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Indices of double coverings
of genus 1 over p-adic fields (*)

JAN VAN GEEL(1) and VYACHESLAV YANCHEVSKII(2)

Annales de la Faculte des Sciences de Toulouse Vol. VIII, nO 1, 1999

Soit k est un corps p-adique, avec corps residuel de carac-
teristique impair, Ok l’anneau de valuation discrete dans k. Soit C une
courbe de genre un, donnee par une equation affine Y2 = h(X ). Nous
etudions l’indice de C dans le cas h(X ) = avec E une unite ou
un element uniformisant dans Ok et j(X ) le produit de deux polynomes
irreductibles de degre 2 dans Ok [J~]. Le theoreme 4.1 resume les resultats.

ABSTRACT. - Let k be a p-adic field of odd residue characteristic and
let C be a curve of genus one defined by the affine equation Y~ = h(X ). .
We discuss the index of C if h(X = E f (X), where E is either a non-square
unit or a uniformising element in Ok and j (X ) is the product of two monic
irreducible polynomials of degree 2 over O k . . Theoreme 4.1 summarizes
our results.

1. Introduction

Let k be a local non-dyadic field of characteristic zero, Ok the valuation
ring in k and v = vk the associated value function. In [5] the authors
investigated equations of the form

with h(X ) = hiXi a polynomial without multiple roots over such a
field k. It is well known that such equations define an affine plane curve C~
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which is isomorphic with the affine part of a smooth geometrically connected
projective curve Ch over k (cf. [6]). Let degh = n. If n is odd Ch has one
point at infinity Poo defined over k and the genus is g(Ch) = (n-1)/2. If n is
even then there are two points at infinity Pool and Poo2 both defined over the
quadratic extension of k, in this case the genus is g( Ch) = (n - 2)/2.
So Ch defines an elliptic curve over ka (the algebraic closure of k) if and
only if n = 3 or n = 4.

The index of Ch, I( Ch), is by definition the greatest common divisor
of the degrees of all k-rational divisors on Ch. Let 7r be a uniformising
element in k and a E Ok a unit which is not a square in k, then the square
classes of k are represented by {I, a, 7r, The index is an invariant of the

isomorphism class of the curve, so we may assume that h(X) = ef (X) with
f (X) E Ok(X~ a monic polynomial and s E ~1, a, a, a~r}. Since Y2 = êf(X)
has always a rational point in some quadratic extension of k, the index of

C~f is either 1 or 2. Moreover the index is 1 if and only if C~f has a rational
point over some odd degree extension of k. It follows that if f (X ) contains a
factor of odd degree then 1(CE f) = 1. The same is true if e = 1, in that case
the curve has one or two rational points at infinity. So we may assume that
ê E ~a, a} (the choice of the uniformising parameter being arbitrary). In

[5], the index of C~f is determined in terms of invariants of the polynomial
f, for all irreducible polynomials f of 2-primary degree. So if we restrict

to the class of curves C ef that define elliptic curves over ka, i.e., curves of
genus 1, then the index has been determined in all cases except when

with X 2 + b1X + bo and X 2 + c1X + co irreducible quadratic polynomials
over Ok.

In this paper we calculate the index for such polynomials f ,
thereby completing the results of [5] for all curves of genus 1. It follows

from the Riemann-Roch theorem that in case = 1 the index I (CE)
equals 1 if and only if has a k-rational point. However the arguments
we will use only simplify slightly if we would use this fact. Therefore we look
for rational points in odd degree extensions of k, thereby avoiding the use of
Riemann-Roch. Since with f as above and ~ E {a, 03C0} the points at infinity
of the curve C~f are of degree 2, the problem reduces to decide whether or
not the equation Y2 = has a solution in some odd degree extension
of ~. This is done by giving a complete analysis in terms of the p-adic values
of the coefficients bo, b1, co, cl. For the equations Y2 = al(X) this is done
in Section 1, the equations Y2 = ~r I( X) are treated in Section 2.



So let

with f 1 and f 2 irreducible polynomials over Ok. Since we may change
variables over k (the index being an invariant of the isomorphism class of
the curve), further taking into account that the choice of the uniformising
element is arbitrary and that we can interchange the role of f 1 and f2 , we
may assume that the quadratic factors are in one of the following six forms:

with a, b E c E Ok U ~0~, and where ~r~ is a uniformising element which
can be chosen independently from the uniformiser 7r we fixed before. Note
that the last term in the above equations is exactly the discriminant Ai
and A 2 of f1 and f2 respectively.
We will use frequently the following lemma and its corollary.

LEMMA 1.1.2014 Let k be a non-dyadic local field and ,Q, y E . Let ~p be

the quadratic form

over k. Then for the unramified extension, .~ over k, of degree 1 or 3, there
is an isotropic vector v E .~3, i. e.,

with coordinates in O~ .

Proof. - The reduction ~p of ~p defines a 3-dimensional form over the
residue field k = IFq . Since k is a finite field, 03C6 is isotropic. If #k > 3 let
.~ = k, if ~k = 3 let £ = IF27. Then by theorem 8 in [1, p. 394] there is an



isotropic vector w with non-zero coordinates, w = (x1, x2, x3) and xi ~ 0
for i = 1, 2, 3. Let w = (xl, x2, x3) be a lift of w to the unique unramified
extension .~/h of degree 1 or 3 over k. Then with u E OR.. So

+ x2 + .c~ = 0. But x1 - = :r~ with xi a unit since £ is

non-dyadic. It follows that v = x2, x3) is an isotropic vector of p with
coordinates in 

COROLLARY 1.2. - Let k, ,~ and ~ be as in the lemma. Then the equation

with a E has a solution x E O~ .

Proof. - Apply the lemma to the quadratic form Z1 + ~3Z2 - aZ. . Let
x2, x3 be the isotropic vector with .ci, z2 , x3 E 0;. . Then z = x1/x2 is

a solution in O,~ of the given equation. D

Let k be a non-dyadic p-adic field of characteristic zero. In this section

we consider the question whether or not the equation

with f1(X), , f 2 (X ) monic irreducible polynomials in Ok ~X has a solution
in some odd degree extension of k. Since the uniformising element x does
not occur explicitly in this equation we may assume, as we remarked in the
introduction, that we have one of the following cases:

The cases 03B103C0 mod k*2 and 03B103C0 mod k*2,
A2 = 03B103C0 mod k*2 reduce to case (2) and (4) respectively, replacing the
uniformiser 7r by In case (4) the splitting fields of fi and f2 are both
equal to It follows from proposition 3.5 in [5] that the index of



the curve C03B1f is 2 in this case. The calculation of the index in the three
remaining cases is done in propositions 2.1, 2.2 and 2.3 respectively.

PROPOSITION 2.1.- Let f(X) = fl(X)f2(X) with

where a, b E Ok and c E Oj~ U ~0~. Then

Proof. - Let i/k be any extension of odd degree of k and let e = e(i/k)
be its ramification index. Let 03C0l be a uniformising element of 2, then
x(= xk) = with w E Oe. Put x = e ~. Then

Assume t  m. Then one verifies that

In both cases the square class of /2(.c) does not depend on the choice of
x = 03C0mel s, i.e. does not depend on the choice of s E O*l.

Applying corollary 1.2 to the equation

we find l unramified of odd degree over k and an element s E 0; such that



It follows that af(x) = a fl(x) f2 (x) E ~*2 so Y2 = a f (X) has an £-rational
point, i.e.,

If t > m or c = 0 then

We see that in case m ~ n, is independent of the choice of
s. The same argument as in the case t  m can be applied to obtain

If t = m then

In case m > n the square class does not depend on s and as above we
conclude that = 1. On the other hand, if m  n, we take £ as

in corollary 1.2. Then 03C0l = 03C0, w = 1. We choose s = c + with

v2 - a(c2 - a2a) It follows that af(x) E ~2, so = 1.

We have already proven one part of point (i) of the proposition, namely
that m or t  m implies = 1. Now let m = n and t > m. Put

The reductions gl (Z), g2(Z) are irreducible polynomials of degree 2 over k
since k2. If g2(Z) then has no multiple roots.

Using Weil’s bound on the number of points on a smooth curve over a finite
field one finds that for an odd degree extension l/ k of sufficiently large
degree there exists an element x E 1 such that E .~*2. A lift of

x to an element of O~, with £ the unramified extension with residue field
~, then satifies ~*2. (In proposition 3.1 of [5] the argument



is worked out in detail.) It follows that af(x) = E.~2 and
therefore

in this case.

Finally let g1 (Z) = g2 (Z), then b = + and necessarily t > m. Let
be an odd degree extension and let x = E 0; be any element in

~. Put = 7r, w E If r  0 then f(x) E s4 + C .~*2. If

r > 0, then

So it remains to consider :c = E 0~. . But now b E ~:a + this

implies

And since s2 - a2a is a unit (otherwise the equation Z2 - would have
a solution in an odd degree extension of k, which is impossible since a is
not a square in k), it follows that

is a non-zero square in £. We obtained that for every odd degree extension
~/k and any x E £, a f (x) ~ e*2, so

in this case. D

PROPOSITION 2.2. - Let f(X) = with

where a, b E Ok and c E Ok U ~0~. Then



Proof. - Assume t  min(m, n). Let be the unramified extension

of odd degree determined in corollary 1.2. The uniformising element 7r in

k is also a uniformising element for t. Take x = E Then since

t  m,

It follows that

for all s E ~,~ . Choose s E 0; such that s = c + this is possible
with s’ E 0; such that (apply corollary 1.2),

So

Therefore

Next assume t > min(m, n) = n  m. Let £ be as before and take x = 7rnS.
Then

Take £ as in corollary 1.2 and s such that s2 - .~*2 , then

Again we see that = 1.

This proves part (i). Assume t > min(m, n) = m  n. Now let £ be any
odd degree extension of k and e = e(l/k) its ramification index. Let 03C0l be
a uniformising element in £ and, say, = ~r. Suppose x = E .~.

If n > ~ > m then for = et,



But then

Both possibilities imply .~2. .

If r = = = et) then

We claim that the valuation of f2 (x) is even. If so, ve ~ f (x)~ = vi ~a f (x)~ is

odd, implying a f (x) ~ f,2. To see that the claim is true, note that vp ( f2 (x)~
is even if

If = 2ne then x = + with u E From this

we obtain

But u2 - ab2 is a unit is not a square in ~), so = 2ne, thereby
proving the claim.

Finally assume t > n > m. If r  m then

and so af(x)  ~2.

For r > m we have is odd. In order that x is the X-coordinate

of a rational point in Ca f(~), we need to have that v~~f2(x)~ is odd too.

This can only happen if = 2ne, so c03C0tel03C9t = 
with But then

which has even valuation since v2 - b2a is a unit (~ being a non-square in
.~). We have shown that if v(c) > min(m, n) = a f (x) ~ .~2 for any £
over k of odd degree and all x E £. So = 2 in this case. 0



PROPOSITION 2.3.- Let f(X) = fl(X)f2(X) with

where a, b E Ok and c E Ok U ~0}. Then

(i) = 1 if t > min(m, n);

(ii) I(Ca f) = 2 if t  min(m, n).

Proof. - In the case t > n,

so af(0) E k2 and = 1.

Put x = where s is in some extension ~/k of odd degree, with

e(£/k) = e, = 7r, u E O~. We have the following posibilities for the
value of f (x):

The only case in which x can be the X-coordinate of a point of Ca f over
~ is when = 2me + e and = 2ne + e, in the other

cases ~2. But then > me and > ne. Since

te  ne we must have = te > me. Therefore we obtain already that

for t  min(m, n), = 2. On the other hand if m  t  n (the only
case left), we take x = c03C0t + 7rn+1 E k and we obtain

i.e.,

Remark 2.4. - One can verify directly that in propositions 2.1, 2.2 and
2.3 the conditions for the index to be 1 are complementary to those that

imply the index to be 2. (So in these propositions the "if" may be replaced
by "if and only if.)



3. The equation Y2 = ~r f(X)

Let k be as before. We now fix a uniformiser 7r and consider the equation

with fl(X), f2(X) monic irreducible polynomials in Ok(X~. As we saw in
the introduction we may assume that one of the following six cases occurs
(taking 7r’ = and changing the sign of the coefficient c if necessary):

(The choice 03C0’ = -03C0 avoids making a distinction between fields k in which
- 1 is a square and those in which -1 = a mod k*2.) In the first case the

splitting fields of fi and f2 are both equal to k( f) and in the last case
they are both equal to k( Proposition 3.8 in [5] then implies that
the index of is 2 in both these cases. Propositions 3.1, 3.2, 3.4 and 3.6
determine the index in the remaining four cases.

PROPOSITION 3.1.- Let f(X) = fl(X)f2(X) with

where a, b E Oj~ and c E Ok. Let v~ be the valuation on k normalised such
that = 1. Then 

’

Proof. - Let vk(c)  m then

so 7rf(O) E k2 and = 1.



Secondly, let vk(c) > m and assume m ~ n. Take x = 1rt with

t = max{m, n}. Then

It follows that E k2, so f) = 1.

Finally let vk(c) > m and m = n. Let ilk be an extension of odd degree
and ramification index e = Let 03C0l a uniformising element in l and

vi the normalised valuation on i. Let x = with s E Then

It follows that for all odd degree extensions £ and for all x E ~, ~2,
so = 2 in this case. 0

PROPOSITION 3.2.- Let f(X) = with

where a, b E Ok and c E Ok. Let vk be ~he valuation on k normalised such

that = 1. Then

Remark 3.3. - The condition c2 - E k2 is equivalent with
- 1 ~ k2 in the case > m.

Proof. - Let m > n put x = Choose unramified of odd degree
as in corollary 1.2, with s E Ok such that



with c = c’ E this is possible by corollary 1.2. It follows that

It follows that E ~2, i.e. f) = 1, in all these cases.
Let m  n. If vk(c)  m then (since automatically m ~ 0)

so zrf(0) E k2 and I(Caf) = 1.
Finally the case m ~ n and m. If x is the X-coordinate of

a point of over some odd degree extension with odd ramification
index e = and 03C0elw = 7r, then is odd. But

moreover the value of (x - c)2 - 7r2m ab2 is even since ab2  k2. It follows
from these observations that v.e( x) > en. We obtain

The remaining statements of the proposition follow from this. 0

PROPOSITION 3.4.- Let f(X) = with

where a, b E Ok and c E Ok. Let vk be the valuation on k normalised such
that = 1. Then



Proof. - We observe that in order for to have a point (x, y) over a
field extension f of odd degree over k with ramification index e = and

= 7T, must be odd. Since - E 27L, otherwise &#x26;

would be a square in £, we must have > 2me-t-e, so vp(x-c) > me.
Moreover x must be such that x2 - i2. . The latter is only possible
if ne. (If = ne then x = = 7rnS2 with s E OQ. By
corollary 1.2 we can choose f and s such that s2 - f*2.)

First let m  n. If m  vk(c) then take £ as in corollary 1.2 and

x = 7rn8 E f is unramified so xi = 7r), such that s2 - f*2.
The above conditions on x are satisfied so = 1. If vk(c)  m then

c) > me implies = ve(c)  me  ne. So the conditions for

to have a point in some odd degree extension cannot be satisfied, i.e.
= 2 in this case. (This proves (i) and (ii)).

Secondly, let n  m. If vk(c)  n then Vi(X - c) > me implies
= vi(c)  ne, so also in this case the conditions for to have

an f-point cannot be satisfied and = 2 follows. If Vk( c)  n, in

order to have c) > 2me + e, we must choose x E f to be of the form
x = c + xkd with d E Oi, and 2k > m + 1. Now

And we see that

is a square if and only if c2 - k2. 0

Remark 3.5. - In case > n the condition c2 - ~ 1~2 is

equivalent 



PROPOSITION 3.6.- Let f(X) = fl(X)f2(X) with

where a, b E Ok and c E Ok. Let vk be the valuation on k normalised such
that = l. Then

Proof.- If vk(c)  m then

and so E k2, implying = 1.

If > m > n then

and we have the same conclusion.

If vk(c) > m and m  n take f any odd degree extension of k
with ramification index e = e(f/k) and ve its normalised valuation, i.e.,
Vi(7ri) = 1. First we remark that for x E f with ne, cannot

be a square. This since

since it either has odd valuation (if 2v(x - c) > 2m + 1) or it is congruent
to a modulo squares (if 2v(x - c)  2m + 1). So assume ve(x) > n,e > me.
This implies c) > me and therefore

It follows that for every ~/J~ of odd degree and for every x ~2. .
Therefore f ) = 2. ~

Remark 3.7. - One can verify directly that in propositions 3.1, 3.2, 3.4
and 3.6 the conditions for the index to be 1 are complementary to those
that imply the index to be 2.



4. Summary

Let

It is easy to translate the conditions obtained in the previous sections to
determine the index of C03B1f and into conditions on the coefhcients b1,

bo, ci, co. In this way we get theorem 4.1, thereby summarizing our results.

THEOREM 4.1.2014 Let k be a non-dyadic local field of characteristic zero.
Let

be a polynomial over Ok, ~l = bi - 460 = k2 and ~2 = ci - 4co =
03B4203C0s ~ k2 with bl, 62 E Ok. Put y = (bl - cl)/2.

(A ) Let Ca f be the curve defined by the equation Y2 = a f (X).

(1) If O1 - a mod k*2 and 02 - a mod k*2 then = 2 if and

only if

(2) If 03C0 mod k*2 and amodk*2 then = 2 if and

only if

(3) If O1 - 03C0 mod k*2 and 02 = 03B103C0 mod k*2 then I(Ca f) = 2 if
and only if

(4) If 01 = 03C0 mod k*2 and 02 - 03C0 mod k*2 then = 2.

(B) Let be the curve defined by the equation Y2 = 

(1) If 03C0 mod k*2 and 02 - 03C0 mod k*2 then = 2 if and

only if



(2) If 03941 ~ 03C0 mod k*2 and A2 = amodk*2 then = 2 if and
only if

(3) If 03941 - a mod k*2 and 02 - 03B103C0 mod k*2 then = 2 if
and only if one of the following conditions hold:

(!,) If xmodk*2 and 02 - axmodk*2 then = 2 if
and only if

(5) If G11 _ 02 _ a mod k*2 or if 02 _ then

Remark 4.2. - We only summarized the conditions for the index of the

Ca f , respectively to be 2. The complementary conditions yield that
the respective curves have index 1. So there exists a k-rational divisor D
of degree 1 on C. By the Riemann-Roch theorem one can find a function
h E k(C) such that D + (h) is a positive divisor which, since it has degree
one, must be a k-rational point.

A theorem of Roquette and Lichtenbaum [2] tells us that for any smooth
geometrically connected projective curve C over a local field k,

with Br(k), Br(k(C)) the Brauer groups of k and k(C) respectively. It

follows that for the curves, Ca f and of genus 1 satisfying the conditions
summed up in theorem 4.1, this kernel , ~H)~, with H the
unique quaternion division algebra over k. ([D] indicates the class in the
Brauer group of the algebra D.)
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