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Existence, uniqueness and stabilization
for a nonlinear plate system
with nonlinear damping(*)

CARLOS FREDERICO VASCONCELLOS(1)
and LUCIA MARIA TEIXEIRA(1)

Annales de la Faculte des Sciences de Toulouse Vol. VIII, nO 1, 1999

On etudie 1’existence et 1’unicite des solutions globales et
on etablit l’amortissement polynomial de l’énergie pour un systeme de
plaque non lineaire

où n est un ouvert borne de N > 3, a frontiere reguliere r et on
considere la fonction cp une fois continument différentiable avec cp(s) > 0,
pour tout s > 0 et g est continue et non decroissante.

ABSTRACT. - We study the existence and uniqueness of global solu-
tions and the polynomial decay of the energy for the following nonlinear
plate system with nonlinear damping

where 11 is an open subset of 3, with smooth boundary r and So is
a continuously differentiable real valued function which satisfies 0,
for all s > 0 and g a continuous nondecreasing real function.

(*) Recu le 27 janvier 1997, accepté le 1°r juillet 1998
(1) Instituto de Matemática - UFRJ, PO Box 68530, CEP 21945-970 Rio de Janeiro

RJ (Brazil)



1. Introduction

In this paper we consider the following nonlinear plate system with
nonlinear damping:

where H is a bounded open subset of IIBN (N  3) having a smooth
boundary 80 = F and p is a continuously differentiable real valued function,
which satisfies 0, for all s > 0. We also consider g a continuous
nondecreasing function and we use the notation

The following problem

in dimension N = 1, is a general mathematical formulation of a problem
arising in the dynamic buckling of a hinged extensible beam under an axial
force (Eisley [3] and Dickey [2]).

It is interesting to observe that the nonlinearity is an

approximation by averaging of the classical von Karman model (Nayfeh-
Mook [19]).

The existence of solutions for the Problem (1.2), in the one-dimensional
case was studied by Dickey [2]. Pohozaev [20] considered the existence of
solutions of the corresponding hyperbolic systems in which, in particular,
the fourth order term 02u is dropped. In higher dimensions, regular unique
solutions were obtained by Medeiros [15].



When the equation of (1.2) does not include the term 02u and the
dimension N = 1, this system describes the vibrations of an elastic stretched

string. This case was studied by Lions [14], when )O(s) > mo > 0 and under
the same assumption, local strong solutions were obtained by Rivera [22].
Menzala [17] solved this problem when Q 

Vasconcellos-Teixeira [25] proved the existence and uniqueness of global
strong solutions and the exponential decay of the energy for the following
nonlinear damped hyperbolic problem:

The Problem (1.3), without the term g(u), was solved by Medeiros-
Miranda [16] and the exponential decay for the energy was proved.
We would like to make a few comments on the related literature. Lagnese

[8] considered the modelling of nonlinear plates and studied the stabilization
for these systems. We also refer to the book by J. Lagnese [9] for a systematic
study of the stabilization of plate systems.

For a study on stability for nonlinear waves and beams with damping on
the boundary, we refer, for example, to the works of Lasiecka [12], Lasiecka-
Triggiani [13] and Lagnese-Leugering [10], Kormonik [7] and Zuazua [27].

The von Karman system was studied, for example, by Horn-Lasiecka [6],
where the existence and uniqueness of global solutions for the system with
nonlinear boundary dissipation was proved. In Horn [5] and Puel-Tucsnak
[21] the boundary stabilization for the system was showed. Recently,
Bisognin, et al. [1] and Menzala-Zuazua [18] proved existence of global
solutions and the exponential stability for von Karman system of plates, in
the presence of thermal effects.

The aim of this work is to study the global existence of solutions and the
stabilization of (1.1).

The existence and uniqueness of solutions is proved in Section 2, where no
restriction is placed on the growth of the damping term g, namely, g is only
assumed to be a continuous nondecreasing function with g(0) = 0. There,
we use Galerkin methods and since g does not have further restrictions,
we need special estimates to obtain the convergence of nonlinear terms and
we must also consider the dimension N  3. This is not relevant from a

physical point of view since the system (1.1) is a model built for N = 2.



We can find in Lan et al. [11] the existence and uniqueness of global
solutions for (1.1), when the damping g is a very particular function, namely,
g(s) = with 0  a  1. Therefore, they only consider nonlinearities
going at infinity in a sublinear way, so, in this case, it is easy to show that
the function g is continuous from L2(S2) into L2(O).This is not the case in
the context we are working on.

In Section 3, we study the stabilization of (1.1) when the damping g
satisfies convenient assumptions to control its growth.

Let us consider the energy

where u is a regular solution of (1.1) and

We can prove that

and therefore, the energy is a decreasing function of time.

Now, to prove the uniform polynomial decay of the energy (1.4) we
perturbe it with a convenient Lyapunov function. We show that the

resultant perturbed energy is equivalent to the energy (1.4). The origin
of this method can be found in Zuazua [25] (see also [26]).

Finally, in Section 4 some remarks about Problem (1.1) will be made.

2. The existence theorem

Let H be the L2(S2) space with the usual norm 1 . ~. W is the Sobolev
space normed by = and V means the space with

the norm Ilullv - 
Let g : II8 -> R be a continuous function such that



We consider p E C1 ~( 0 , +00); R) such that

For each T > 0 we put Q = 52 x (0, T).

THEOREM 2.1.- Under the above assumptions, if (up, ul) E V x Hand
for every T > 0, there exists an unique u : ~ 0 , T ~ --r H such that

Proof. - First of all we establish the existence. Let T > 0 be fixed
and denote by Vm the space generated by w2, ..., where the set
{wm; is a "basis" of V. Since (uo, U1) E V x H we obtain

Then for all mEN there exists Tm  T and um(t) = fj(t)wj defined
for t E [0, Tm) such that the following holds:

where ( ~ I . ) denotes the usual inner product in H, A = -A, uom =
ajwj, u1m = 03A3mj=1 bj wj and V’ is the dual space of V.

Remark 2.1.2014 Since N ~ 3, we have that V is compactly embedded in
hence, by (2.1), for each t > 0 and m E N, g u~ t E L°° S2 C

H C L1 (S2). 
l ~n l )) ( )

We need a priori estimates to extend the solution of the system (2.9) to
the whole interval [0 , T].



Replacing v in (2.9) by 2um(t) and integrating from 0 to Tm we have:

Since and are bounded sequences in H and V respectively,
then, by (2.1) and (2.2) there exists a constant K > 0 independent of m
and t, such that, for all m ~ N and t > 0

Now, we need the following lemmas.

LEMMA 2.1.- There exists h’1 > 0 such that R’1 for
all mEN.

Proof - If we define

then, from (2.1):



Hence, by (2.13), we have

which concludes the lemma. By ~( ~ ) we denote the Lebesgue measure in
o

LEMMA 2.2.- The sequences {ua~.,L( ~ )~ and ~u",,(~)} are Cauchy se-
quences in C ([ 0 , T ; H) and C([ 0 , T ; ; V), respectively.

Proof. - Let m2 > ml be two natural numbers and

Then, by (2.9), (t) = um2 (t) - (t) satisfies

If we take, in (2.14), v = 2w’ then

where

Now, by (2.11) and the fact that p is a function of class C1, we have
constants C > 0 and K > 0 such that

Hence, from (2.1), (2.15) and (2.16) we obtain



Since

it follows, by (2,2), (2.10) and (2.11), that

Replacing (2.18) in (2.17), we have

So,

On the other hand, by (2.2) and (2.8)

Then, by (2.2) and (2.19) we prove the Lemma 2.2. 0

By Lemma 2.2 there exists u : [0, T] - V such that

So (2.20) and the continuity of p:

LEMMA 2.3.- For each T > 0, g(ut) E L1(Q) and  h’1, ,
where Iil is obtained in Lemma 2.1.

Proof . - By (2.1) and (2.21) there exists a subsequence {u;,} of {u,~",,}
such that



Hence, by (2.13) and Fatou’s lemma we have

Now, using (2.24), the proof follows similarly as Lemma 2.1. ~

LEMMA 2.4. g(uv) --~ g(ut) in V’).

Proof. - To prove this Lemma we need the following Theorem.

THEOREM (Strauss [24]). Let S2 C RN be an open set with fi-
nite Lebesgue measure, and a sequence of measurable functions,
w" 

Let fv : II$ --~ R, v E ~ be such that

(a) fv, v E N is bounded on bounded subsets of R;

(b~ fv o wv is measurable and

(c ) /~/ o uJ" - v a. e. in S2.

Then v E L1(S2) and

From the assumptions on g, (2.13) and (2.23), it follows, by the above
theorem, that

So, since L1 (0) is continuously embedded on V~, we obtain the Lemma 2.4. 0

To prove (2.6), we first observe that, by (2.20)



Fixing j :::; 1) and integrating (2.9) from 0 to t  T we have

Using (2.20), (2.21), (2.22), (2.27) and the density of the set {u~ ; 
in V, we can pass to the limit as v - +00 to obtain

and so we can obtain (2.6).
Finally, by (2.8), (2.20) and (2.21) we have (2.7). 0

We end by proving the uniqueness. Consider u, v : [0 , T ) -~ H satisfying
(2.3)-(2.7) and define w(t) = u(t) - v(t), t E [ 0 , T].

Then, by (2.6) and (2.7) we have

We take s E ~ [0, T] fixed and we define

Then z(t) E for each t E [0, T] and moreover



From (2.28) we obtain

For t  s by (2.29) and (2.31), we have:

From (2.30) and (2.31) we obtain:

We claim that

In fact, let X be the set

Then, by (2.29) we have 0 in X.

So, from (2.31) and mean value theorem we obtain z(x,t)  0 in X.
Therefore, since g is a nondecreasing function we have

In a similar way we can prove the above inequality if (x, t) belongs to

Now, using (2.32) and (2.33) we have



By (2.3), the assumptions on 03C6 and (2.30), we have that there exists C > 0
such that

Taking y = max{6c2T, 1/3T}, we obtain

So, using Gronwall Inequality, we conclude the uniqueness. 0

COROLLARY 2.1. Under the hypothesis of Theorem ,~.1 there exists

an unique u E L°°{0, V) such that

utt + ~2u - Au + = 0 in V’ a.e. with respect to t

3. Stabilization

This section deals with the decay of the energy (1.4) associated with the
system (1.1). For this we need additional assumptions about the functions
~ and g.

Let So E C1 ([0 , +oo) ; II8) be such that

The function g satisfies (2.1) and there exist p > 0, A > 0 and co > 0
such that



Remark 3.1. - From (3.1~ we obtain, for each Iz’ > 0, a constant mK > 0
such that

Remark 3.2.- From (3.2) and (3.4) we have p > a.

THEOREM 3.1.- Under the above hypothesis, if (up, u1) E V x H, then:

. if p = a = 1 there exists y > 0 such that

. if 03BB > 1 and p > 1 there exists b > 0 such that

. if ~  1 there exists ~ > 0 such that

Proof. - It is sufficient to obtain (3.5), (3.6) and (3.7) for the approxi-
mated solutions um(t), because the convergences showed in the proof of the
Theorem 2.1 imply the above result for the solution u. From now on, by
simplicity, we will denote by u.

We observe, from the definition of E(t), that

and so, by (2.1)

Let p(t) = f~ u(x, t) ut(x, t) dx, since V is continuously embedded in H,
there exists ci > 0 such that

Now, we consider two separated cases.



3.1 Case 03BB ~ 1

LEMMA 3.1.2014 There exist positive constants c2, c3 and c4 such that

Proof.- We have p’(t) = + (u(t) I so replacing in (2.9)
v by u(t), we obtain

By (2.11) and Remark 3.1, there exists c2 = E 0 , h’ ~ } such
that

On the other hand, it follows by Remark 2.1 that there exists C > 0 such
that

and so, for c = 

Hence by (3.4), a > 1,

Then, by (2.11), we have



Now, replacing (3.13) and (3.14) in (3.12) and using (3.8) we obtain (3.11)
where c3 = K C and c4 = 1 + C2 c2/2.

Let we define = ~E(t)~ ~p-1~~2p(t), then we have

Since E~(t)  0, it follows by (3.9) and (3.10):

So, replacing (3.11) and (3.16) in (3.15) we obtain

where c5 = (ci (p - 1)/2 + ~p 1~~ 
> 0.

For each ê > 0, we consider

Remark 3.3.2014 We can conclude that there exists ~o > 0 such that

(i) If we consider p = 1 (then A = 1) we have, by (3.2), (3.3) and (3.17)

if we take

then

So, by Remark 3.3 we have (3.5).



(ii) If we consider p > 1 we have, by (3.17) and (3.18)

By (3.2) and (3.3), there exists c7 > 0, which depends of Q and E(0), such
that 

.

then, by (3.8) and (3.19)

Now, using Young’s inequality, with  > 0 such that (p+1)/(p-1)(c4 +
1/2)  c6/2, we obtain

Taking

it follows, by Remark 3.3 that

So,

Now, (3.6) follows from Remark 3.3 and (3.21). .

3.2 Case A  1

In this case, the remark 3.2 implies that p + 1 - 2A > 0.

Let us define ~) = (E~))~~~~).



Then, by (3.8), (3.9) and (3.10):

where

It follows by (3.12) and (3.13)

On the other hand, by (3.2) and (3.4) there exists a positive constant, a,
which depends of S2 and co such that

Replacing the above inequality in (3.23) and using (2.11) and (3.8), we have:

Taking c9 = c3 ~E(0)~ ~p+1-2a)/2a and replacing the above inequality in
(3.22):

On the other hand, by Young’s Inequality and (3.8)



We choose /3 > 0 such that

for y > 0, such that

Now, since p -f- I/A > p I 1 using (2.10) and (3.20) there exists R > 0 such
that

Taking

and replacing (3.25), (3.26) and (3.27) in (3.24) it follows that

where c12 = Cs + Cg + cio + cu.

For each 6; > 0, we define

Then there exists ~o > 0 such that

Taking the derivative of (3.29), using (3.28) and (3.30) we deduce that

So,

t > 0, 0  ~  eo. Finally (3.7) follows from (3.30) and the above
inequality. 0



4. Final remarks

If we consider the inhomogeneous system

where f belongs to L2(0, T ; H), we can prove, using the same approach as
in Theorem 2.1, the existence of solutions satisfying (2.3)-(2.7).

It should be noted that the presence of the nonlinear damping term g
in (1.1), without restriction on its growth, contributes to some technical
difficulties at the level of the existence theory. Therefore, we needed to
consider the dimension N  3 (Remark 2.1).

To prove the Theorem 2.1, in dimension N > 4 we consider, for instance,
g(s) = where

We can also consider the sublinear case, as it was mentioned in Section 1,
that is g(s) = s, 0  q  1. In both cases, the proof of the
Theorem 2.1 follows in the same way.

The Remark 3.1 still holds if we replace the assumption on (3.1), by the
following:

It is important to observe that the assumptions (3.2) and (3.3) on the
damping g ensure, respectively, its coercivity at the origin and at the infinity.
On the other hand, the assumption (3.4) controls the growth of g. The

decay order of the energy (1.4) depends only on the constants p and A, i. e.,
it depends on the behaviour of g at the origin.

The estimates on the decay rates of the energy, obtained from Theo-
rem 3.1, are probably optimal, but this question has not been proved yet
even in the simplest case of the semilinear damped wave equation.



Finally, we claim that the Theorem 3.1 can be proved, if N > 4, using
the same method, provided solutions do exist. In fact, it is sufhcient to

make the following additional hypothesis on g :
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