graded algebra A. In

particular, if A is analytically rare in S, then clx(X B ~r-1 (A)) is a cone

over 5’.



Proof. - Put Y := T := cls (S B A) and let i : Y -~ X ,
j : : T -; S be the canonical embeddings. Since clearly ~r-1 (?-~A~s ) O x C
?~~ _1 we obtain a projection ?f : : Y --~ T such that j = ~r o i. Since

the multiplication p : C x X 2014~ X is an S-morphism, we have

and thus obtain a holomorphic mapping  : C x Y ~ Y such that x o  =

p o (id x i). Finally, since 7r o v = ids, we have C 

and we obtain a holomorphic mapping v : T --~ Y such that . It

is now easily verified that ~c is a T-morphism, that v is a section and

that Y satisfies the cone axioms.

We have an exact sequence

of ~-modules. We obviously have ~~-i(~~ = Because

R~~.F = 0 for every coherent (~-module ~ by [2, Lemma 4.1] and
get an exact sequence

Since Y is a cone over T, we can write Y = Specan B, where B = 
is a connected graded OT-algebra of finite presentation. We can identify
Bm (resp. Am ) with the subsheaf of (resp. consisting of the

holomorphic functions that are homogeneous of degree m with respect to the
cone multiplication. The homomorphism~ : clearly maps
A to j*B. We will now show that 03C8 induces an isomorphism A/H0AA ~ j*B.
Let s E S, b E (j*B)s and write b = bm, where bm E (j*Bm) S . Then
b = ~(a) for some a E S, 

and a is the germ at s of some section

f E = C~~ ( ~r-1 ( U ) ~ where U is an open neighbourhood of s in
S. By [2, Lemma 3.1] we may uniquely write f = fm in the canonical
Frechet topology of C~X (~r-1 (U)~ with E Am(U). By continuity of the
restriction homomorphism we have

with By the uniqueness statement we have

= bm for m = 0, ..., M and thus b = ~(a~), where



Thus ~ induces a surjective algebra homomorphism ~ .A --~ j*B, and we
have

2.3 Torsion of a graded algebra

Let S be a reduced complex analytic space and .~’ be an Os-module.
Recall that we can define the torsion submodule of .~’ by the condition

T ~~~ S = ~ f E there is a regular element a in Os,s such that a f = 0} .

If F is coherent, then T(F) is the kernel of the canonical homomorphism
of F to its bidual and thus coherent. It is well known (e.g. [9, Chap. 4,
Sect. 4.2]) that the subset A of S where F is not locally free is an analytically
rare closed analytic subset of S. We clearly have B A = 0.

For a family of O s-modules one clearly has

We put

If .A = Am is a connected graded O s-algebra of finite presentation,
then T(A) is a graded A-ideal, and .~~ = A/T(A) is a connected graded
algebra of finite presentation, by [2, Prop. 1.17].

LEMMA 2.4. - Let S be a reduced complex analytic space and let A be an
analytically rare closed analytic subset of S. Let F be a coherent Os-module
that is torsion free on S B A. Then = ?~~~’.

Proof. - Since F is torsion free on 5’ B A we have ?’(~’) ~S’ B A = 0 and
thus T(0) C ~YA~’. Let s E S, f E (?-~C~~) S. Then for some natural
number n we have = ~0~, where ~A is the full sheaf of ideals

defining A. Since A is analytically rare, IA,s contains a regular element;
hence f E T (~’) S, and we conclude that ?-~A~’ = ?-’(~’). 0

As an immediate consequence we get the following proposition.



PROPOSITION 2.5.- Let : X --~ S be a complex analytic cone over a
reduced complex analytic space S, X = Specan A, where A is a connected

graded Os-algebra of finite presentation, and let A be an analytically rare
closed analytic subset of S‘ such that A is torsion free on S B A. Then

LEMMA 2.6.- Let X be a complex analytic cone over the complex
analytic space S and let k be a positive integer. Then the set

is an analytic subset of 5‘.

Proof. - Let A be the graded algebra corresponding to X, put Z :=

Projan(A) and let ~ : Z ~ S be the canonical projection. The set 
is the image of the set Bk :_ ~ z E Z : : > k - 1 } under the
projection 03C9. But 03C9 is proper, and it is a well known result of Cartan and

Remmert that the set Bk is analytic (e.g. [7, Prop. 3.6~ ) . ~

LEMMA 2.7.- Let X be a complex analytic cone over the complex
analytic space S of dimension n such that dimXs = r for every point s
in S. Then dimX = n + r. ,

Proof. - This is a simple consequence of the fact that for every point s
in S there is an open neighbourhood U of S and an embedding over U of

onto a sub cone of U x CC~ for some ~~ with weighted multiplication
[2, Corollary 1.13~ . ~

PROPOSITION 2.8. - Let X be a complex analytic cone over the complex
analytic space S and let A be a nowhere dense analytic subset of S. We

suppose that S is of pure dimension n and that for every point s in S B A
we have dimXs = r. Put Y := clx (X B ~r-1 (A)) . Then, using the notation

of Lemma 2.6, we have  n - k for every k > l.

Proof.- Obviously is a nowhere dense subspace of Y. . By
Lemma 2.7, dim(Y|S B A) = n + r and thus dim Y = n + r, since closure
does not increase the dimension. Hence  n + r and consequently

 n + r for every k > l. But Lemma 2.7 also implies that

dim + r + k if ~‘ ~ ;
hence the result. 0



3. Linear spaces and related notions

3.1 Linear spaces 

Let F be a coherent Os-module. Recall that the linear space associated
to ~’ is given by

:= Specan ,

where S(F) is the symmetric algebra of ~’. By a theorem conjectured by
Fischer [6] and proved by Prill [15] every linear space over S arises in this
manner. (We recall that a linear space over S is by definition a module over
the ring object x 5’ in the category of complex spaces over the
complex space S.)

In [2], we gave a new proof of this theorem along the following lines: The
scalar multiplication of a linear space L over a complex analytic space S
clearly defines L as a cone over S. Thus we have L = Specan(4), where
A = Am is a connected graded Os-algebra of finite presentation. We
showed that for a linear space L, the canonical morphism L --~ of
cones is an isomorphism of linear spaces over S. In addition to the theorem
of Fischer-Prill this implies that the linear space structure of L is already
determined by the cone structure: For a complex analytic cone X over S
there is at most one structure on X as a linear space over S compatible
with the given cone structure. . This interesting fact holds in the category of
complex spaces over a complex base space, but not in an arbitrary category;
see however [3]. (We see, for instance, that there is only one holomorphic
addition on (Cn making it into a linear space over C together with the usual
multiplication; but for n > 2 it is easy to find different non-holomorphic
additions with the same property.)

It therefore makes sense to ask whether a given cone X = Specan(A) is a
linear space; this means that the canonical morphism J~ -~ of cones
over S is an isomorphism.

3.2 Reduction of a linear space

Now let L = V(F) be a linear space over S. Then Lred is a cone over
Sred. In view of paragraph 3.1 it is natural to ask (see Fischer [7, § 1.6])
whether Lred is a linear space over Sred. Theorem 1.2 implies that Lred
is a linear space if and only if the canonical Os-algebra homomorphism



S(.~’/Nl) -> S(0)/N is an isomorphism, where N := N(S(0)) is the

graded ideal of nilpotent elements in S(.~’), or equivalently if N is generated
as an by Ni . This is not always the case, as will be shown in

Proposition 3.11(3).
. We remark that as a consequence of paragraph 1.4, we have

in particular

3.3 Grauert-linear spaces

In [8] Grauert introduced a notion of quasilinear and linear spaces in
the category of reduced complex spaces as follows: Let S be a reduced

complex space. A quasilineaT space over S is a reduced complex space L
over S together with holomorphic mappings a : (L x s L)red -> L and
~ : C x L -~ L over S such that for every point s in S the induced mappings

define the structure of a vector space on the reduced fibre (Ls) red °
A morphism ~ : L1 -~ L2 of quasilinear spaces over S is a holomorphic

mapping over S such that for every point s in S the induced mapping
"~ of the reduced fibres is linear.

Let L be a quasilinear space over S. A quasilinear subspace of L is a
reduced closed analytic subspace L’ of L such that for every point s in S
the reduced fibre is a linear subspace of The restriction

of the " quasiaddition " of L then induces a quasiaddition on L’ making
L’ a quasilinear space, and the inclusion L’ -~ L a morphism of quasilinear
spaces.

For a quasilinear space L over S we get a mapping (of sets) v : ,S -~ L,
called the zero section of L, by putting v(s) := OS, where Os is the zero

element of (Ls)red. °



The concept of a quasilinear space is very weak, as the following example
shows: Let S be a non-discrete complex space, e.g. S = C, and put
L := x where S’d is the set S with discrete topology, considered
as a zero-dimensional reduced complex space. Clearly the projection
L --~ ~ S is holomorphic, and the vector space structure on (Cn induces
the structure of a quasilinear space over S on L. In this example, the zero
section of L is not continuous.

A Grauert-linear space over S is a quasilinear space Lover S such that
for every point s in S there is an open neighbourhood U of s in S such that
the restriction is isomorphic to a quasilinear subspace of U x ~ for
some natural number n.

The reduction of a linear space over S is a clearly Grauert-linear space
over S. More generally a Grauert-linear space over S is the same as a

quasi-linear subspace of the reduction of a linear space over S. Clearly
the zero section of a Grauert-linear space is holomorphic. It follows that a
Grauert-linear space is a cone whose vertex is the zero section.

PROPOSITION 3.4. - Let S be a reduced complex space.

(1) A reduced cone over S is a Grauert-linear space if and only if the
reduction of each fibre is a linear space.

(2) A quasilinear space over S is a Grauert-linear space if and only if its
zero section is holomorphic.

(3) A Grauert-linear space ov.er S is the reduction of a linear space if
and only if each fibre is reduced.

For the proof we need a simple lemma. A complex analytic cone
X = Specan(A) over S is a subcone of a linear space over S if and only if the
algebra A is generated by We call such cones straight . This property
is clearly local with respect to the base space.

LEMMA 3.5.2014 Let X be a reduced cone over the reduced complex space
S. Suppose that for every s in S the reduction of the fibre is a

straight cone (over the reduced point). Then X is a straight cone.

Proof. - Let X = SpecanA and let s E S. There is an open

neighbourhood U of s in S such that A is generated over U by homogeneous
elements a1, ... an , ... an+m, , where ... , an have degree 1 and

, ... , an+m have degree greater than 1. These elements define a cone



embedding over U of X|U into U x Cn x where the multiplication in the
first factor en is the usual vector space multiplication, but the multiplication
in each coordinate of the second factor C~ is weighted of degree greater than
1. The condition that the reduction of each fibre is straight means that the
embedding maps into ~s~ x C~ x ~0~. This means that X (U gets
mapped set-theoretically into U x en x ~ 0 ~ . Since X is reduced, we obtain
an embedding of into U x . 0

Proof of Proposition 3.4

(1) Let L be a reduced cone over S such that the reduction of each fibre

of L is a linear space. By Lemma 3.5, L is a straight cone, hence a subcone
of a linear space Li. Since the linear space structure of each reduced fibre
is uniquely determined by the cone structure, L is a quasilinear subspace of
the reduction of L1 and thus a Grauert-linear space.

(2) Let L be a quasilinear space over S with holomorphic zero section.
Then L is a cone over S whose reduced fibres are linear spaces, hence a

Grauert-linear space by (1).

(3) Let L be a Grauert-linear space over S, L = SpecanA, and put
L1 := Specan For s E S the fibre Ls is the cone over the reduced

point given by the algebra As/msAs, where ms is the maximal ideal of

Since the fibre is a reduced linear space, As/msAs is a symmetric
algebra, and then necessarily the symmetric algebra of .A1,S/ms.,4l,s. Hence
Ls = L1,s for every s in S. Thus L and L1 have the same underlying
topological space. Since L is reduced, L is the reduction of L1. 0

PROPOSITION 3.6. - Let S be a reduced complex analytic space, let A

be an analytically rare closed analytic subset of S and Z~ be the full sheaf
of ideals defining A. Let ~’ be a coherent Os-module that is locally free on
S B A and put N := and T := ~’(S(~’)~ . Then

In particular, if the linear space is reduced, then the sheaf IA . S(F)
is torsion free, and Z~ . T = 0.

Proof. - The first inclusion is obvious. Since 0 is locally free on S B A,
is torsion free on S B A, and we have T = . Hence for every

f E Z’S there is an n such that f = 0; if also f E (IA . then



~+1 ~ ~ ~ . ~ . ~~ = 0 and thus / Finally, let p e N(U),
where U is an open set in S, and suppose that ~ = 0. Since 0 is locally
free on U B A, we have supp g G U n A and hence

In the case that the Os-module .~’ is locally free outside of a discrete
set, one of the inclusions in Proposition 3.6 is an equation: Let us more

generally suppose, in addition to the hypotheses in Proposition 3.6, that
the restriction x s A of the linear space to the reduced subspace
A is reduced. This means that the symmetric algebra of the OS/IA-module

is reduced. Then N is a subsheaf Hence Proposition 3.6
implies that N = ~ S(.~’)~ n T. We have proved the following corollary.

COROLLARY 3.7.- With the same hypotheses and notations as in Propo-
sition 3. 6, let us suppose in addition that the restriction xs A of the
linear space to A is reduced; this is in particular the case when A is
discrete. Then

In particular we have T = N if and only if T ~ IA

As another corollary of Proposition 3.6, we get the following result.

COROLLARY 3.8.- Let S be a reduced complex analytic space, let F
be a coherent OS-module that is locally free outside a discrete set. If the
corresponding linear space Y(.~’) is reduced, then the torsion T ~S(.~’)~ is a

direct summand of as a graded Os-module.

Proof. - Let A be a discrete set such that .~’ is locally free outside A
and retain the notations of Proposition 3.6. We have a short exact sequence
0 -~ - -~ --~ 0. The hypothesis that 
is reduced means that N = 0 and hence that . S(0)) n T = 0. This

implies that T is mapped injectively into Since the latter
sheaf is supported on a discrete set, the image of T has a direct complement
as a graded C-vector space at every point, and this is in a natural way a
direct complement of the image of T as a graded Os-module. Its preimage
in S(0) is then a direct complement of T as a graded OS-module. []



3.9 The primary component

Let S be a reduced complex analytic space and let F be a coherent 
module. Let V(F) := Specan S(F) be the linear space associated with F
and let A be the (nowhere dense) closed subset of S where 0 is not locally
free. We put

where x : V(.~’) -~ S is the projection. This is what Rabinowitz [17] calls
the primary component Clearly V~.~’~~ is a reduced space.

THEOREM 3.10.- Let S be a reduced complex analytic space and let .~’
be a coherent Os-module. Then V~.~’~b is the cone over S defined by the

graded OS-algebra S(F)#.
Proof. - By Proposition 2.5, we have

We have to show that

or, equivalently, that B ~r-1 (A)~ is a reduced space. This

follows from Corollary 1.3 and the fact that N(S(0)) C ~IAS(~’) =
~- (S(~)) . o

Let ~’ be a coherent Os-module over a reduced complex space S. We
say that ~’ has free rank r if it is free of rank r outside a nowhere dense

analytic subset of S.

PROPOSITION 3.11.2014 Let S be a reduced complex space of pure dimen-
sion n and let ~’ be a coherent Os-module of free rank r. Put

and consider the conditions:

(i~ v ~,~’~ p - V 
(ii)  n - k for every k > 1.



Then condition (i~ implies condition (ii~. If 0 is everywhere of projective
dimension  1, then the conditions (i) and (ii) are equivalent.

Proof.- That (i) implies (ii) is a special case of (2.8). Now suppose that
0 is everywhere of projective dimension  1. The conditions being local in
S, we may assume that we have an exact sequence 0 -~ C~s -~ (~S -~ ~ --> 0
of sheaves or, equivalently, an exact sequence

of linear spaces, where L := V(0) and § is an epimorphism in the
categorical sense; this means in our context that the linear mapping ~S
of fibres is surjective outside a nowhere dense set in S. Since ~’ has free
rank r we have dim Ls = r outside a nowhere dense set A in S. Hence

q = p + r. We have L = f -1 (0), where f = pr2 0 ~ : : S x - .

Hence L is defined by p equations in a space of pure dimension n + p + r,
and thus every irreducible component of Lred has dimension at least n + r.
If L# ~ Lred, then there must be an irreducible component of Lred lying
over the nowhere dense set A in S. But condition (ii) guarantees that every
component of L x s A has dimension less than n + r. 0

Examples 3.12

(1) Let S be a reduced complex space, let I be a coherent sheaf of ideals
of O s and A be the set of points where I is not locally free. The canonical
homomorphism of algebras

of S(I) to the Rees- algebra ~"z of the ideal I is an isomorphism out-
side of A. Since the Rees-algebra is torsion free it induces an isomorphism

(2) Let S be a complex space and Z be a subspace of S defined by an
O s-ideal I. The normal cone of Z in S is by definition the cone

It is a subcone of the normal space NZ/S := of Z in S.



Now suppose that the space S is reduced. Since the algebra

is the analytic restriction to Z of the Rees-algebra of Z, our first example
shows that

(3) Let z = ..., zn) be the coordinates in 2, and let C(z) be
the algebra of convergent power series in z. For a holomorphic function g
defined in a neighbourhood of the origin in C~ we denote the order of its

Taylor series at the origin by ord(g).
Let f be a non-zero holomorphic function in an open neighbourhood U

of the origin in en defining a reduced hypersurface S of U, and suppose
that ord( f ) > 3. Let I be the full Os-ideal sheaf defining the origin. We
shall show that the reduction of the linear space V(I) over S is not a linear
space.

Looking at the germs at the origin, we consider = ~(z)/( f ) and
m := Io as C(z)-modules. Let Z = (Zl, ..., Zn) be indeterminates. We
obtain a graded algebra homomorphism a : (C(z~ ~Z~ --~ S(m) determined by
a ( Z k) := zk for k = 1, ..., n. Let

be the canonical homomorphism, and put y := ,Q o a. Then

is the graded ideal of C(z)[Z] consisting of all elements P = P(z, Z) such
that Pm(z, z) is in the C(z)-ideal generated by f for every homogenoeus
component Pm of P. Also Ker a is the graded ideal generated by Jo + J1.

Put £ := ord( f ). One can choose an element F = F(z, Z) in C(z)[Z] such
that F(z, Z) is a homogeneous polynomial of degree £ in Z and F(z, z) =

f (z); this can be done by replacing £ of the with corresponding 
in each term of the power series of f at the origin. Clearly F E J, and
thus a(F) E Ker Q. By example (1), a(F) is a torsion element of S(m).



By Proposition 3.6, is a nilpotent element of S(m). Since S(m) has
no torsion elements and hence no nilpotent elements in degree 1, it suffices
to show that 0, for then we have shown that N(S(I)) is not

generated by Nl ~S(Z)~. Let L1(x, Z), ..., Lr(z, Z) be generators of Jl.
Suppose that zl F were in Ker a, then we could write a relation

where Rand Q1, ..., Qr are homogeneous of degree f and f - 1 in Z

respectively. Replacing Z by z, we obtain a relation

with ord(g) > ~ - 1; a contradiction, since ~ > 3.

(4) Let X be the cone over C defined by the graded algebra , Y ~ /Z,
where I is the ideal generated by the elements zY - z2X and Y2 - z2X 2
and z is the coordinate function of C. Clearly X is reduced, the fibre Xz
is a reduced line for z ~ 0, and the fibre Xo is a double line. Thus the
reduction of each fibre is a linear space, but one fibre is not reduced. This
shows that X is a Grauert-linear space that is not the reduction of a linear

space. For other examples, see Paragraph 4.1. .

4. Tangent cones

4.1 Whitney’s tangent cones

In [23] Whitney defined several actions of tangent cones to an analytic
subset of some In fact, for every analytic subset S of and every
p oint s of S he defined six subcones Ck(S, s ) of en for k = 1, ..., 6. For
k = 4, 5, 6 the cone Ck (,S’, s) is the fibre of a globally defined cone Ck(S)
over S (or rather the reduction of the fibre, since Whitney only defines his
cones as analytic subsets of This is not the case for k = 1, 2, 3, as
Whitney showed in [23].



For k = 3, 4, 5, 6, the Whitney cones can be defined in a natural way for

(not necessarily embedded) complex spaces S, though S must be reduced
in the case k = 4. These natural definitions, which we shall now describe

briefly, yield in general non-reduced cones; to obtain Whitney’s original
definition one has to form the reduction of these cones and their fibres.

It is well known that s) is the normal cone of the reduced one-point
subspace ~s~ of S and thus only lives naturally over the space ~s~.

The globally defined cones Ck(S) for k = 4, 5, 6 have the following
definitions.

. The cone C6(S) is just the global Zariski tangent space Ts := 
where S2s is the sheaf of holomorphic 1-forms on S. This can also be
interpreted as the analytic restriction V(I) x sx s S of the linear space
V(I) on S x S to the diagonal, where I is the ideal of the diagonal of
S x S and S has been naturally identified with the diagonal.

. The cone C5(S) is the so-called tangent star cone of the space S, defined
as the normal cone of S embedded as the diagonal of S x S, i.e.,

where I is the ideal sheaf of the diagonal in S x S (see e.g., [11], [12]).
For a reduced space S this can by Example 3.12(2) in be interpreted as

SxS S, i.e., the analytic restriction of the cone V(I)# on S x S
to the diagonal.

. Finally, the cone C4(S), which according to Whitney is the closure of
the part of the global tangent space lying over the regular points of S,
can now for a reduced base space S easily be interpreted as the cone

If we again consider S embedded as the diagonal of S x S with

ideal Z, then C4(S) = (V(Z) xsxs S);
From Theorem 3.10 we get an algebraic description of C4(S) as

We emphasize that the cone C4(S) is only defined for a reduced base space
S, and it is necessarily a reduced space. However we note that the fibres
C4(S, s) = of C4(S) often carry a natural non-reduced structure.



Thus it is easily seen that for the cubic parabola S := { (z, w) E ~2 :
w2 = z3 } the fibre C4 ~S~ o is a double line. The reduction of the fibre is
a line and in particular a linear space. Thus C4(S) is a natural example
of a Grauert-linear space that is not a linear space. This is more generally
the case for every singular, reduced and locally irreducible complex analytic
curve (see Corollary 4.9). 

°

From Proposition 2.8 and the description above of the cones C4(S) and
C5(S), we immediately obtain the following result (see also Stutz [22]) :

PROPOSITION 4.2. - Let S be a reduced complex space of pure dimension
n. Then

and

for every k ~ 1.

PROPOSITION 4.3.- Let S be a reduced complex analytic curve. If
= then S is regular. In particular, ,S’ is regular if the

symmetric algebra is torsion free.

Proof. - By Proposition 4.2, the cone C4 (S) s is 1-dimensional for every
s in s. If = then C4(S) - hence dimTs,s = 1
for every s. Hence S is regular. D

Remark 4.4. - In [4], Berger conjectured the much stronger result that
a reduced curve with a torsion free differential module is regular. We note
that an analogous result cannot hold in higher dimensions; see e.g. the

proof of the next proposition.

Applying Proposition 3.11 to the Zariski tangent space we obtain the
following result. .

PROPOSITION 4.5. - Let S be a reduced complex space of pure dimension
n and put

in particular is the singular locus of the space S. Consider the
conditions:



Then condition (i) implies condition (ii). If S is a locally complete
intersection, then the conditions (i) and (ii) are equivalent.

Proof. - We j ust have to note that for a locally complete intersection
S the sheaf of differentials S~s is everywhere of projective dimension ~ 1:

Embed S locally as a subspace of some C~ defined by a coherent ideal
sheaf Z. It is well known that we have an exact sequence -

-~ S~s --~ 0 inducing a short exact sequence on the regular
part of S, hence on the whole of S, since the condition that S is locally a

complete intersection implies that the sheaf (~/Z2) ~S‘ is locally free. 0

COROLLARY 4.6.- Let S be a reduced subspace of some (~~ with

singular locus ~ and suppose that S is locally a complete intersection

satisfying the condition codims E > codimCN S. Then C4(S) = 
This is in particular the case if S’ is a hypersurface with singular locus of
codimension > 2.

4.7 Inclusions of tangent cones

In ~23~, Whitney proved the set-theoretic inclusions C3(S, s) C C4 (S, s) C
C5 (S, s) C C6(S, s) for the tangent cones. The last two inclusions also hold
when we give the cones their natural, possibly non-reduced, structures. The

question when the first inclusion holds is more complicated; it is intimately
related to the so-called torsion problem of Reiffen and Vetter.

In [18], Reiffen and Vetter discussed four possible definitions of holomor-
phic 1-forms on a reduced complex space S. In addition to the standard

sheaf of holomorphic 1-forms which they denoted by S2a, they consid-
ered the sheaf SZ9 of holomorphic 1-forms defined by Rossi [19], the sheaf Oh
defined as the dual sheaf of the sheaf of vector fields as defined by Rossi, and

finally the sheaf Qb := where U is the regular part of S and i U - S
is the inclusion. There are canonical mappings and

in the paper the question of the injectivity of the mapping Oh was
raised.

Rossi’s definitions in [19] of the sheaves of holomorphic 1-forms and
holomorphic vector fields on a reduced complex space are like the usual



definitions - holomorphic 1-forms are the linear forms on the tangent space
and vector fields are the sections of the tangent space except that Rossi
is working in the reduced category, and his tangent space is the reduction
of the Zariski tangent space. This has no effect on the definition of vector
fields (since a section of a linear space over a reduced base space factors
uniquely through the reduction of the linear space), but by the results of
Section 1 the sheaf S2g of 1-forms according to Rossi is the sheaf 
where is the submodule of SZs consisting of the elements that are
nilpotent in the symmetric algebra; this also has the description

It also follows that the dual sheaf of the sections of vector fields is the bidual
of The injectivity of the mapping 03A9g ~ Qh is thus equivalent to the
equality = or in other words to the inclusion C 

for every s in S. In this form the question was posed by Scheja in [20],
where he proved the inclusion for quasi-homogeneous singularities. In [14],
Platte gave an example showing that the inclusion does not hold in general
in any dimension.

Now let S be a reduced space and T := Then C3(S, s) is

the subcone of the Zariski tangent space Ts,s = @ C)
defined by the graded algebra ms /ms +1, where ms is the maximal
ideal of Os,s . By the description of C4{,S’) given in Paragraph 4.1, we see
that C3(S, s) is a subspace of C4(S, s), with their possibly non-reduced
structures, if and only if 

.

where S (~2s) S -~ ms /ms +1 is the natural mapping. In particular
the inclusion (~’1) S C is a necessary condition for the inclusion.
Hence the examples of Platte show that the inclusion does not hold in
general.
We finally remark, for use in the proof of the next result, that one of

Rossi’s theorems of his paper [19] can be reformulated in terms of the cone
C4(S). It is the following regularity criterion: If S is a reduced complex
space, s E S, dims S = n and there are n holomorphic vector fields defined
on a neighbourhood of s and linearly independent at s, then the space S



is non-singular at the point s. We note that such vector fields span an n-
dimensional vector bundle that is a subcone of C4(S), and then necessarily
equal to C4(S), over the given neighbourhood of s. Conversely, if C4(S)
is a vector bundle with fibre dimension n in a neighbourhood of s, then
such vector fields clearly exist. The Rossi regularity criterion can thus be
formulated as follows: If S is a reduced complex space, s E S, dims S = n
and C4(S) is a vector bundle of fibre dimension n in a neighbourhood of s,
then S is non-singular at s.

We use this to prove the following proposition.

PROPOSITION 4.8. - Let S be a pure-dimensional reduced complex space
and let s E S. Suppose that the tangent cone C4(S, s) is a vector space of
dimension dims S; in particular C4(S, s) is reduced. Then S is regular at s.

Proof. - Put n := dims S’. As is easily seen, a straight cone over a
reduced point is a vector space if and only if it is non-singular, which again
means that its dimension and embedding dimension at the vertex coincide.
Since the embedding dimension of the fibre is upper semicontinuous [7,
Prop. 3.6, p. 137] and S is pure-dimensional, it follows that C4(S, t) is an

n-dimensional vector space for every t in an open neighbourhood U of s in
S. It follows from Proposition 3.4 that the restriction of C4(S) to U is the
reduction of a linear space L over U. The fibres of L are (reduced) vector
spaces and thus identical to the fibres of C4(S) over U. By a theorem of
Fischer [5], L is a vector bundle. A vector bundle over a reduced space is
reduced, hence L is the restriction of C4(S) to U and so C4(S) is a vector
bundle in a neighbourhood of s. By the theorem of Rossi mentioned above,
S is non-singular at s. 0

As a corollary we get.

COROLLARY 4.9. - Let S be a reduced and locally irreducible complex
analytic curve and let s be a point ofs such that the cone C4(S, s) is reduced.
Then S is regular at s.

Proof. - Since S is irreducible at s, the reduction of C4(S, s) is clearly
a complex line. 0

We finally note the following corollary of Paragraph 3.8.



PROPOSITION 4.10.2014 Let S be a reduced complex analytic space with
isolated singularities. If the tangent space Ts is reduced, then the torsion
ideal of is a direct summand of as a graded Os-module. In

particular the torsion submodule of is a direct summand.

In this connection we recall the conjecture of Scheja ([20, p. 157]; see
also Platte [14]), a weakened version of the Reiffen-Vetter torsion problem:
If the torsion submodule of S~s is a direct summand, then it is the trivial
submodule.

5. Notions of positivity

5.1 Wealey and cohomologically positive graded algebras

Let S be a compact complex analytic space, and let X be a cone over S
defined by the connected graded Os-algebra A. We say that the cone X is
weakly negative and that the algebra A is weakly positive if the vertex of X is
exceptional in X (over the reduced point). We say that A is cohomologically
positive if for every coherent Os-module g there is an integer no such that

Hp(X, An ® ~) = 0 for all n > no and all p > 1.

A coherent OS-module F is, by definition, weakly positive (resp. coho-

mologically positive) if and only if its symmetric algebra is. As an easy

consequence of our results in [2], we obtain the following theorem.

THEOREM 5.2.2014 Let S be a compact complex space and A be a connected
graded algebra of finite presentation. Then A is weakly positive if and only
if it is cohomologically positive.

Proof. - The fact that weak positivity implies cohomological positivity
is a special case of our [2, Theorem 4.4]. Now suppose that A is coho-

mologically positive and let be the ideal sheaf of the point s in S.
By [2, Theorem 3.2] we have to show that for all s, t in S the canonical
homomorphism

is surjective for all large enough n. We have an exact sequence



of graded Os-modules. For every n we obtain an exact sequence

Since ICn is supported on ~s, t} we have H1{S’, = H2{,S, = 0 and

By hypothesis there is an integer no such that the left side of the equation
is zero for all n > no . It follows that --~ 

is surjective for all n > no. 0

Remark. - In the special case that A is the symmetric algebra of a
coherent Os-module ~’ the previous theorem was proved by Ancona [1,
corollaire 2.11] and earlier, in the case of a reduced space S, by Rabinowitz
[17, Theorem 1].

5.3 Primary weakly positive sheaves

Let S be a reduced compact complex analytic space and let 0 be a
coherent Os-module. Following Rabinowitz [17] we say that is primary
weakly positive if the cone v ~~’~ is weakly negative. From Theorems 5.2
and 3.10, we immediately get the following result.

THEOREM 5.4. - Let S be a reduced compact complex analytic space. A
coherent Os-module ~’ is primary weakly positive if and only if for every
coherent Os-module 9 there exists an integer no such that

for all n > no and all p > 1.

Remark. - A slightly different cohomological characterization of pri-
mary weak positivity was obtained by Rabinowitz in [17].

From [2, Theorem 2.14 and Corollary 3.4], we immediately obtain the
following result, which was proved by Rabinowitz in the case of normal
irreducible spaces (see [17, Theorem 2]) :

THEOREM 5.5.2014 A reduced compact complex analytic space is Moi0161ezon

if and only if it carries a primary weakly positiue coherent sheaf.



From Theorem 3.10 and [2, Corollary 3.3], we obtain the following
strengthened version of a theorem of Ancona [1, théorème 5.1]:

. THEOREM 5.6.- Let S be a reduced compact complex analytic space
and ~ be a coherent Os-module. If0 is primary weakly positive, then there
exists an integer no such that Sn ~~~# is weakly positive for all n > no.

Example 5.7. - We construct an example of a torsion free primary
weakly positive sheaf that is not weakly positive, thus answering a question
of Rabinowitz [17].

Let zo, zi , z2, z3 be homogeneous coordinates of the three-dimensional
projective space P3 of lines in (C4 and let S be the union of the projective
planes

Let a be the involutory automorphism of C~ defined by a(vo, v2, u3) :=
(-vo , vi , v2, v3) and let Ei, E2 be the line bundles on H2 respectively
defined by

E1 := ~ (z, v) E H1 x v E z } and E2 := ~ (z, v) E H2 x a(v) E z } . .

Let Lk be the trivial extension of Ek to S for k = 1, 2. Then L1, L2 are
reduced linear subspaces of the trivial bundle S x [:4, and their (reduced)
union X := L1 U L2 is a subcone of S x ~C4 . Hence X = Specan A, where
A = Am is a connected Os-algebra, locally of finite presentation,
and generated by We show that the coherent O s-module Ai is torsion
free and primary weakly positive, but not weakly positive:

Let x : : X --~ S be the projection. Outside the projective line T := ~I1 n
H2 the cone X is a line bundle, and since X is reduced, cl X (X B ~r-1 (T)) =
X, , and thus = 0 by Theorem 2.2. Since T is analytically rare in S
and A is torsion free on S’ B T Lemma 2.4 implies that T(A) = xT {,,4) = 0 .
In particular Ai is torsion free.

The space is a linear subspace of S x C4 containing X as a subcone
and B T = B T . Thus = X . To show that v (.,41 ) is
primary weakly positive we must prove that the vertex of X is exceptional in
X. . But the restriction to X of the projection S x ~4 --~ C4 maps the vertex
S of X to zero and induces a finite holomorphic mapping X B 5’ 2014~ C4 B {0}. .
Hence it induces a finite holomorphic mapping ~ : X U~ P 2014~ where P



is the reduced point and X Us P is the push-out in the category of ringed
spaces; in fact 9 has at most two points in each fibre. By [13, Korollar 1.3]
the vertex of X is exceptional in X.

In order to show that ~ti is not weakly positive we note that is a

linear subspace of T x C4 containing the restriction of X to T, and for all

points z in T except the points (1 : 0 : 0 : 0) and (0 : 1 : 0 : 0) we have

Thus the restriction of V(A1) to T contains the trivial bundle T x C2 as a
linear subspace; hence it cannot be weakly negative, and a fortiori 
is not weakly negative.

Remark 5.8. - One can ask whether such an example may be found over
a locally irreducible base space or even a manifold.
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