LEV BIRBRAIR
MARINA SOBOLEVSKY

Realization of Hölder complexes

Annales de la faculté des sciences de Toulouse 6e série, tome 8, no 1 (1999), p. 35-44

<http://www.numdam.org/item?id=AFST_1999_6_8_1_35_0>
Realization of Hölder Complexes(*)

LEV BIRBRAIR and MARINA SOBOLEVSKY(1)

Résumé. — Un complexe de Hölder est un graphe fini tel qu’à chaque arête est associé un nombre rationnel positif et on sait que c’est un invariant bi-lipschitzien des ensembles semi-algébriques singuliers de dimension 2. On montre dans cet article que tout complexe de Hölder peut être réalisé comme un ensemble semi-algébrique de dimension 2. Pour ce faire on plonge le graphe dans un tore de dimension n qu’on fait contracter sur un point singulier de telle sorte que les générateurs s’évanouissent avec les vitesses rationnelles et différentes.

Abstract. — Hölder Complex, a graph and a rationally-valued function on the set of the edges of the graph, is a bi-Lipschitz invariant of 2-dimensional semialgebraic singular sets. Here we prove that each Hölder Complex can be realized as a 2-dimensional semialgebraic set. For this purpose we embed the graph to an n-dimensional torus. The torus is vanishing in a singular point such that the generators are vanishing with different rational rates.

1. Introduction

The paper is devoted to the local geometry of 2-dimensional semialgebraic sets. The local bi-Lipschitz classification theorem is proved in [1]. The main notion of the classification is a so-called Geometric Hölder Complex. It is a local version of a simplicial complex with some additional geometric information (see the definition below). A Hölder Complex can be considered as a combinatorial object – a finite graph with a rational-valued function defined on the set of edges.

(*) Recu le 7 avril 1997, accepté le 30 septembre 1997
(1) Departamento de Matematica, Universidade Federal do Ceara, CEP 60455-760
BR-Fortaleza CE (Brazil)
e-mail: lev@mat.ufc.br
e-mail: marina@mat.ufc.br

- 35 -
The following question is natural. Let us define a Hölder Complex in a combinatorial way. Does it correspond to some semialgebraic set?

The answer is positive. To prove the Realization theorem we define a semialgebraic set $T(\beta_1, \ldots, \beta_k)$. It is a generalization of the real algebraic set which gives an example of the noncoincidence of L_p-cohomology and Intersection Homology [2]. The set $T(\beta_1, \ldots, \beta_k)$ has a toric link at the singular point and all generators of the torus have different vanishing rates in this point. It gives us a possibility to separate vanishing rates of all edges of a Hölder Complex.

2. Definitions and notations

Let us recall some definitions from [1]. Let Γ be a connected graph without loops, $V_\Gamma = \{a_1, a_2, \ldots, a_k\}$ be the set of vertices and $E_\Gamma = \{g_1, g_2, \ldots, g_r\}$ be the set of edges of the graph.

DEFINITION 2.1. — A Hölder Complex (Γ, β) is a graph Γ with an associated function $\beta: E_\Gamma \rightarrow [1, \infty[\cap Q$ (here Q is the ring of rational numbers).

DEFINITION 2.2. — A Curvilinear triangle T is a subset of homeomorphic to a 2-dimensional simplex satisfying the following properties.

1) Each internal (in the induced topology) point $t \in T$ has an open neighbourhood $U_t \subset T$ such that U_t is a smooth 2-dimensional submanifold of \mathbb{R}^n at each point $t' \in U_t$.

2) The boundary of T is a union of three analytic curves $\gamma_1, \gamma_2, \gamma_3$ such that γ_i (for $i = 1, 2, 3$) has a neighbourhood at each internal (in the induced from \mathbb{R} topology on γ_i) point which is a smooth 1-dimensional submanifold of \mathbb{R}^n.

3) Locally T is a smooth manifold with a boundary at each smooth point of the boundary.

Boundary points of γ_i we call vertices of T.

DEFINITION 2.3. — A standard β-Hölder triangle ST_β is a subset of the plane \mathbb{R}^2 bounded by the following curves:

$$\{y = 0\}, \ {y = x^\beta}, \ {x = 1}.$$
Let us consider a cone C_T over Γ. Let A_0 be the vertex of C_T. We can consider C_T as a topological space with the standard topology of a simplicial complex.

Definition 2.4. — A subset $H(\Gamma, \beta) \subset \mathbb{R}^n$ is called a Geometric Hölder Complex corresponding to (Γ, β) if it satisfies the following conditions.

1) $H(\Gamma, \beta)$ is a subanalytic subset of \mathbb{R}^n.
2) There exists a homeomorphism $F : C_T \to H(\Gamma, \beta)$.
3) The set $H(\Gamma, \beta) \cap S_{F(A_0),r}$ is empty or homeomorphic to Γ, for every r. (We use the notation $S_{F(A_0),r}$ for the sphere centered at the point $F(A_0)$ with the radius r.)
4) The image of the triangle (A_0, a_i, a_j, g) (where a_i and a_j are vertices of Γ, g is the edge connecting a_i and a_j, (A_0, a_i, a_j, g) is the subcone of C_T over g) has the following properties:
 (a) $F(A_0, a_i, a_j, g)$ is a subanalytic subset of \mathbb{R}^n;
 (b) $F(A_0, a_i, a_j, g)$ is subanalytically bi-Lipschitz equivalent to the standard $\beta(g)$-Hölder triangle $ST_{\beta(g)}$;
 (c) let $L : ST_{\beta(g)} \to F(A_0, a_i, a_j, g)$ be this subanalytic bi-Lipschitz map; then

\[L(0,0) = F(A_0), \quad L(1,0) = F(a_i), \quad L(1,1) = F(a_j). \]

Definition 2.5. — A β-Hölder triangle HT_β is a subset of \mathbb{R}^n satisfying the following conditions.

1) HT_β is a curvilinear triangle.
2) HT_β is bi-Lipschitz equivalent to some standard β-Hölder triangle ST_β.
3) The bi-Lipschitz map $L : ST_\beta \to HT_\beta$ is subanalytic. (The image of the point $(0,0)$ is called a Hölder vertex of HT_β.)

Definition 2.6. — A standard β-horn SH_β (here $\beta \in \mathbb{Q} \cap [1, +\infty[)$ is a semialgebraic set in \mathbb{R}^3 defined by the following conditions:

\[(x_1^2 + x_2^2)^q = y^{2p}, \quad 0 \leq y \leq 1,\]

(x_1, x_2, y) are coordinates of a point in \mathbb{R}^3 and $\beta = p/q$ with $\text{GCD}(p, q) = 1$.

- 37 -
We proved in [1] that every 2-dimensional semialgebraic (as well as semianalytic and subanalytic) set X is a Geometric Hölder Complex in a neighbourhood of a given point $a_0 \in X$ corresponding to some Hölder Complex. Here we are going to prove the following result.

Realization Theorem. Let (Γ, β) be a Hölder Complex. Then there exist a semialgebraic 2-dimensional set $X \subset \mathbb{R}^n$, a point $a_0 \in X$ and $\varepsilon > 0$ such that $X \cap B_{a_0, \varepsilon}$ is a Geometric Hölder Complex corresponding to the Hölder Complex (Γ, β) (here $B_{a_0, \varepsilon}$ is a closed ball in \mathbb{R}^n centered at the point a_0 with the radius ε).

3. The set $T(\beta_1, \ldots, \beta_k)$. Polar maps

We consider the space \mathbb{R}^{2k+1} with coordinates $(x_1, y_1, x_2, y_2, \ldots, x_k, y_k, z)$. Let $D(\beta_1, \ldots, \beta_k)$ (here $\beta_i = p_i/q_i$ with $p_i, q_i \in \mathbb{Z}$ and GCD$(p_i, q_i) = 1$) be a subvariety of \mathbb{R}^{2k+1} given by the following equations:

$$
\begin{align*}
2^{p_1} &= (x_1^2 + y_1^2)^{q_1} \\
2^{p_2} &= (x_2^2 + y_2^2)^{q_2} \\
&\quad \vdots \\
2^{p_k} &= (x_k^2 + y_k^2)^{q_k}.
\end{align*}
$$

(1)

(The set described in the paper [2] is a special 3-dimensional example of $D(\beta_1, \beta_2)$.)

Let

$$
T(\beta_1, \ldots, \beta_k) = D(\beta_1, \ldots, \beta_k) \cap \{z \geq 0\}.
$$

(2)

Lemma 3.1

1) $\dim T(\beta_1, \ldots, \beta_k) = k + 1$.

2) The link of $T(\beta_1, \ldots, \beta_k)$ at the point $(0, \ldots, 0)$ is homeomorphic to T^k (a k-dimensional torus).

(Remind that the link of $T(\beta_1, \ldots, \beta_k)$ is the intersection of $T(\beta_1, \ldots, \beta_k)$ with a small sphere centered at $(0, \ldots, 0)$.)
Proof

1) Consider a section of $T(\beta_1, \ldots, \beta_k)$ by the plane $z = c$. We obtain the equations

$$x_i^2 + y_i^2 = c_i,$$

where $c_i = c^{2p_i/q_i}$. Clearly, these equations define a k-dimensional torus. The variety $T(\beta_1, \ldots, \beta_k)$ we obtain as a suspension of it. So, (1) is proved.

2) Let $r(z)$ be a function defined in the following way:

$$r(z) = \sqrt{z^2 + \sum_{i=1}^k z^{\beta_i}}.$$

This function $r(z)$ is a one-to-one function, for small z. Thus, for sufficiently small $\varepsilon > 0$, the link $T(\beta_1, \ldots, \beta_k) \cap S_{0, \varepsilon}$ is equal to the torus $T(\beta_1, \ldots, \beta_k) \cap \{(x_1, y_1, \ldots, x_k, y_k, z) \in \mathbb{R}^{2k+1} | z = r^{-1}(\varepsilon)\}$. \square

Each point of $T(\beta_1, \ldots, \beta_k)$ has uniquely defined polar coordinates $(\psi_1, \psi_2, \ldots, \psi_k, z)$: ψ_i is the angle coordinate of the corresponding point of the circle $x_i^2 + y_i^2 = c_i$ and z is a z-coordinate in \mathbb{R}^{2k+1}. Let $x^0 = (\psi^0_1, \psi^0_k, z^0)$ be a point of $T(\beta_1, \ldots, \beta_k)$. Let L_{x^0} be a curve on $T(\beta_1, \ldots, \beta_k)$ defined as follows:

$$L_{x^0} = \{(\psi_1, \psi_2, \ldots, \psi_k, z) | \psi_1 = \psi^0_1, \ldots, \psi_k = \psi^0_k\}.$$

We call L_{x^0} a polar line generated by x^0. Now we can define a polar map in the following way.

Denote, for $\varepsilon > 0$, the set

$$T(\beta_1, \ldots, \beta_k) \cap \{(x_1, y_1, \ldots, x_k, y_k, z) \in \mathbb{R}^{2k+1} | z \leq \varepsilon\}$$

by $T^\varepsilon(\beta_1, \ldots, \beta_k)$. Let $P_{\varepsilon_1, \varepsilon_2}: T^{\varepsilon_1}(\beta_1, \ldots, \beta_k) \to T^{\varepsilon_2}(\beta_1, \ldots, \beta_k)$ be a map defined as follows:

$$P_{\varepsilon_1, \varepsilon_2}(\psi_1, \ldots, \psi_k, z) = (\psi_1, \ldots, \psi_k, \frac{\varepsilon_1}{\varepsilon_2} z).$$

We call $P_{\varepsilon_1, \varepsilon_2}$ a polar map. Observe that $P_{\varepsilon_1, \varepsilon_2}$ is a bi-Lipschitz map.
Remark 3.1. — $T(\beta_1)$ is an usual β_1-horn.

Remark 3.2. — $T(\beta_1, \ldots, \beta_k)$ is included to $T(\beta_1, \ldots, \beta_k, \ldots, \beta_n)$ (here $n \geq k+1$) as a semialgebraic subset defined by the following equations

$$\psi_{k+1} = b_1, \quad \psi_{k+2} = b_2, \ldots, \quad \psi_n = b_{n-k}, \quad b_1, \ldots, b_{n-k} \in \mathbb{R}.$$

4. Proof of the Realization theorem

We use the induction on the number of edges. Suppose that each H"older Complex (Γ, β) whose graph Γ has less or equal than k edges is realized as a semialgebraic subset of $T(\beta_1, \ldots, \beta_k)$ such that all vertices of Γ belong to the section by the plane $z = 1$ and, for each vertex a, we have $\psi_i(a) = 0$ or $\psi_i(a) = \pi$. (We can identify the graph Γ and its image by the map F; see Definition 2.4.)

For $k = 1$, the assertion is trivial: Γ has two vertices a_1 and a_2. Set $\psi(a_1) = 0$, $\psi(a_2) = \pi$ and the edge connecting a_1 and a_2 be a half-circle. So, (Γ, β) is realized as a half of the standard β-horn.

Now consider a H"older Complex (Γ, β) such that Γ has $(k + 1)$ edges. Let g be an edge such that $B(g) = \min_{e \in E_\Gamma} \beta(e)$. Let us consider a graph $\tilde{\Gamma} = \Gamma - g$. We have two possibilities: Γ is a connected graph or $\tilde{\Gamma}$ is not connected.

Suppose that $\tilde{\Gamma}$ is not connected. Then it is a union of two connected components $\tilde{\Gamma} = \tilde{\Gamma}^1 \cup \tilde{\Gamma}^2$ (we include also a case when one of these components is just a vertex). We can suppose that $g_1, \ldots, g_{k+1} \in E_{\tilde{\Gamma}^1}$, $g_1, \ldots, g_k \in E_{\tilde{\Gamma}^2}$, $g_{k+1} = g$. Now consider a set $T(\beta_1, \ldots, \beta_k, \beta(g))$ and a section of that by the plane $z = 1$. This section is a $(k + 1)$-dimensional torus (see the proof of the Lemma 3.1). By the induction hypotheses, the subcomplex $(\tilde{\Gamma}^1, \tilde{\beta}^1)$, where $\tilde{\beta}^1 = \beta|_{\tilde{\Gamma}^1}$, can be realized as a semialgebraic subset of $T(\beta_1, \ldots, \beta_k)$ which can be considered as a semialgebraic subset of $T(\beta_1, \ldots, \beta_k, \beta(g))$ given by the equation $\psi_{k+1} = 0$ (see the Remark 3.2). By the same way, $(\tilde{\Gamma}^2, \tilde{\beta}^2)$, where $\tilde{\beta}^2 = \beta|_{\tilde{\Gamma}^2}$, can be realized as a semialgebraic subset of $T(\beta_1, \ldots, \beta_k)$ which can be considered as a semialgebraic subset of $T(\beta_1, \ldots, \beta_k, \beta(g))$ given by the equation $\psi_{k+1} = \pi$. Suppose that g connects vertices $a_1 \in \tilde{\Gamma}^1$ and $a_2 \in \tilde{\Gamma}^2$.
Realization of Hölder Complexes

let a_1 has polar coordinates $(\psi_1(a_1), \ldots, \psi_k(a_1), 0)$ and let a_2 has polar coordinates $(\psi_1(a_2), \ldots, \psi_k(a_2), \pi)$. We connect these two vertices by the following curve $\Psi(\theta) = \{\psi_1(\theta), \psi_2(\theta), \ldots, \psi_{k+1}(\theta), 1\}$ where

$$
\psi_{k+1}(\theta) = \theta, \quad \psi_i(\theta) = \begin{cases}
\psi_i(a_1) & \text{if } \psi_i(a_1) = \psi_i(a_2) \\
\theta & \text{if } \psi_i(a_1) = 0 \text{ and } \psi_i(a_2) = \pi \\
\pi + \theta & \text{if } \psi_i(a_1) = \pi \text{ and } \psi_i(a_2) = 0,
\end{cases} \quad (3)
$$

$1 \leq i \leq k, \theta \in [0, \pi]$. Clearly, $\Psi(0) = a_1$ and $\Psi(\pi) = a_2$. Define

$$
H_{\beta(\varphi)} := \bigcup_{\theta} L\Psi(\theta),
$$

the union of the polar lines generated by $\Psi(\theta)$.

Lemma 4.1. — The set $H_{\beta(\varphi)}$ is a $\beta(\varphi)$-Hölder triangle.

Proof. — $H_{\beta(\varphi)}$ is a semialgebraic set because it is defined by the system (3) which can be written as a system of algebraic equations and inequalities in terms of variables x_i, y_i, for $1 \leq i \leq k + 1$, and by the inequalities $0 \leq z \leq 1$. Hence, $H_{\beta(\varphi)} \cap B_{0,\varepsilon}$ (here $B_{0,\varepsilon}$ is a closed ball in \mathbb{R}^{2k+3} centered at 0 with the radius ε) is a Geometric Hölder Complex $H(\overline{\Gamma}, \alpha)$ corresponding to some graph $\overline{\Gamma}$ with some rational-valued function α defined on its edges [1]. Since $H_{\beta(\varphi)}$ is a curvilinear triangle (by the construction), $H_{\beta(\varphi)} \cap B_{0,\varepsilon_0}$, for sufficiently small $\varepsilon_0 \leq \varepsilon$, is bi-Lipschitz equivalent to the standard α_0-Hölder triangle where $\alpha_0 = \min_{\varphi \in E_{\overline{\Gamma}}} \alpha(\varphi)$ [1, Second Structural Lemma]. But $H_{\beta(\varphi)} \cap B_{0,\varepsilon_0}$ is bi-Lipschitz equivalent to $H_{\beta(\varphi)}$ (the bi-Lipschitz equivalence is given by the polar map $P_{\varepsilon_0,1}$).

To complete the proof of the lemma we must show that $\alpha_0 = \beta(\varphi)$. Let γ_ε be the equidistant line in $H_{\beta(\varphi)}$, namely $\gamma_\varepsilon = H_{\beta(\varphi)} \cap S_{0,\varepsilon}$. By [1], there exists a subanalytic bi-Lipschitz map $\Upsilon: H_{\beta(\varphi)} \rightarrow ST_{\alpha_0}$ such that $\Upsilon(\gamma_\varepsilon) = ST_{\alpha_0} \cap \{(x, y) \in \mathbb{R}^2 \mid x = \varepsilon\}$. Denote by $\ell(\gamma_\varepsilon)$ the length of γ_ε. Since Υ is a bi-Lipschitz map, we have

$$
c_1\varepsilon^{\alpha_0} \leq \ell(\gamma_\varepsilon) \leq c_2\varepsilon^{\alpha_0}, \quad (4)
$$

for some positive constants c_1 and c_2. To prove that $\alpha_0 = \beta(\varphi)$ we will compute the length of γ_ε from another side. Consider the function

$$
r(z) = \sqrt{z^2 + \sum_{i=1}^{k+1} z^{p_i/q_i}},
$$

- 41 -
which is a one-to-one function, for small \(z \). So, \(r^{-1}(\varepsilon) \) is a well-defined function, for small \(\varepsilon \). By the Lemma 3.1,

\[
\gamma_\varepsilon = H_\beta(g) \cap \{(x_1, y_1, \ldots, x_{k+1}, y_{k+1}, z) \in \mathbb{R}^{2k+3} \mid z = r^{-1}(\varepsilon)\}.
\]

Consider the following set

\[
T^\varepsilon = T(\beta_1, \ldots, \beta_k, \beta(g)) \\
\cap \{(x_1, y_1, \ldots, x_{k+1}, y_{k+1}, z) \in \mathbb{R}^{2k+1} \mid z = r^{-1}(\varepsilon)\}.
\]

It is a smooth manifold homeomorphic to a \((k + 1)\)-dimensional torus. The equidistant line \(\gamma_\varepsilon \) belongs to this set. There are \((k + 1)\) differential 1-forms \(d\psi_1^\varepsilon, \ldots, d\psi_k^\varepsilon \) and \(d\psi_{k+1}^\varepsilon \) on \(T^\varepsilon \) corresponding to the coordinate system \(\{\psi_1, \ldots, \psi_k, \psi_{k+1}\} \). By (3), we have

\[
\ell(\gamma_\varepsilon) = \int_{\gamma_\varepsilon} \sum_{i=1}^{k+1} m_i \, d\psi_i^\varepsilon \quad \text{where} \quad m_i = \begin{cases} 1 & \text{if } \psi_i(a_1) \neq \psi_i(a_2) \\ 0 & \text{if } \psi_i(a_1) = \psi_i(a_2), \end{cases}
\]

\[
\int_{\gamma_\varepsilon} \sum_{i=1}^{k+1} m_i \, d\psi_i^\varepsilon \leq \sum_{i=1}^{k+1} \int_{\gamma_\varepsilon} m_i \, d\psi_i^\varepsilon.
\]

By the definition of the equidistant line \(\gamma_\varepsilon \),

\[
\int_{\gamma_\varepsilon} m_i \, d\psi_i^\varepsilon = m_i \pi \beta_i.
\]

Using the above formula we obtain

\[
\ell(\gamma_\varepsilon) \leq \sum_{i=1}^{k+1} m_i \pi \beta_i.
\]

If \(z \) sufficiently small \((z < 1)\) there exists \(\tilde{C}_2 > 0 \) such that

\[
\ell(\gamma_\varepsilon) \leq \sum_{i=1}^{k+1} m_i \pi \beta_i \leq \tilde{C}_2 \varepsilon^{\beta(g)},
\]

because \(\beta(g) = \min_{1 \leq i \leq k+1} \beta_i \).

By the definition of the function \(r(\varepsilon) \), we have \(r(\varepsilon) = a\varepsilon + o(\varepsilon) \), with \(a > 0 \).
Hence, $\ell(\gamma_\varepsilon) \leq C'_2 \varepsilon^\beta(g)$, where $C'_2 = a C_2$. To obtain an estimate of $\ell(\gamma_\varepsilon)$ from below let us go back to the formulas (3)

$$\ell(\gamma_\varepsilon) = \int_{\gamma_\varepsilon} \sum_{i=1}^{k+1} m_i \, d\psi_i^\varepsilon \geq \int_{\gamma_\varepsilon} m_{k+1} \, d\psi_{k+1}^\varepsilon.$$

By (3), $m_{k+1} = 1$. Thus,

$$\ell(\gamma_\varepsilon) \geq \int_{\gamma_\varepsilon} d\psi_{k+1}^\varepsilon = \pi z^\beta(g) \geq C'_1 \varepsilon^\beta(g),$$

for some positive constant C'_1. So,

$$C'_1 \varepsilon^\beta(g) \leq \ell(\gamma_\varepsilon) \leq C'_2 \varepsilon^\beta(g). \tag{5}$$

From (4) and (5) we obtain that $\beta(g) = \alpha_0$.

Lemma 4.1 is proved. \square

Thus, the realization of (Γ, β) is given by the union of the realizations of $(\tilde{\Gamma}^1, \tilde{\beta}^1)$, $(\tilde{\Gamma}^2, \tilde{\beta}^2)$ and $H_{\beta}(\gamma)$. It is a semialgebraic set because it is a finite union of semialgebraic sets.

Now consider the second case: $\tilde{\Gamma}$ is a connected graph. In this case, by the induction hypotheses, $(\tilde{\Gamma}, \tilde{\beta})$ (where $\tilde{\beta} = \beta|_{\tilde{\Gamma}}$) can be realized as a semialgebraic subset of $T(\beta_1, \ldots, \beta_k)$ which can be considered as a semialgebraic subset of $T(\beta_1, \ldots, \beta_k, \beta(g))$ defined by the equation $\psi_{k+1} = 0$. The edge g connects two vertices a_1 and a_2. Now we can glue the realization of $(\tilde{\Gamma}, \tilde{\beta})$ and the curvilinear triangle $H_{\beta}(\gamma)$ generated by the curve $\Psi(\theta) = \{\psi_1(\theta), \psi_2(\theta), \ldots, \psi_{k+1}(\theta)\}$:

$$\psi_{k+1}(\theta) = \theta \quad \text{and} \quad \psi_i(\theta) = \begin{cases} \psi_i(a_1) & \text{if } \psi_i(a_1) = \psi_i(a_2) \\ \theta/2 & \text{if } \psi_i(a_1) = 0 \text{ and } \psi_i(a_2) = \pi \\ \pi + \theta/2 & \text{if } \psi_i(a_1) = \pi \text{ and } \psi_i(a_2) = 0, \end{cases} \tag{6}$$

for $1 \leq i \leq k$, $\theta \in [0, 2\pi]$, $a_1 = (\psi_1(a_1), \ldots, \psi_k(a_1), 0)$ and $a_2 = (\psi_1(a_2), \ldots, \psi_k(a_2), \pi)$.

Set $H_{\beta}(\gamma) := \bigcup_\theta L_{\Psi(\theta)}$. By the same arguments as in the Lemma 4.1, we can prove that $H_{\beta}(\gamma)$ is a $\beta(g)$-Hölder triangle.
The union of the realization of \((\bar{\Gamma}, \bar{\beta})\) and \(H_{\beta(g)}\) is a semialgebraic realization of \((\Gamma, \beta)\).

The Realization theorem is proved. \(\square\)

Acknowledgments

The authors were supported by CNPq grants N 300985/93-2(RN) and N 142385/95-6. We are grateful to IMPA and to Mathematical Institute of PUC-Rio, where this work was done.

References
