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The classification of curvilinear angles
in the complex plane and

the groups of ± holomorphic diffeomorphisms(*)

ISAO NAKAI(1)

Annales de la Faculte des Sciences de Toulouse Vol. VII, nO 2, 1998

La classification des configurations des germes des courbes
lisses et analytiques reelles dans le plan complexe est connue comme
problème local de geometric conforme de Poincaré ([5], [6], [10], [11]).
Ce problème a ete classiquement etudie en terme de groupe des germes
de difféomorphismes ± holomorphes du plan complexe engendre par les
reflexions antiholomorphes de Schwarz par rapport aux composants lisses. .
Dans cette note, nous etudions la structure du groupe en utilisant la
méthode du cylindre sectoriel de Ecalle-Voronin, et nous déterminons
1’espace de modules des couples de courbes lisses et tangentes ainsi que
des fronces.

ABSTRACT. - The classification of configurations of germs of real
analytic smooth curves in the complex plane is known as Poincare’s local
problem of conformal geometry ([5], [6], [10], [11]). This was classically
studied in terms of the group of germs of ± holomorphic diffeomorphisms
of the complex plane generated by anti-holomorphic Schwarz reflections
with respect to smooth components. In this note we investigate the
structure of the group using the method of Ecalle-Voronin cylinder and
determine the moduli space of the pairs of tangent smooth curves and
also cusps.
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1. Introduction

Let C = (Ci ), D = (Di ) be m-tuples of germs Ci, Di of real analytic
curves in the complex plane C at 0. Let : C, 0 -; C, 0 be germs
of holomorphic maps such that = Ci, = Di . We say C, D
are equivalent (respectively formally equivalent) and denote h(C) = D if
there exist holomorphic germs of (resp. formal) diffeomorphisms h, ki of
the complex plane such that h(0) = =. 0 and h o si = ti o ki for
i = 1, ..., m. The equivalence class is independent of the choice of the
parametrizations ti . The classification problem was historically studied,
and known as Poincaré’s local problem in conformal geometry [11].
We consider the case m = 2. So we denote Ci = K, C2 = L and call

C = (K, L) a curvilinear angle. Let ~~ denote Schwarz reflections

respecting K, L. These reflections generate a solvable group Gc, of

which the orientation preserving subgroup is generated by the composite
f = (fL o Let D = (K~, L~) be a curvilinear angle. By definition C, D
are equivalent (respectively formally equivalent) if and only if there exists
a holomorphic (resp. formal) diffeomorphism h, h(0) = 0 of the complex
plane such that h o r~ o h{-1} = and h o ~~l o h{-1 = where 

denotes the inverse of h. So the classification problem under the equivalence
relation reduces to finding the generator of Gc . The involutions

o~L satisfy the relation

Conservely a solution 03C3 = 03C3K defines the other involution dL by (fL =
f o Therefore the classification problem is equivalent to solving (1.1).

If K, L are transverse, then f has the linear term being twice the
angle of tangents to K and L at 0. The structure of those pairs seems to be
closely related to the linearization problem of f when 8 is irrational, which is
now well understood by the theory of complex dynamical systems (see [9]).
On the other hand if 03B8 is rational, the classification may be reduced to the
case 8 = 0 as the images under an iteration of f by a certain number
of times have the same tangent lines as K, L. In this case the problem is
related to the classification of solvable groups of germs of ±-holomorphic
diffeomorphisms (Theorem 8.2).



If K, L have contact of order k +1 at 0 (C is a curvilinear angle of order

k~-1), then f is k-flat i.e, f is the form +~ ~ . Kasner and Pfeiffer

([5], [6], [10], [11]) studied those curvilinear angles by the classification of the
composite f and found unique formal invariant, which is the residue of f. .
It is seen in the proof of Theorem 2 that sole formal invariant of curvilinear

angles of order 2 is the residue (normalized residue) of the composite f ,
while the formal equivalence of curvilinear angles with equal residue does
not converge in general as a rule in the theory of the functional cochain

[4]. One can now complete the classification problem with the method of
Ecalle-Voronin cylinder ([4], [12]).

From now on we assume K, L are tangent. Since K = fix(QK), we
obtain = fix(03C3L o 03C3K o from which = 03C3L ° 03C3K ° 03C3L hence

o ~L = ~L o ~K = f. . This tells that in terms of anti-holomorphic
involutions one can not distinguish the pairs (K, L) and L). Now
consider formal equivalence of those pairs. Clearly ~K o f~-1~ o ~’K = f
and by Proposition 2.6, r~ o fW~2~ o oK = fO~2~ hence a~L = f o ~K =
f(1/2) o 03C3K o f(-1/2) where f(1/2) is the 1/2-times iteration of f tangent
to identity. By this relation

Therefore C = (7~, L) and (L, are equivalent by the formal diffeo-

morphism f n/2):

DEFINITION. - The associativity relation of curvilinear angles is gener-
ated by the holomorphic equivalence and the following formal equivalence
relation:

where h = is a formal complex t-times iteration of f (defined in Sect. ,~~
such that h o h = f {2t~ is convergent.



Before stating our main result, we seek a geometric interpretation of
associativity. By definition a curvilinear angle associative to {.h’, L) can
be formally presented as f ~t) (I~, L) with a t E C. If is convergent,
f ~t) (K, L) is equivalent to (K, L). This is the case if f is a time one map
of a holomorphic flow vanishing at 0 E C by Theorem 2.7. The other case
is that f ~t) is convergent if and only if t E 1/n Then is convergent
if and only if t = m/2n E 1/2n ?L and then f {t) (I~’, L) = f(m/2n) (~~ L) is
equivalent to {h’, L) if m is even and , f (1/2n) {~, L) otherwise. Therefore we
obtain the following result.

PROPOSITION 1. Given an associative class of tangent curvilinear

angle (K, L), there exist at most two equivalence classes, i. e, (K, L) and
f~l/2r~) {~’, L), f, n being as above.

Similarly f t1 /~) {I~, L) is equivalent to (K,L) if n is even and

f tl/2’~)(I~, L) otherwise. By Proposition 2.5 (K, L) and f {1/z){I1’, L) =
(L, are equivalent if and only if unique formal conjugacy f ~1/2) and
hence f {1/2n) are convergent.
Now assume (K, L) and (L, are not equivalent. Then by Propo-

sition 1, (K, L), (~’’, L’) are associative if and only if (~’’, L’) is equivalent
to either {I1’, L) or (L, .

THEOREM 2. - Let C = (K, L), D = (K’, L’) be curvilinear angles of
order k + 1. . If k is odd, then ~’, D are associative if and only if ~L o ~h-,

o are holomorphically equivalent. If k is even, then there exist at
most two associative classes for a holomorphic equivalence class of 03C3L o 03C3K.

The purpose of this note is to prove the following theorems.

THEOREM 3. The associative classes of curvilinear angles of order
~ are in one-to-one correspondence with the linear equivalence classes of
triples (A, B, m) of germs of real analytic smooth curves A at 0, B at oo in
P1 and a pure imaginary m with the condition

Here angle To A = argw, w E T0A and angleTooB = limz~~ argw,
w E T’zB and the linear equivalence relation ~ of triples is defined as follows:



and there is a complex c ~ 0 such that A’ = cA, B’ = cB. Assume (K, L)
corresponds to (A, B, m). Then the transposition (L, K) corresponds to

-rn), , where s(z) = 1/z and o~ is the complex conjugation.
And (K, L) is equivalent to (L, K) if and only if m = 0 and B = s o a(A),
i. e, B is the reflection of A with respect to the unit circle = 1 ~ C C.

This theorem is roughly explained as follows. Assume K , L have contact
of order 2. Let P~, P+ denote Ecalle-Voronin cylinders of the composite
f = (fL o o~~ (see Sect. 4 for the definition). Denote I~~ = f {~n~ (K),
L% = f {~’~~ (L) with a sufficiently large n. Schwarz reflections of K~’~
(L~’~), carry to to The components of K~ - 0,
L% - 0 project to smooth arcs in at 0, oo. Denote the closure of
the union of those arcs at 0, oo in by j4~, B~ respectively. Schwarz
reflections induce germs of anti-holomorphic involutions o~~ of at

0, oo, which respect A~, B~. . Therefore A~, B~ are smooth real analytic
curves. Schwarz reflections induce also an anti-holomorphic isomorphism
ofP+ and JID-, which carries A-, B- to A+, B+ respectively. Define the

pair (A, B) by (A- , B’- ). It is not difficult to see that the pair (A, B) is
determined by the associative class of (K, L) up to linear equivalence. The
number m is given by the residue of the composite of Schwarz reflections
of K, L. In Section 3, we reconstruct I~, L from the data (A, B, m) using
Ecalle-Voronin method.

A (2, 3)-cusp is an image of a real analytic map x + ~ y 0 -~ C, 0,
where x(t) = t2 + ..., = t3 + ... are real analytic functions.

THEOREM 4.2014 The equivalence classes of germs of real analytic (2, 3)-
cusps are one-to-one correspondence with the equivalence classes of real
analytic smooth curves at 0 E 1~ under linear rotation.

The formal normal form Cm of curvilinear angles of order 2 and C~ of
(2,3)-cusps are defined as follows. Let x = (z2/(1-~- . Define
the anti-holomorphic involution (fz of C at 0 by

where t denotes the complex conjugate of t. Let Ka denote the fixed point
set of the involution

Define the normal form Cm by (~1’_1/4, ~1/4). (For the detailed argument,
see Sect. 7).



If m = 0, then Co is symmetrie : K_1~4 = -K1/4~ Define the normal

form C~ by the image of Co under the map z -~ z2. Let C be a curvilinear
angle of order 2 and Res(/) = m. Then C is formally equivalent to the
normal form Cm as f is formally determined by its residue. For a (2, 3)-
cusp C, its preimage by the map z --> z2 is a union of smooth curves K,
- K with contact of order 2 at 0. For such a symmetric curvilinear angle
(K, -K), the normalized residue vanishes, hence the (2, 3)-cusp C as well as
(K, -K) is formally unique. But the formal equivalences are not convergent
in general.

THEOREM 5

(1 ) A curvilinear angle of order 2 is equivalent to the normal form Cm
if and only if it corresponds to a triple (A, B, m) of real lines A, B
and m with condition (,~.1~.

(2) A (2,3)-cusp is equivalent to the normal form if and only if it

corresponds to a real line.

2. Formal normal form and Normalized Residue

Germs of holomorphic diffeomorphims f, g, of C which fix 0 are holo-
morphically (resp. formally) equivalent if there exists a germ of holo-

morphic (resp. formal) diffeomorphism 03C6 of C at 0 such that 03C6(0) and
~ o f - g o ~. A k-flat (parabolic) diffeomorphism I(z) = + ~ ~ ~,

ak+1 ~ ~ is equivalent to z + zk+1 + bz2k+l + ~ ~ ~ and formaly equivalent
to z + + bz2k+1. . The number -b E C is the unique formal invariant,
which is the residue of f and denoted by res(f). Define the normalized
residue by .

Clearly res( f ) and Res( f ) are invariant under formal equivalence. For the
complex conjugation V, a direct calculation tells

By this and the invariance of the normalized residue under holomorphic
equivalence, we obtain the following result.



PROPOSITION 2.1.- For anti-holomorphic diffeomorphisms g

A holomorphic vector field x’ is holomorphically equivalent to the fol-
lowing normal form 

, . -

The m is the residue of ~~ and denoted res(x’). Clearly we obtain the

following lemma.

LEMMA 2.2 ~8~. Res(exp x) = res(x) = m and res(dx) = res(x)/d for
complex d.

The formal equivalence class of a germ of diffeomorphism f tangent
to identity is determined by the residue res( f ) = -b. So there is a

formal diffeomorphism 03C6 of C, 0 such that f = 03C6(-1) o exp x o 03C6 with

res(x) = Res( f ). The complex iteration f {t~, t E C, is defined by the formal
power series = ~~-1~ o exp tx o ~. Clearly commutes with f .

From Lemma 2.2, we obtain the following proposition.

PROPOSITION 2.3. For complex t, = Res{ f )/t.

The following theorem is well known (cf. [4]).

PROPOSITION 2.4. Assume f, , g ~ id be tangent to identity and
commuting. Then g = with unique complex t.

By Proposition 2.4 given an id tangent to identity the commutativity
relation f o g = go f admits a unique formal flat solution g with any k 
order term. So we obtain the following results.

PROPOSITION 2.5. - Let K, L have contact of order k + 1. Then the

relation g(K, L) = (K, L) admits a unique k-flat formal diffeomorphism g
with a given k + 1-st order term.

PROPOSITION 2.6. - Let g be a germ holomorphic diffeomorphism.
Assume f is flat and g{-1~ o f o g = f {-1) . Then g{-1~ o o g = f {-t)
holds for all t E C.



Proof. - The coefficients of Taylor expansions of f ~t~ = exp tx in z are
polynomials of t. Clearly the assumption implies the equality for integers t.
Therefore the coefficients of both sides of g~-1~ o f ~t~ o g - are equal
for all t.

The following theorem is due to Ecalle (cf. [3] and [4]). .

THEOREM 2.7.- Let f be a germ of flat diffeomorphism of ~ at 0. Let
A C C be the subgroup of those t E ~ for which is convergent. Assume
A is not isomorphic to 7G. . Then f is holomorphically equivalent to an exp x
and A = C, where x is a holomorphic vector field of the normal form.

3. Proof of Theorem 2

It is easy to see by definition that the equivalence class of the composite
f = r~ o r~ is determined by the associative class of C. So we discuss the
converse. Namely given a composite f we discuss to find 03C3K and 

Consider the equations so that f is involutive

Clearly (1.1) admits the solution 03C3 = 03C3K. So let be another solution.

Then == ~ o h being a holomorphic diffeomorphism commuting
with f .

First assume that has the same linear term as in other words,
l~~ is tangent to K. Then h is tangent to identity and = h o (fK =

o o h~-1~2) by Proposition 2.5, where h~1~2~ is the half-iteration of
h defined in the previous section. Define the involution by f o and

let L’ be their fixed point sets. Then the pair D = (k’~, L~) is associative
with C by the formal diffeormorphism h{1~2~. This argument tells that all
curvilinear angles (k’~, L~) with o = f and equal tangent line at 0
are associative.

Secondly assume f {z) = z + + ... and = bz + ..., bb + 1,
= id and K’, K are transverse. The k + 1-order term of the equation

(1.1) implies that a + ab = 0, so there exist at most k (if k is odd and k /2
otherwise) different tangent lines of the fixed point sets of the solutions. By
conjugating as the solutions of ( 1.1 ) generate other solutions.
And the fixed point set of o ~K o is Therefore the set



of tangents to the fixed point sets of the solutions is invariant under a linear
rotation R of order 2n, r~ being a divisor of k. Assume that the angle of
K’, K at 0 is (generator of R). . Then h = o ~x has the linear term

being the n-th root of unity. Clearly Lz) = is

equivalent to C, o = f and the tangent to (K2 , Lz ) is that of (K, L)
rotated by If n is odd, the linear term and -z generate the linear
rotation group generated by R. Therefore a curvilinear angle (K’, L’)
defined by o = f has the same tangent line as for an i, and

(K’, L’) is associative with (h’2, L2) by the previous argument.
If n is even, the curvilinear angles split into two associative classes which

are determined by the difference of the angle of the tangent lines at 0 divided
by x/n modulo 2.

This completes the proof of Theorem 2.

4. Functional cochain and moduli of diffeomorphisn.. ; .
tangent to identity: Ecalle-Voronin theory

We recall some results from the papers [1], [4] and [8]. The whole results
are translated to classify the diffeomorphisms f = (7~ o (fK in the next
section. In this section we assume that f is of the form

On the k-sheet covering Cjc of the punctured z-plane (C ~ 0, z = z"k f lifts
to a germ of diffeomorphism F defined at infinity

where res( f) = -ek2/4~r2 and a’ = -4~r2 Res(f)/k.
Let Si be the lifts of the attracting and repelling petals of f on the

i-th sheet of the covering Ck. . We call , 5’J’ petals of F. Voronin ([4],
[12]) proved that the quotient space P+i (respectively Pi) of the petal +i
(resp. Si ) by F (resp. F~-1~) is conformally isomorphic to the punctured
2-sphere 0 U oo, which is called the cylinder. We say a fundamental
domain Dr in the petal S’~ is rectangular if the boundary projects to a
real line in joining 0 to oo. Here 0 (resp. oo) corresponds to the left



(resp. right) end of the fundamental domain D~ . The isomorphism from
~0, oo~ to the quotient space _ ~ lifts to the isomorphism ~bi of

the band

to a rectangular fundamental domain in the petal S’Z which extends to the
isomorphism of the upper (if E = +, and lower if 6: = - respectively)
half plane into the petal of F by the relation ~2 + ~Z (F). The
extension of ~2 normalizes F(e) on the petal to the translation by 

si called Fatou-Leau coordinate [l~. Fatou-Leau coordinate

is unique modulo constant. The k-tuple (~~~-1~) is called the functional
cochain in [4].
An iteration of F of a large number of times carries both ends to the

fundamental domain Di correspon ling to 0, oo into the attracting petals
~~ respectively, and it inc .ces germs of diffeomorphisms of the

quotient spaces

n being sufficiently large. The 2k-tuple is called the iterative

coboundary [4]. By definition

This number depends on the choice of the rectangular domains and Fatou-
Leau coordinates, while we obtain the following proposition.

PROPOSITION 4.1 (cf. [4, p. 20 (2.10)])

where is defined as above by using the coordinate z E ~ centered
at 0.



This relation is seen also by (7.1) in Section 7. The pair ~~, Res( f)) of
the iterative coboundary § = (~i ~) and the residue characterizes f in the
following manner.

DEFINITION. - (~, m~ ~ (~’, m’) if m = rn~ and there exist an integer
r and constants ct ~ 0, i = 1, ... , k, e = ~ such that =

and = for i = 1, ..., k. 

The equivalence class of ~~, Res( f)) is independent of the choice of Fatou-
Leau coordinates. The following was proved by many authors (e.g. (4~, [7]
and [12]). Here the theorem is stated involving the normalized residue to
complete the relation of the pairs (~, m) to formal equivalence classes. The
residue plays a central role to classify the composites f = 03C3Lo03C3K of Schwarz
reflections in the next section.

THEOREM 4.2.- (moduli space of diffeomorphisms tangent to identity:
Ecalle, Kimura, Malgrange, Voronin, etc.) There exists a one-to-one

correspondence between the following sets.

(l~ The set of holomorphic equivalence classes of germs of k-flat dif-
feomorphisms f of ~, 0, which are holomorphically equivalent to

° 

z + + 

(~~ The set of equivalence classes of pairs (~, m) under the equivalence
relation ~, which satisfy the relation (4.1~.

Sketch of the proof.- We begin explaining the synthesizing method of
a germ of diffeomorphism tangent to identity with a prescribed data (03C6, m)
due to Voronin [12] (see also [4]). Let Hi (H±) be the upper (lower) half
plane of C for i = 1, ..., k and let be the lower half plane with two
handles

and let

be representatives of defined on some neighbourhoods of j = 0,
oo E Let r > 0 be sufficiently large so that



is respectively defined on the half space {r  ~z} for j = oo and ~~z  -r~
for j = 0. Choose the branch of so that it sends the real line in
the domain of definition into the lower half plane, and glue the left (resp.
right) handle of the half plane Hg with the upper half plane (resp.
Hi) identifying ?with the image (resp. E 

Denote by E+ the gasket surface obtaind by glueing these half planes
with handles. Construct the gasket surface E- similarly by choosing the
branch ~2~~ - By construction E" is naturally regarded as a
subset of E+ and if r is sufficiently large these gasket surfaces E+ , E- are
quasiconformally homeomorphic hence isomorphic to the punctured unit
disc D B 0 c C ([4], [8], [12]). Since the maps commute with the
translation by the translation on the half planes induces the shift
map F : : E- -+ E+. . Regarding as E- C E+ = D B 0, the shift map
F extends to a germ of holomorphic diffeomorphism f of C at 0 tangent
to identity. By construction the extension has the iterative coboundary ~.
The normalized residue Res( f ) for the shift map is determined modulo an
integer: it depends on the choice of the branch of Define the shift map
F’ replacing with + Then the resulting germ
of diffeomorphism /~ has the normalized residue Res( f ) + n. It is easy to

see that the above method reconstructs a germ of k-flat diffeomorphism f
from the functional moduli (~, m) of f. . 

5. Moduli of composites of anti-holomorphic involutions
and the proof of Theorem 3

Consider the equation (1.1). The purpose of this section is to classify the
solutions of (1.1).

Assume f, (f satisfy (1.1). By Proposition 2.1,

hence Res( f ) is pure imaginary. Now let f be I-flat (~ = 1). We use all
notations in the previous section without reference to the index i. Let F,
~ be the lifts of f, , d to the punctured z-plane, z = The relation (1.1)
implies

The lift ? induces an anti-holomorphic isomorphism of the cylinders P+,
P-, which respects 0, oo. We may assume ~(D- ) - 1?+ and by suitable



coordinates on the cylinders the induced isomorphism is the complex
conjugation V. Then (5.1) implies

Let f’ be a I-flat germ of diffeomorphism of C,0, which admits an
anti-holomorphic involution r~ which satisfies (1.1). Assume f, , /~ ~ are

holomorphically equivalent. By Theorem 4.2, there exist c+, c- ~ 0 such
that

Let F’, o~~ be the lifts of f ~, ~~ to C and let D~~ be the rectangular
fundamental domains in the petals S~~ of F’ such that a~(D~-) = D~+.
The holomorphic equivalence of f to f’ sends the rectangular fundamental
domains D~ to D~~ respectively. By the symmetry of the fundamental
domains, c- is the complex conjugate of c+ = c.

Define the equivalence relation . of pairs of an iterative coboundary
~ == with (5.2) and a pure imaginary m as follows.

DEFINITION. - {~, rra) ~ {~~, m’) if m = m’ and there exists a c ~ 0
such that = and = ~~(cz).

The above argument shows that the equivalence of (~, m) for f with (1.1)
is determined by the equivalence of f.

Conversely let (~o, be an iterative coboundary with the above
relation (5.2) in some coordinates of the cylinders, m a pure imaginary
number with the relation (4.1), and let E~ be the gasket surface constructed
in the previous section by gluing the petals with handles. Define the anti-
holomorphic isomorphism 8 of D- to D+ (and D+ to D- ) by the composite
~~ o T of the transposition T of rectangle fundamental domains D-, , D+
and the anti-holomorphic involution ~~ of D+ (and D+ ) transposing the
boundaries and respecting the ends corresponding to 0, oo, which induces
the complex conjugation ~ in (5.2). The relation (5.2) enables us to extend
8 by the relation

to an anti-holomorphic diffeomorphism of the surface E~ on a neighbour-
hood of infinity. Then the diffeomorphisms F and ? : E- ~ E+ satisfy the
relation (5.1), from which the relation (1.1) follows.

Therefore we proved the following result.



THEOREM 5.1.2014 There is a one-to-one correspondence between the

following sets.

(1) The set of holomorphic equivalence classes of germ of diffeo-
morphisms, which admit anti-holomorphic involutions 03C3 such that

~ o f o ~ = f (-1) .
(2) The set of equivalence classes of the pairs (~, m) of an iterative

cochain ~ = (~~o, under the equivalence relation ~ and a pure
imaginary m, which satisfies (5.,~~ and (,~.1~.

Proof of Theorem 3

Let C = (K, L) be a curvilinear angle of order 2, f = r~ o ~~ the
composite of the anti-holomorphic involutions of .K, L and let (~o, be
the iterative cochain of f. By (5.2), 03C60 o 03C3 and 03C6~ o y are involutive. Let
A, B be the fixed point sets of these anti-holomorphic involutions, in other
words, ~~ = o~A o ~, = dB o a~. The triple (A, B, m) corresponds to the
C.

To prove that the equivalence class of the triple is well defined by
the equivalence class of C, let C~ - (K’, L’) be a curvilinear angle of
order 2, /~ ~ = (fL o ~~. and assume C, C’ are equivalent. Then f ,
/~ ~ are holomorphically equivalent and by Theorem 5.1 (~o, Res( f )) ,
(~o , ~ ~ , Res ( f ~ ) ) are equivalent :

Let ~o = and ~~ _ o y. Then

from which A’ = cA and B’ = cB. The relation (4.1) in Proposition 4.1
implies

2(angle ToA - angle Too B) = Res(f), , mod2?r. (5.3)

This argument shows also how to reconstruct a curvilinear angle from a
given triple (A, B, m). . Therefore the correspondence is one-to-one.

This completes the proof of Theorem 3.



6. Proof of Theorem 4

Let C C C be a cusp of type (p, q), p  q; C is the image of a real analytic
map x + -1 y : R, 0 ~ C, 0, x(t) = tP + ..., y(t) = tq + ..., t ~ R being
real analytic. The lift C C C of the cusp via the map z is the union

of real analytic smooth curves, which is invariant under the linear rotation
of order p. Let K denote one of those components.

Now assume p = 2. Then the lift is a union of K and -K, which
have contact of order q - 1. Clearly = -~~{-z). The orientation
preserving subgroup of Gc is generated by f = 

By Theorem 2, the associative class of (K, -K) is determined by the

holomorphic equivalence class of f if q is odd. In this section, we discuss
to classify (K, -K) by Z2-equivariant diffeomorphism with the involution
z - -z for the case q = 3.

Let K~, -K’ be the preimages of another cusp C’ of type (2, 3) and let
f’ = o . By definition f f’ are holomorphically equivalent if there
exists a germ of holomorphic diffeomorphism h of C at 0 such that h(0) = 0
and f’oh=ho f.

THEOREM 6.1.2014 Let C, C’ be (2, 3)-cusps. Then the following condi-
tions are equivalent.

(1) C, C’ are diffeomorphic.

(2) f, , f’ are holomorphically equivalent.

(3) f, , f’ are holomorphically equivalent by a 22-symmetric diffeomor-
phism h such that -h(-z) = h{-1~{z).

Proof of the implication (~~~(~~. Let (~a, be the

iterative coboundaries characterizing f = = 

The equivalence h induces isomorphisms h - , h+ of the cylinders P- , P+
such that



The linear involution -z induces the map 1/z : I~- -> P+. The relations

imply

and Res(/) = Res( f’) = 0. Since this iterative coboundary is symmetric
with respect to z --> -z, the isomorphisms h-, h+ extend to a Z2-symmetric
diffeomorphism of the gasket surface E~ to E’~ on a neighbourhood of oo,
which gives a 2 2-symmetric equivalence of f to f’ by the argument in the
proof of Theorem 5.1. .

Proof of the implication (~)~(1~. - It sufhces to prove the uniqueness
of the anti-holomorphic involution such that (fK o , f o o-~ = f (w) and

o f . So let be another solution of the equations. Let

g = o . Then g, f commute and by Theorem 2.7, g = f {a~ with an
a E C. By Proposition 2.5

Therefore a = 0 and = . The other implications are trivial by
definition.

Proof of Theorem 4

By Theorem 6.1, an equivalence class of (2, 3)-cusp corresponds to a
22-symmetric equivalence class of I-flat diffeomorphism f =

f {-1~ {z). By Proposition 2.3, Res{,f ) - - Res{ f ) hence Res{ f ) = 0.

By Theorem 5.1 and the above argument, such an f corresponds to an
equivalence class of a Z2-symmetric iterative coboundary {~o, with

1~(z) _ .

DEFINITION. - Z2-symmetric coboundaries (03C60, 03C6~), (03C6’0, 03C6’~) are

equivalent if ~, ~~ are linearly equivalent : there is a c ~ 0 such that cc = 1
and



Recall the relation (5.2). By Theorem 5.1 and Theorem

6.1(3), an equivalence class of cusp corresponds to an equivalence class of ~o
in the above relation. Define the anti-holomorphic involution (f A = (~o o V
and similarly = ~p o Q. Then (6.1) implies A’ = cA, where ~c~ = 1.

Conversely given an A, define ~p and ~~ 1~ = ~o(1/x)-1,
and define a diffeomorphism f by the data (~p, 0). By Theorem 3,
there exists a curvilinear angle C = (K, L) of order 2 with the data. By
construction, C is Z2-symmetric: C = (K, -K) and the Z2-symmetric
equivalence class is independent of the linear rotation of A. This completes
the proof of Theorem 4.

Theorem 4 can be stated in a more detailed form as follows.

THEOREM 4bis.- There is a one-to-one correspondence between the

following sets.

~1~ The set of equivalence classes of (2, 3)-cusps.

(2) The set of holomorphic equivalence classes of composites of anti-holo-
morphic involutions f = o ~K.

(3) The set of equivalence classes of germs of diffeomorphisms 03C6 of C, 0
such that ~01~ by the equivalence relation as in (6.IJ,
where 03C3 denotes the complex conjugation.

7. Proof of Theorem 5

Proof of Theorem 5(1).- Let m be pure imaginary and C"L -

(K-1/4, h’1/4) the normal form after Theorem 5 in the introduction. Let

and X the lift of x to the z-line, z = Define = z - m-1 log z,
~r", = It is easy to see that = = ~. Consider

the analytic continuation of the complex flow exp t~(wo) along a big anti-
clockwise cycle 0 C C starting at t = 0 such that the trajectory turns

anti-clockwisely around the origin and returns to Since is infinitely



many valued, the trajectory on the z-plane as well as z-plane is not closed if
m ~ 0. The gap is caused by the residue m and presented by the functional
equation

(see also [8]). Here we may assume the complex conjugate at the cycle 0 is
its inverse 0 = -0. Define the germ of anti-holomorphic involution of
the z-plane at 0 by .

where t is the complex conjugate of t. By the relation (7.1) and since m is
pure imaginary, is well defined and clearly involutive. Define to

be the fixed point set of the involution not difficult

to see the composite f for Cm is time ~T map of x, and by Lemma 2.2
Res(f) = m.
Now regard T = -H t as Fatou-Leau coordinate of f. . By definition,

the branches of K~1/4 - 0 are real trajectories og the holomorphic flow
x. The litts of the branches to Fatou-Leau coordinate are all real lines
with constant real part. Therefore, A, B are real linear and an iterative
coboundary (~o, is linear, hence the involutions ~o o ~ and
aB = o y are complex linear. If a curvilinear angle C is equivalent
to the normal form Cm, then the corresponding smooth curves A, B are
equivalent by a complex linear map to those of the normal form. Conversely
if A, Bare real linear, then are complex linear and the dynamics
constructed in Section 5 is equivalent to the time map of the normal

form x with an m, m being the residue of f. .

Proof of Theorem 5(2). - If m = 0, the union of the curves I-1/4, I1/4
as well as the mapping Çm admit the Z2-symmetry by -z. The symmetry
implies A = B. Conversely if A = Band m = 0, it corresponds to the
normal form Co. .

8. Solvable groups of germs of ± holomorphic diffeomorphisms

In general the classification of (p, q)-cusps reduces to that of the groups
Gc , which are solvable groups of length 2 for curvilinear angles and (2, 3)-
cusps. We investigate the classification of solvable groups G of germs of ±
holomorphic diffeomorphisms of C, 0. The linear terms of the members of



a G form a subgroup of the semidirect product C* x 7G2 consisting of the
linear maps cz and cz, c E ~"‘ . Let G+, GO c G denote respectively
the orientation preserving subgroup and the flat subgroup consisting of

parabolic diffeomorphisms. The group G is an extension of the linear term

group L = C C* by GO.

PROPOSITION 8.1.- The following conditions are equivalent.

(I) G+ is solvable.

(2) GO is commutative.

(3) G+ is metabelian, that is, the commutator subgroup [G+, G+] is

commutative.

(.~) G is solvable.

(5) The second commutator subgroup G2 of G is commutative.

If G is solvable, all diffeomorphisms f in GO different from the dentity
have the same order of flatness k and the projections L, A 
GO respectively to the linear and the (k + 1)-st order terms are injective
homomorphisms into C* x 7G2, ~.

Proof. - The equivalence of (1), (2) and (3) is proved in [4] and ~8~. The
part (5)~(4)~(1) is clear. We prove the implication (1)~(5). The second
commutator subgroup G2 of G is a subgroup of GO. Assume that G+ is
solvable. Then G~ is commutative by (2), hence G2 is commutative. The
second statement is proved in (8~.

We say two groups G, G’ consisting of germs holomorphic diffeo-
morphisms of C at 0 are holomorphically (resp. formally) equivalent if there
exist a group isomorphism 03C6 : G ~ G’ and a germ of holomorphic (resp.
formal) diffeomorphism h of C, h(0) = 0 such that hog - for g E G.

THEOREM 8.2 (solvable groups). - Assume G is a solvable group con-
sisting of germs holomorphic diffeomorphism of ~, 0.

(1) G is formally equivalent to a subgroup of the semidirect product
(C* x 7L2) x ~. Here the multiplication in (C* x 7G2~ x ~ is defined by



The action of (a, e, b) E G on ~ is formally equivalent to

where x is a holomorphic vector field and is the complex conjuga-
tion.

(2) If G+ is non commutative, then res(x) = 0, x = zk+1 

(3) If GO ~ 7~, then the action of G is holomorphically equivalent to the
action of a subgroup of x 7G2) x ~ in (Il.

Proof of (I). - The flat subgroup GO is commutative by Proposition
8.1, and G is an extension of the linear term group L = by By
Proposition 2.4 there exists a formal diffeomorphism § and a holomorphic
vector field of the normal form ; such that GO consists of convergent
diffeomorphism = ~01~ o e ptx o ~(z) with some t E C. Since the
statement in (1) is formal, we may ssume f = exp x, fez) = z + + ...

and GO consists of the diffeomorpl sms with t in a subgroup A c C.
Since g~-1~ E GO and 

’

for (-1)~-holomorphic diffeomorphisms g E G, g(z) = + ..., the

adjoint action p of L on GO is presented as

for g E G/G~. Let g, g’ be orientation preserving diffeomorphisms with
equal linear term, which satisfy the relation (8.1). Then f ) = ~(g~, f )
and g(-I) o g’ commutes with f, , and by Proposition 2.4 gt-1~ o g’ = I(s)
hence g’ = for an s. Clearly all g’ of this form satisfy (8.1). It is

easy to see the linear maps g’ = az satisfy (8.1). Therefore all orientation
preserving formal solutions of (8.1) are of the form a E ~* , s E (C.
Similarly all orientation reversing formal solutions of (8.1) are of the form

The correspondence of (= + + ...) to
(a, ~, as) gives the isomorphism of the group of those diffeomorphisms

E G into the semidirect product (C* x 22) x C. The straight-
forword calculation



tells the multiplication * on (C* x 7L2) x C is defined by

The remaining part of (1) follows from (2). .

Proof of (2). - If G+ is non commutative, the action ~c is not trivial:

c = 1 for a g E G+. By the invariance of the normalized residue
under holomorphic coordinate transformations, the relation (8.1) implies

= By the multiplicative formula in Proposition 2.3,
= Therefore = 0 hence x = zz+1 

Proof of (3). - In this case the flat subgroup G~ is holomorphically
embedded into a 1-parameter group exp tx by Theorem 2.7. Therefore the
above formal equivalence of G~ to a subgroup to exp tx is convergent. D

9. A remark on formal equivalence
’ 

The classification theorem Theorem 8.2 tells that the groups GC gener-
’ 

ated by curvilinear angles of order 2 are formally determined by the nor-
malised residue Res( f ) of the composites f = and for the symmetric
curvilinear angles ( h’, - ~1’ ) the residue vanishes hence all such groups are
formally equivalent. This tells that the formal equivalence class of curvilin-
ear angles of order 2 is determined by their residue and the formal equiva-
lence class of (2, 3)-cusps is unique. In these cases, the formal classification
of the group Gc is quite different from the classification by holomorphic
equivalence by the presence of the exceptional group of anti-holomorphic
diffeomorphisms, which is an extension of the exceptional group by an anti-
holomorphic involution.

Here a subgroup of the group of germs of holomorphic diffeomorphisms is
exceptional if it is formally equivalent to the solvable subgroup GW,p, 
w E ~ which is isomorphic to the semidirect product S x Zp and generated
by

Cerveau and Moussu [2] proved the follawing theorem.
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THEOREM 9.1. - ~et G, G’ be non-commutative groups consisting of
germs of diffeomorphism of ~ at 0 which fix 0 E ~. Assume that G, G’
are non-exceptional and formally equivalent. Then the formal equivalence
is convergent to a germ of diffeomorphism linking G and G~.

This theorem suggests that the configurations of smooth curves and
cusps for which the group generated by the anti-holomorphic involutions
is exceptional have a rich structure. The classification problem of those
curves waits for another investigation.
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