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Special Directions on Contact Metric Manifolds
of Negative 03BE-sectional Curvature(*)

DAVID E. BLAIR(1)

Annales de la Faculte des Sciences de Toulouse

Dans cet article nous introduisons des vecteurs particuliers
dans le sous-fibre de contact d’une variete de contact a courbure section-
nelle negative, pour les plans contenant la direction caracteristique. Sur
une variete métrique de contact en dimension 3, si le champ caracteris-
tique est de type Anosov et si les vecteurs particuliers coincident avec les
directions stable et instable, alors la variete métrique de contact est une
3-T-metrique. De plus, si la variete est supposee compacte, alors c’est
un quotient de SL(2,R). Dans le cas du fibre unitaire tangent d’une sur-
face a courbure negative, equipe de la métrique de contact canonique, les
vecteurs particuliers ne coincident cependant jamais avec les directions
stable et instable.

ABSTRACT. - In this paper we introduce special directions in the
contact subbundle on a contact metric manifold with negative sectional
curvature for plane sections containing the characteristic vector field. If

on a 3-dimensional contact metric manifold whose characteristic vector
field is Anosov, the special directions agree with the stable and unstable
directions of the Anosov now, then the contact metric structure is a
3-T-structure. Moreover if the manifold is compact, then it is a compact

quotient of In the case of the tangent sphere bundle of a
negatively curved surface with its standard contact metric structure, the
special directions never agree with the stable and unstable directions.

1. Introduction

The purpose of this paper is to introduce special directions belonging to
the contact subbundle on a contact metric manifold with negative sectional
curvature for plane sections containing the characteristic vector field / or
more generally when the operator h (see below) admits an eigenfunction
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everywhere greater than 1. As an application we turn to 3-dimensional
contact manifolds whose characteristic vector field is Anosov and compare
the special directions with the stable and unstable directions (Anosov
directions) of the Anosov flow. We show (Theorem 4.2) that if on a

3-dimensional contact metric manifold with negative ~-sectional curvature,
ç is Anosov and the special directions agree with the Anosov directions, then
the contact metric structure is a 3-T-structure in the sense of Gouli-Andreou
and Xenos [10]. Moreover if the manifold is compact we will see (Theorem
4.3) that it is a compact quotient ofSL(2, R). Since the special directions are
smooth, this is a consequence of a result of E. Ghys [9] that if / is Anosov on
a compact 3-dimensional contact manifold M and the Anosov directions are

smooth, then M is a compact quotient of SL(2, R). We will, however, give
a proof using properties of a 3-T-structure. There has been recent interest
in questions related to the Anosovicity of the characteristic vector field of
a contact structure and the reader may want to look at the 3-dimensional
contact manifolds constructed by Y. Mitsumatsu in [12]. For results in

higher dimensions see the paper of Benoist, Foulon and Labourie [3].
The most notable example of a contact manifold for which the charac-

teristic vector field is Anosov is the tangent sphere bundle of a negatively
curved manifold; here the characteristic vector field is the geodesic flow. In
the case of the tangent sphere bundle of a surface, this is closely related to
the structure on from both the topological and Anosov points of
view. If we set 

_ , , , , _

then PSL(2,R) = is homeomorphic to the tangent sphere
bundle of the hyperbolic plane. Moreover the geodesic flow on a compact
surface of constant negative curvature may be realized on PSL(2, )/r by

where r is a discrete subgroup of SL(2, R) for which SL(2, R)/r is compact
(see e.g., [2, pp. 26-27]). However from the Riemannian point of view these
examples are quite different as we shall see. In fact in the case of the tangent
sphere bundle of a negatively curved surface, the special directions never
agree with the Anosov directions (Theorem 4.4).

Finally for the Lie group SL(2, R) we exhibit the special directions which
do agree with the Anosov directions.



2. Contact manifolds

By a real contact manifold we mean a C°° manifold M2n+1 together
with a 1-form ~ such that ~  (d~)n ~ 0. It is well known that given 7] there
exists a unique vector field ç such that d~(~, X) = 0 and ~7(~) = 1 called
the characteristic vector field or Reeb vector field of the contact structure
r~. A classical theorem of Darboux states that on a contact manifold

there exist local coordinates with respect to which ~7 = dz - dxi.
We denote the contact subbundle or contact distribution defined by the
subspaces {X E = 0} by D. Roughly speaking the meaning
of the contact condition, 17 A 0, is that the contact subbundle is
as far from being integrable as possible. In fact for a contact manifold the
maximum dimension of an integral submanifold of D is only n; whereas a
subbundle defined by a 1-form ~ is integrable if and only if 17 A d~ - 0.

A Riemannian metric g is an associated metric for a contact form r~ if

there exists a tensor field § of type (l, 1) such

We refer to (r~, g) or (~, ~, r~, g) as a contact metric structure. All associated
metrics have the same volume element, viz.,

Since dr~(~, X) = 0 and r~(~) = 1, computing Lie derivatives, we have
= 0 and ,C~ dr~ = 0. Thus the flow generated by / is volume preserving

with respect to any associated metric.

In the theory of contact metric manifolds there is another tensor field
that plays a fundamental role, viz. h = (1/2),C~~. h is a symmetric
operator which anti-commutes with 4;, h~ = 0 and h vanishes if and only
if / is Killing. We denote by ~ the Levi-Civita connection of g and by R
its curvature tensor. On a contact metric manifold we have the following
further important relations involving h,



As a corollary we see from equation (2.2) that on a contact metric manifold
.M2’~+1 the Ricci curvature in the direction / is given by

Since = 0 , if A is an eigenvalue of h with eigenvector X , then -~ is
also an eigenvalue with eigenvector 4;X. . Thus, since h~ = 0, in dimension 3
we have only one eigenfunction A on the manifold to be concerned with.

The sectional curvature of a plane section containing / is called a 03BE-
sectional curvature. . In this paper, except for the result from [7] described
in the next paragraph, we do not need the notion of a Sasakian manifold,
though it may be worth pointing out that the /-sectional curvature of a
Sasakian manifold is +1. For a general reference to the ideas so far in this
section see [4].

In [7] it was shown that a 3-dimensional contact metric manifold M3
whose Ricci operator Q commutes with the tensor field 4; is either Sasakian,
flat or locally isometric to a left-invariant metric on the Lie group SU(2)
or SL(2,R). In the latter cases M3 has constant /-sectional curvature
k = 1 - a2  1 and the sectional curvature of a plane section orthogonal to
~ is -k (see also [8]); the structure occurs on these Lie groups with k > 0
for SU(2) and k  0 for SL(2,JR). It was also shown in [8] (see Lemma 3.1)
that on a 3-dimensional contact metric manifold satisfying Q~ = ~Q, the
eigenfunction A is a constant.

In [10] Gouli-Andreou and Xenos introduced the notion of a 3-T-manifold,
namely a 3-dimensional contact metric manifold on which

~~h=0..

The name comes from the equivalent condition = 0 where T = 

in particular T and h are related by T(X, Y) = Y). The following
lemma shows that a 3-dimensional contact metric manifold on which Q4; =
~Q is a 3-T-manifold and gives a partial converse. In general the converse
is not true and an example is given in [6].

LEMMA 2.1.2014 A 3-dimensional contact metric manifold on which Q~ =
~Q is a 3-T-manifold. A 3-T-manifold on which C~~ is collinear with ~
satisfies Q~ = ~Q.



Proof. - If Q~ _ ~Q, then ~~ = 0 gives ~Q~ = 0 and hence that
Q~ is collinear with ~. In [13] (Proposition 3.1) Perrone proved that on a
3-dimensional contact metric manifold

Thus if Q~ = 4;Q, = 0 giving the first statement.

If Y) = 0 and Q~ = fç, Perrone’s formula yields

Applying § and noting that = = = 0, we
have Q4; = ~Q as desired. D

LEMMA 2.2.- On a 3-T-manifold the eigenfunction a is constant along
integral curves 

Proof. - Let X be a unit eigenvector field corresponding to ~. Then

Since X is unit and h symmetric, taking the inner product with X yields
~a-0. ~

Let ~X, ~X, ~~ be an eigenvector basis of h with hX = 0; in

[10] the following were obtained on a 3-T-manifold.

Other derivatives are easily obtained from these.



LEMMA 2.3. ~f on a 3-T-manifold hX = ~X and a is a non-zero

constant, then

Proof. - Using the constancy of A in the covariant derivatives above and
computing Lie brackets as differences of covariant derivatives, the Jacobi
identity yields

Therefore

Taking X and ~X components we have

from which the result easily follows. 0

3. Anosov flows

Classically an Anosov flow is defined as follows [1, pp. 6-7]. Let M be

a compact differentiable manifold, ~ a non-vanishing vector field 
its 1-parameter group of diffeomorphisms. is said to be an Anosov

flow (or ~ to be Anosov) if there exist sub bundles ES and E~ which are

invariant along the flow and such that TM = ES ® ~{~~ and there exists
a Riemannian metric such that

where a and c are positive constants independent of p E M and Y in Ep
or E’p . ES and EU are called the stable and unstable subbundles or the

contracting and expanding subbundles.



When M is compact the notion is independent of the Riemannian metric.
If M is not compact the notion is metric dependent; the example of a 3-T-
manifold on which the Ricci operator does not commute with 4; given in [6]
is a metric on  3 with respect to which the coordinate field 8/8z is Anosov,
even though 8/8z is clearly not Anosov with respect to the Euclidean metric
on R~. Since we are dealing with Riemannian metrics associated to a contact
structure, when we speak of the characteristic vector field being Anosov, we
will mean that it is Anosov with respect to an associated metric of the
contact structure.

The following properties of Anosov flows will be of importance here. The
subbundles Es e {03BE} and Eu e {03BE} are integrable, [1, Theorem 8]. Let 
denote the measure induced on M by the Riemannian metric. Recall that
a flow is ergodic if for every measurable set S, = S for all t implies

S) = 0. If on a compact manifold an Anosov flow admits an

integral invariant, in particular if it is volume preserving, then it is ergodic
[1, Theorem 4] and in turn by the Ergodic Theorem almost all orbits are
dense (see e.g, [15, pp. 29-30]).

As an aside we note that on a compact manifold, an Anosov flow has a
countable number of periodic orbits [1, Theorem 2] and if the flow admits
an integral invariant, then the set of periodic orbits is dense in M [1,
Theorem 3]. This in itself has some implications for contact geometry.
An important conjecture of Weinstein [16] is that on a simply connected
compact contact manifold ~ must have a closed orbit, so in particular the
Weinstein conjecture holds for a compact contact manifold on which ~ is
Anosov.

4. Special directions

We may regard equation (2.1) as indicating how £ or, by orthogonality,
the contact subbundle, rotates as one moves around on the manifold. For
example when h = 0, as we move in a direction X orthogonal to £ , £ is always
"turning" or "falling" toward -4;X. . If hX = AX, then -(1-f- a)~X
and again / is turning toward 2014~X if A > -1 or toward ~X if A  -1.

Recall, as we noted above, that if A is an eigenvalue of h with eigenvector
X, then -A is also an eigenvalue with eigenvector 4;X. .

Now one can ask if there can ever be directions, say Y orthogonal to ~,
along which ~ "falls" forward or backward in the direction of Y itself.



THEOREM 4.1. - Let be a contact metric manifold. If the tensor
field h admits an eigenvalue a > 1 at a point P, then there exists a vector
Y orthogonal to ~ at P such that is collinear with Y. In particular if

has negative ~-sectional curvature, such directions Y exist.

Proof. - As stated in the Theorem we will let a denote a positive
eigenvalue of h and let X be a corresponding unit eigenvector. Then from
equation (2.1)

Now let Y = aX + with a > 0, b > 4, a2 -f- b2 = 1 and suppose that
= 03B1Y. Then

from which aa = (1 - A)b, ab = -(1 + A)a and hence

Thus we see that directions along which is collinear with Y exist

whenever h admits an eigenvalue greater than 1. From equation (2.4) we
see that if M2n+1 has negative ~-sectional curvature, at least one of the
eigenvalues of h must exceed 1. D

Note that when there exists a direction Y along which is collinear

with Y as above, there is also a second such direction, namely Z =
aX - . For Z we have -aZ; thus we think of $ as falling
backward as we move in the direction Y and falling forward as we move in
the direction Z.

Next let us note that

and hence that such directions Y and Z are never orthogonal. Also if A has
multiplicity m > 1, then there are m-dimensional subbundles Y and Z such
that = cxY for any Y E Y and ~Z03BE = -03B1Z for any Z E Z.



We now turn to 3-dimensional contact metric manifolds where the

dimension of Y and 2 will be 1 and ask what happens if these special
directions or subbundles agree with the stable and unstable bundles (Anosov
directions) of the Anosov flow generated by ~.

THEOREM 4.2.- Let M be a 3-dimensional contact metric manifold with
negative 03BE-sectional curvature. If the characteristic vector field 03BE generates
an Anosov flow and the special directions agree with the Anosov directions,
then the contact metric structure is a 3-T-structure.

Proof. - Suppose that Y is a local unit vector field such that 
aY, a = 2014~/A~ 2014 1. Since ç is Anosov and Y agrees with the stable
Anosov subbundle, the subbundle y ~ {03BE} is integrable. Thus from

[~ , Y ) = aY, belongs to y C {~}; but = 0 and

Y is unit, so Y) = 0. Thus = 0. Similarly = 0. For

simplicity define an operator 4 by ~X = for any X; clearly e is a
symmetric operator. Computing Ry ~~ and R z ~~ we have

but Y and Z are not orthogonal, so ça = 0 and = Now

compute acting on each vector of the eigenvector basis {X, ~X, ~~
using equation (2.3).

and similarly = 0. = 0 is immediate. Thus 0 and
M is a 3--manifold. []

If M is compact in Theorem 4.2, then M is a compact quotient of
SL(2, II8). This follows from a result of E. Ghys [9] that if 03BE is Anosov
on a compact 3-dimensional contact manifold M and the Anosov directions
are smooth, then M is a compact quotient of SL(2, R). Here we present this
as a compact version of Theorem 4.2 and give a proof using properties of a
3-T-structure.

THEOREM 4.3. - Let M be a compact 3-dimensional contact metric

manifold with negative 03BE-sectional curvature. If the characteristic vector
field ç generates an Anosov flow and the special directions agree with the
Anosov directions, then M is a compact quotient of SL(2, 



Proof . By Theorem 4.2 the contact metric structure is a 3-T-structure.
Since M is compact and ~ is a volume preserving Anosov flow, ~ has a dense
orbit by the ergodicity. Thus the eigenfunction A, which is invariant along
the flow by Lemma 2.2, is constant on M. Again by the density of the orbit,
Lemma 2.3 implies that = 0 and hence by Lemma 2.1, = 

Finally, as we noted in Section 2, the result of [7] for an eigenvalue A > 1,
k = 1- a2  0, is that the universal covering of M is the universal covering

THEOREM 4.4. - With respect to the standard contact metric structure
on the tangent sphere bundle of a negatively curved surface, the character-
istic vector field is Anosov, but the special directions never agree with the
stable and unstable directions.

Proof. - It is well known that for the standard contact metric structure
on the tangent sphere bundle of a Riemannian manifold, the characteristic
vector field ~ is (twice) the geodesic flow (cf. [4]), which is, as is also well
known, an Anosov vector field when the base manifold is negatively curved
(see e.g., [1]). By Theorem 4.2 if the special directions of the contact metric
structure agree with the Anosov directions, then = 0. Now Perrone

[14] showed that the standard contact metric structure of the tangent sphere
bundle of any Riemannian manifold satisfies = 0 if and only if the base
manifold is of constant curvature 0 or +1. 0

5. Contact metric structures on SL(2, R)

In this section we briefly exhibit a family of contact metric structures on
the Lie group SL(2,R), show that the characteristic vector field is Anosov
and show that the special directions agree with the Anosov directions. For
further discussion of these contact metric structures on SL(2,R) see [5].
On a 3-dimensional unimodular Lie group we have a Lie algebra structure

of the form

[ e2 63] = c1e1, > [63, ei] = c2e2, > [ei, 62] = c3e3.

In ~11~ , J. Milnor gave a complete classification of 3-dimensional Lie groups
and their left invariant metrics. If one c2 is non-zero, the dual 1-form 03C9i



is a contact form and ei is the characteristic vector field. However for the
Riemannian metric defined by g(ei , e j) = ~i~ at the identity and extended
by left translation to be an associated metric for we must have ci = 2

[7]. For SL(2, R) two of the are positive and one negative in the Milnor
classification, so taking 03C91 as the contact form, we write the Lie algebra
structure as

[e2 , ~ e3 ~ = 2e1 ~ e1 ~ _ (1 - > e2 ~ _ (1 + (5.1)

where A > 1. Further by way of notation, we set

Now consider the matrices

in the Lie algebra ~t(2, II8) which we regard as the tangent space of SL(2, R)
at the identity. Applying the differential of left translation by

to these matrices gives the vector fields



whose Lie brackets satisfy (5.1). Using these matrices again, define a left
invariant metric g; then ~~1, (2, ~3 ~ is an orthonormal basis. The contact

form 03C91 we denote by ~ and it is given by

The characteristic vector field ~ is (1. 9 is an associated metric and § as a
skew-symmetric operator is given by ~~ = 0 and ~~2 = (3. The symmetric
operator h is given by h03BE = 0, h(2 = À(2, h03B63 = -03BB03B63. The special
directions are

The 1-parameter group of ~ is given by

Then

Thus the corresponding subbundles Y and Z are invariant under the flow.
Finally since ~~1, ~2, ~3~ is orthonormal,

and hence

similarly
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Thus ~ is an Anosov vector field and the special directions Y and Z agree
with the Anosov directions.
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